Monte-Carlo Tree Search for General Game Playing

Jean Mehat and Tristan Cazenave

LIASD, Dept. Informatique, Université Paris 8
2 rue de la liberte, 93526, Saint-Denis, France
jm@i . univ-paris8.fr
cazenave@i . uni v-paris8.fr

Abstract. We present a game engine for general game playing basedton
a combination of Monte-Carlo and tree search. The resufimlegram is named
ARY. Despite the modest number of random games playedrbyl#efore choos-
ing a move, it scored quite well in the qualifying phase ofadhaual general game
playing tournament hosted by AAAL.

1 Introduction

Programs to play games are usually based on a restrictedanafieatures of a game,
identified by experts of that game, that are exploited by thgmmmer to try to obtain
a good level of play.

For game playing, a number of strategies are known and ormesek@mong them
the ones that will give the best level of play.

General Game Playing is a special variant of game playinggllysplayed by pro-
grams, where the ability to automatically extract impotfaatures of a given type of
game is stressed : the players are given the rules of the dhese rules are analyzed
for a given period of time, and then the game is played withutheal time constraints.

The application of Monte-Carlo tree search to General GalagmR) is presented
in this paper. The second section presents Monte-Carlcstrarch. The third section
deals with General Game Playing. The fourth section deth#srepresentation of a
game. The fifth section is about the Monte-Carlo algorithreshave tested. The sixth
section gives experimental results.

2 Monte-Carlotreesearch

Monte-Carlo tree search is a general technique that haggneseful in computer Go.
Monte-Carlo Go can be traced back ta&BLE [1]. An efficient combination with
global search has been proposed by Rémi Coulom in his pro@rRazy STONE [2].
It consists in adding a leaf to the tree for each simulatidre €hoice of the move to
develop in the tree depends on the comparison of the redulis previous simulations
that went through this node, and of the results of the sirariatthat went through its
sibling nodes.

The UCT algorithm [3] uses a similar tree development, baswenother formula
to select the moves to develop. UCT consists in exploringntibee that maximizes

wi + C x /log(t)/s. The mean result of the games that start withd¢heove isu;,
the number of games played in the current nodeasd the number of games that start
with moveg; is s. TheC constant can be used to adjust the level of exploration of the
algorithm. High values favor exploration and low valuesfiagxploitation.

UCT has been applied with success to Monte-Carlo Go in thgram MoGo [4,
5] among many others. UCT and its variations are very sufiddéssthe game of Go,
and the current best Go programs use UCT.

Monte-Carlo tree search can also be applied to other gamesgghit is a recent
technique it has not yet been tested on many other games.

3 General Game Playing

General game playing is a longstanding goal of Artificiakliigence [6]. Realization
of general game playing program can be traced back to thens¢work of J. Pitrat on
GENEJEU[T7].

Other works that explicitly use first order logic to represtre rules of different
games and reason on them so as to produce players aredAME for chess-like
games [8] andNTROSPECT][9].

Recent work also includes the development of general gamye for a broader
class of games, including board and card games [10].

In 2005, 2006 and 2007, the Stanford logic group organizedGkneral Game
Playing competitions at the AAAI conferences. Games areeggmted using the Game
Description Language, based on first order logic.

The winners of the 2005 and 2006 competitions used class@alsearch based
on Alpha-Beta [11, 12]. Cadia, the winner of the 2007 contjgetiuses the UCT algo-
rithm.

Ignoring the rules of the game before the match begins daesllow giving game
specific knowledge to the game playing programs. The progifzame to use general
algorithms or recognize the game type after the rules andaethe best algorithm.
Progress in General Game Playing is likely to produce morege algorithms than
progress in specific games.

4 Representation of a Game

This section deals with the rules of the games used in GGHifgtisubsection details
the representation given to the players. The second sudsemtplains the internal
representation used inRY. The third subsection shows the interface to the Prolog
interpreter.

4.1 Representation of Games Ruleswith First Order Logic

In General Game Playing, a game is represented by a set arflestlogic expressions
representing the rules and three parametersrole®f the program, the time before the
first move (nitial reflection timg and the time between moves. In the 2007 competition,
these times varied between 10 seconds and 20 minutes.

The rules of the game are expressed with a few keywandsst indicates that the
following expression represents a feature of the boardeab#ginning of the game,
does is used for representing a moveggal for describing a legal moveext for
the state of the board after a move is playedr m nal is true when the game is
finished, andyoal permits to know the score of each player at the end of the game.

Axioms and theorems are communicated in a syntax reminisafehisp forms,
with a ?" indicating variables. For example the expression

(<= (LEGAL (DCES ?player (drop ?x ?y)))
(true (enpty ?x ?y)) (true (active ?player)))

might be used to indicate that the active player can drop eepi@ any empty board
cell, while:

(<= (NEXT (occupied ?x ?y ?player))
(DOES ?pl ayer (drop ?x ?y)))

describes a feature of the board after a move.

4.2 Internal representation of KIF expressionsin ARY

All the expressions regarding the game description andstate stored internally as
lists implemented like Lisp expressions. Unused cons eglisadded to the free list
explicitly by the code: there is no garbage collection.

A hash code is stored with each cons cell. It identifies thaesdn of the list. The
hash code is calculated like a Zobrist hash based on 64 bil®na numbers attributed
to atoms on creation. This hash code is used in hash tablearthshe primary data
structures for storing collections of lists.

Two tables contain all the expressions describing movesaadd states encoun-
tered from the start of the game. It avoids the memory consompue to similarities
between different nodes. Except in some of the games spalyifaonceived to stress
the program robustness, these tables always keep a snedfitsimg easily in memory.

