
Monte-Carlo Tree Search for General Game Playing

Jean Mehat and Tristan Cazenave

LIASD, Dept. Informatique, Université Paris 8
2 rue de la liberté, 93526, Saint-Denis, France

jm@ai.univ-paris8.fr
cazenave@ai.univ-paris8.fr

Abstract. We present a game engine for general game playing based onUCT,
a combination of Monte-Carlo and tree search. The resultingprogram is named
ARY. Despite the modest number of random games played by ARY before choos-
ing a move, it scored quite well in the qualifying phase of theannual general game
playing tournament hosted by AAAI.

1 Introduction

Programs to play games are usually based on a restricted number of features of a game,
identified by experts of that game, that are exploited by the programmer to try to obtain
a good level of play.

For game playing, a number of strategies are known and one chooses among them
the ones that will give the best level of play.

General Game Playing is a special variant of game playing, usually played by pro-
grams, where the ability to automatically extract important features of a given type of
game is stressed : the players are given the rules of the game,these rules are analyzed
for a given period of time, and then the game is played with theusual time constraints.

The application of Monte-Carlo tree search to General Game Playing is presented
in this paper. The second section presents Monte-Carlo treesearch. The third section
deals with General Game Playing. The fourth section detailsthe representation of a
game. The fifth section is about the Monte-Carlo algorithms we have tested. The sixth
section gives experimental results.

2 Monte-Carlo tree search

Monte-Carlo tree search is a general technique that has proved useful in computer Go.
Monte-Carlo Go can be traced back to GOBBLE [1]. An efficient combination with
global search has been proposed by Rémi Coulom in his program CRAZY STONE [2].
It consists in adding a leaf to the tree for each simulation. The choice of the move to
develop in the tree depends on the comparison of the results of the previous simulations
that went through this node, and of the results of the simulations that went through its
sibling nodes.

The UCT algorithm [3] uses a similar tree development, but uses another formula
to select the moves to develop. UCT consists in exploring themove that maximizes



µi + C ×

√

log(t)/s. The mean result of the games that start with theci move isµi,
the number of games played in the current node ist, and the number of games that start
with moveci is s. TheC constant can be used to adjust the level of exploration of the
algorithm. High values favor exploration and low values favor exploitation.

UCT has been applied with success to Monte-Carlo Go in the program MOGO [4,
5] among many others. UCT and its variations are very successful in the game of Go,
and the current best Go programs use UCT.

Monte-Carlo tree search can also be applied to other games, but as it is a recent
technique it has not yet been tested on many other games.

3 General Game Playing

General game playing is a longstanding goal of Artificial Intelligence [6]. Realization
of general game playing program can be traced back to the seminal work of J. Pitrat on
GENEJEU[7].

Other works that explicitly use first order logic to represent the rules of different
games and reason on them so as to produce players are METAGAME for chess-like
games [8] and INTROSPECT[9].

Recent work also includes the development of general game players for a broader
class of games, including board and card games [10].

In 2005, 2006 and 2007, the Stanford logic group organized the General Game
Playing competitions at the AAAI conferences. Games are represented using the Game
Description Language, based on first order logic.

The winners of the 2005 and 2006 competitions used classicaltree search based
on Alpha-Beta [11, 12]. Cadia, the winner of the 2007 competition uses the UCT algo-
rithm.

Ignoring the rules of the game before the match begins does not allow giving game
specific knowledge to the game playing programs. The programs have to use general
algorithms or recognize the game type after the rules and deduce the best algorithm.
Progress in General Game Playing is likely to produce more general algorithms than
progress in specific games.

4 Representation of a Game

This section deals with the rules of the games used in GGP. Thefirst subsection details
the representation given to the players. The second subsection explains the internal
representation used in ARY. The third subsection shows the interface to the Prolog
interpreter.

4.1 Representation of Games Rules with First Order Logic

In General Game Playing, a game is represented by a set a first order logic expressions
representing the rules and three parameters : therole of the program, the time before the
first move (initial reflection time) and the time between moves. In the 2007 competition,
these times varied between 10 seconds and 20 minutes.



The rules of the game are expressed with a few keywords:init indicates that the
following expression represents a feature of the board at the beginning of the game,
does is used for representing a move,legal for describing a legal move,next for
the state of the board after a move is played,terminal is true when the game is
finished, andgoal permits to know the score of each player at the end of the game.

Axioms and theorems are communicated in a syntax reminiscent of Lisp forms,
with a ’?’ indicating variables. For example the expression

(<= (LEGAL (DOES ?player (drop ?x ?y)))
(true (empty ?x ?y)) (true (active ?player)))

might be used to indicate that the active player can drop a piece on any empty board
cell, while:

(<= (NEXT (occupied ?x ?y ?player))
(DOES ?player (drop ?x ?y)))

describes a feature of the board after a move.

4.2 Internal representation of KIF expressions in ARY

All the expressions regarding the game description and status are stored internally as
lists implemented like Lisp expressions. Unused cons cellsare added to the free list
explicitly by the code: there is no garbage collection.

A hash code is stored with each cons cell. It identifies the contents of the list. The
hash code is calculated like a Zobrist hash based on 64 bits random numbers attributed
to atoms on creation. This hash code is used in hash tables that are the primary data
structures for storing collections of lists.

Two tables contain all the expressions describing moves andboard states encoun-
tered from the start of the game. It avoids the memory consumption due to similarities
between different nodes. Except in some of the games specifically conceived to stress
the program robustness, these tables always keep a small size fitting easily in memory.

4.3 Conversion to Prolog

A Prolog interpreter is used as an inference engine, with a clear cut interface with the
program. Most of the data manipulation is done in KIF; the conversion between Prolog
and KIF is part of the interface and consists in about 450 lines of C code, including
comments and self test support.

After receiving the description of the game to be played fromthe Game Server, the
theorems are loaded once in the interpreter. The initial situation, described by assertions
featuring theINIT keyword, is also loaded as ordinary facts.

To enumerate the legal moves in the current position, for each playerthe Prolog in-
terpreter is repeatedly given the goallegal(player, Move) until failure. The an-
swers are immediately converted to KIF and stored in the hashtable of legal moves for
each player. For example, Prolog replying tolegal(playera, Move) thatMove



= pass) is translated as the KIF expression(DOES PLAYER-A PASS) that will
be used to play the move.

Similarly, a terminal position is detected trying to prove theterminal() goal,
and the score of a player by askingscore(player, Score)

The current status of the game in the Prolog interpreter is updated by retracting
and asserting facts. This update is done incrementally: facts that do not change are not
reloaded. This is particularly efficient in the many games where a single move only af-
fects the local situation of the board. For example, in Tic Tac Toe the board is described
by nine assertions; after a move, only one assertion has to bemodified to reflect the
modification of the board state.

All the interface between the search algorithm and the Prolog interpreter is in a
single file of 600 lines of C code, including comments and support for self test.

A few adjustments were necessary in the KIF description of the game to avoid prob-
lems with the Prolog interpreter. All the atoms appearing after an opening parenthesis
in a KIF expression are declared as predicate with the correct arity in the Prolog inter-
preter, by asserting and then retracting an arbitrary expression. The expressions in the
right part of the theorem are reordonated to let the ones without variables come first.

5 Monte-Carlo Tree Search

We present here the different Monte-Carlo algorithms we have tested. All are based
on playouts where random games are played until reaching a terminal situation, whose
evaluation is used to qualify the moves used.

The first subsection describes the most simple, pure Monte-Carlo that was used in
the 2007 competition. The second subsection deals with UCT,and the third with theAll
Moves As Firstvariant.

5.1 Pure Monte-Carlo

In pure Monte-Carlo, all the moves of all the playouts are chosen randomly and the final
score of each playout is used to qualify its first move. When time is elapsed, the move
with the greatest mean is played.

This algorithm has an advantage in its simplicity and its robustness. It has a small
memory footprint as nothing has to be stored permanently, except the legal moves from
the beginning of the game.

5.2 UCT

For UCT, when a move has not been played in the tree, it is triedbefore already explored
moves. When all moves are explored, UCT chooses the move thatmaximizesµi +C ×
√

log(t)/s for each player. Scores of the games are in the range 0–100, sowe use
C = 50. For each playout, the move tree is expanded by one node. Thisway, the
following playouts can descend into the tree without replaying the move, which is a
slow operation in our implementation.



In games where players move simultaneously, we use a simplification for the sake
of simplicity and rapidity. A score is computed for each moveof a player by summing
the score of the nodes where it appears. The move for each player is then chosen inde-
pendently.

No attempt is done to make a difference between zero sum and collaborative games.
Each player’s move is chosen on the basis of this player’s score, ignoring the score of
the other players.

5.3 All Moves As First

ForAll Moves As First(AMAF), the result of a playout is used to qualify all the moves
played in this playout.

The first moves of the playouts are chosen by descending a treebuilt as in UCT,
using the mean of the corresponding moves. Once a leaf is attained, the tree is also
expanded by one node and a random playout is played up to the end of the game.

The legal move at the root with the greatest mean is played when time is elapsed.

6 Experimental Results

This section contains a brief description of the participation of ARY in the qualifying
phase of the 2007 competition. Then we compare the performance of the three algo-
rithms Pure Monte-Carlo, UCT and AMAF on different games from the last two weeks
of the 2007 competition qualification phase.

6.1 Results in Competition

The qualification phase of the 2007 AAAI tournament consisted in four weeks of tour-
naments, with two days of play for each week. Each day, the programs played about ten
matches in different games.

The first week, the program played games in order to test the basic functionality on
simple games. The second week, the games played stressed thelimits of the programs,
testing large number of possible moves, large number of rules or large state spaces.
The third and fourth week, the programs played variations onclassical games including
Othello, simplified Chess, Checkers and Amazons.

ARY played 83 matches of approximately 35 different games. The algorithm used
was pure Monte-Carlo. Among the eight participants, ARY ranked third of the 2007
GGP qualification rounds.

Naturally, the mean number of random games played by ARY varied enormously,
depending on the nature of the game and the phase of the match.To eliminate this last
bias, we consider only the number of random moves played before playing the first
move of each match.

On the whole competition, the mean number of random games is very close to 150
games per second. On a simple game like Tic Tac Toe, the figuresare about 4500 games
per second. On longer games like Othello, they can drop to 2 seconds for one complete
random game, and even 5 seconds for one version of Amazon where the number of



moves is very high. When considering only the more interesting games of the third and
fourth week, the mean number of random games per second is approximately 65 per
second.

6.2 Result in self-play

This section presents results obtained by making ARY play against itself on different
games used in the last two weeks of the GGP 2007 qualifying phase : Quarto, Break-
through with normal and inverted goals, Pentago with normaland inverted goals Othello
and Amazon. Another version of Amazon could not be used for testing as its large num-
ber of moves per node induced a memory exhaustion and a program crash for UCT, due
to a default in the implementation of the move tree.

As all the results obtained by self test, the results of theseexperiments have to be
consideredcum grano salis. Some of the algorithms may present deficiencies that the
variant of the same player is not able to exploit, but that would be disastrous against
another opponent.

UCT vs Pure Monte-Carlo Here we compare the scores of ARY against itself, when
using Pure Monte Carlo against UCT. Each set of rules was tested in twenty games,
alternating the first and the second player. The results are presented in the table 1.

Table 1. UCT vs Pure Monte-Carlo

gamefirst player UCT PMC

Quarto UCT 60 40
PMC 75 25

Breakthrough UCT 90 10
PMC 60 40

Breakthrough (Suicide) UCT 90 10
PMC 80 20

Pentago UCT 60 40
PMC 80 20

Pentago (Suicide) UCT 60 40
PMC 90 10

Othello UCT 75 25
PMC 90 10

Amazons UCT 80 20
PMC 70 30

Checkers UCT 96.4 88.4
PMC 98.2 86.4

Mean 78.4132.18

As can be seen from the table, UCT allows a significant gain is strength. It wins
each set of ten games, playing as the first or the second player.



A part of the advantage of UCT over Pure Monte Carlo is probably due to the tree
constructed by UCT that allows to play the first moves of a playout by a simple tree
descent, with no need to generate the legal moves and modify the board state, thus
avoiding the slow interaction with the Prolog interpreter.

Note that Checkers is not scored as a zero sum game but according to the captured
material.

UCT vs All Moves As First In the same vein as the preceding section, we present here
the results of ARY using UCT playing against itself usingAll Moves As First. The score
presented are the means of the scores obtained in twenty games, alternating first and
second role. The results are presented in table 2.

Table 2. UCT vsAll Moves As First

gamefirst player UCT AMAF

Quarto UCT 60 40
AMAF 95 5

Breakthrough UCT 80 20
AMAF 50 50

Breakthrough (Suicide) UCT 70 30
AMAF 70 30

Pentago UCT 50 50
AMAF 30 70

Pentago (Suicide) UCT 75 25
AMAF 40 60

Othello UCT 40 60
AMAF 40 60

Amazons UCT 40 60
AMAF 75 25

Checkers UCT 100 65
AMAF 100 66.6

Mean 63.44 44.79

On some games,All Moves As Firstobtains better results than UCT, probably be-
cause, for these games, the number of playouts is so small that the information, gathered
by the statistics on the first moves only, is not relevant. On the other hand, the advantage
of UCT in the last phase of the game compensates for its disadvantage in the beginning
in most of the studied games.

7 Conclusion and Future Research

UCT is a competitive algorithm for General Game Playing. It outperforms Pure Monte-
Carlo on seven games from the 2007 AAAI competition. Resultsof competition be-
tween UCT andAll Moves As Firstare more balanced and seem to be game dependent.



The time given to the program to analyze games before playingcould be used to match
UCT andAll Moves As Firstto decide which one to use, and in which phase of the
game.

A version of ARY using Pure Monte-Carlo ranked 3 out of 8 in the 2007 competi-
tion, and we believe the current UCT-based version would have scored even better.

To avoid the time consumed by translating question and answer between the core
of the algorithms and the Prolog interpreter, we intend to integrate the program and the
logic engine, either by writing a unifier in C or by deporting at least the Monte-Carlo
exploration into the Prolog interpreter.

We will parallelize the search to exploit the capacities of SMP and multi-core pro-
cessors. Stochastic algorithms are good candidates for parallelization, as the branches
can be explored independently, with few interactions.

References

1. Bruegmann, B.: Monte Carlo Go. white paper (1993)
2. Coulom, R.: Efficient selectivity and back-up operators in monte-carlo tree search. In:

Computers and Games 2006. Volume 4630 of LNCS, Torino, Italy, Springer (2006) 72–83
3. Kocsis, L., Szepesvàri, C.: Bandit based monte-carlo planning. In: ECML. Volume 4212 of

Lecture Notes in Computer Science., Springer (2006) 282–293
4. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with patterns in monte-

carlo go. Technical Report 6062, INRIA (2006)
5. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: ICML. (2007)

273–280
6. Pitrat, J.: Games: The next challenge. ICCA Journal21(3) (1998) 147–156
7. Pitrat, J.: Realization of a general game-playing program. In: IFIP Congress (2). (1968)

1570–1574
8. Pell, B.: A strategic metagame player for general chess-like games. In: AAAI. (1994) 1378–

1385
9. Cazenave, T.: Système d’Apprentissage Par Auto-Observation. Application au jeu de Go.

Phd thesis, Université Paris 6 (1996)
10. Quenault, M., Cazenave, T.: Extended general gaming model. In: CGW 2007. (2007) 195–

204
11. Clune, J.: Heuristic evaluation functions for general game playing. In: AAAI. (2007) 1134–

1139
12. Schiffel, S., Thielscher, M.: Fluxplayer: A successfulgeneral game player. In: AAAI. (2007)

1191–1196