4.3 Conversion to Prolog

A Prolog interpreter is used as an inference engine, witlearatut interface with the
program. Most of the data manipulation is done in KIF; thevawsion between Prolog
and KIF is part of the interface and consists in about 45GlioeC code, including
comments and self test support.

After receiving the description of the game to be played ftbmGame Server, the
theorems are loaded once in the interpreter. The initiaatitin, described by assertions
featuring thaniT keyword, is also loaded as ordinary facts.

To enumerate the legal moves in the current position, fan pkeg/erthe Prolog in-
terpreter is repeatedly given the gbagal (pl ayer, Mve) until failure. The an-
swers are immediately converted to KIF and stored in the tesb of legal moves for
each player. For example, Prolog replyind tegal (pl ayera, Move) thatMove

= pass) is translated as the KIF expressibBDOES PLAYER- A PASS) that will
be used to play the move.

Similarly, a terminal position is detected trying to provet er i nal () goal,
and the score of a player by askiagor e(pl ayer, Score)

The current status of the game in the Prolog interpreter datgul by retracting
and asserting facts. This update is done incrementallys that do not change are not
reloaded. This is particularly efficient in the many gamegsreha single move only af-
fects the local situation of the board. For example, in Tic Tae the board is described
by nine assertions; after a move, only one assertion has todufified to reflect the
modification of the board state.

All the interface between the search algorithm and the Broiterpreter is in a
single file of 600 lines of C code, including comments and supfor self test.

A few adjustments were necessary in the KIF description@f#me to avoid prob-
lems with the Prolog interpreter. All the atoms appearirigradn opening parenthesis
in a KIF expression are declared as predicate with the coarég in the Prolog inter-
preter, by asserting and then retracting an arbitrary egpva. The expressions in the
right part of the theorem are reordonated to let the onesowithariables come first.

5 Monte-Carlo Tree Search

We present here the different Monte-Carlo algorithms weehagted. All are based
on playouts where random games are played until reachingranal situation, whose
evaluation is used to qualify the moves used.

The first subsection describes the most simple, pure MoatéeGhat was used in
the 2007 competition. The second subsection deals with E@dthe third with thell
Moves As Firswvariant.

5.1 PureMonte-Carlo

In pure Monte-Carlo, all the moves of all the playouts aresgimrandomly and the final
score of each playout is used to qualify its first move. Wheretis elapsed, the move
with the greatest mean is played.

This algorithm has an advantage in its simplicity and itsusibess. It has a small
memory footprint as nothing has to be stored permanenttgm¢he legal moves from
the beginning of the game.

52 UCT

For UCT, when a move has not been played in the tree, it isliééore already explored
moves. When all moves are explored, UCT chooses the movetdinizes; + C' x
\/log(t)/s for each player. Scores of the games are in the range 0-100¢ scse
C = 50. For each playout, the move tree is expanded by one node.wdyisthe
following playouts can descend into the tree without replgythe move, which is a
slow operation in our implementation.

In games where players move simultaneously, we use a siogpidn for the sake
of simplicity and rapidity. A score is computed for each movea player by summing
the score of the nodes where it appears. The move for eaclrptathen chosen inde-
pendently.

No attempt is done to make a difference between zero sum dlatharative games.
Each player's move is chosen on the basis of this playersesagnoring the score of
the other players.

53 All MovesAsFirst

For All Moves As Firs{ AMAF), the result of a playout is used to qualify all the meve
played in this playout.

The first moves of the playouts are chosen by descending duitteas in UCT,
using the mean of the corresponding moves. Once a leaf inedtathe tree is also
expanded by one node and a random playout is played up to thef ¢éime game.

The legal move at the root with the greatest mean is playedwih is elapsed.

6 Experimental Results

This section contains a brief description of the partiggrabf ARY in the qualifying
phase of the 2007 competition. Then we compare the perfarenahthe three algo-
rithms Pure Monte-Carlo, UCT and AMAF on different gamesfrihe last two weeks
of the 2007 competition qualification phase.

6.1 Resultsin Competition

The qualification phase of the 2007 AAAI tournament consistefour weeks of tour-
naments, with two days of play for each week. Each day, thgraros played about ten
matches in different games.

The first week, the program played games in order to test thie hanctionality on
simple games. The second week, the games played stresdadithef the programs,
testing large number of possible moves, large number obratdarge state spaces.
The third and fourth week, the programs played variationslassical games including
Othello, simplified Chess, Checkers and Amazons.

ARY played 83 matches of approximately 35 different games. Tgarithm used
was pure Monte-Carlo. Among the eight participant®yAranked third of the 2007
GGP qualification rounds.

Naturally, the mean number of random games played Ry #aried enormously,
depending on the nature of the game and the phase of the mateliminate this last
bias, we consider only the number of random moves playedrégfiaying the first
move of each match.

On the whole competition, the mean number of random gamesysclose to 150
games per second. On a simple game like Tic Tac Toe, the figteesout 4500 games
per second. On longer games like Othello, they can drop te@weks for one complete
random game, and even 5 seconds for one version of Amazorewthemumber of

moves is very high. When considering only the more intemgsgiames of the third and
fourth week, the mean number of random games per second iexampgtely 65 per
second.

6.2 Reault in self-play

This section presents results obtained by makimy Alay against itself on different
games used in the last two weeks of the GGP 2007 qualifyinggoh®uarto, Break-
through with normal and inverted goals, Pentago with noandlinverted goals Othello
and Amazon. Another version of Amazon could not be used &tirtg as its large num-
ber of moves per node induced a memory exhaustion and a jpnagesh for UCT, due
to a default in the implementation of the move tree.

As all the results obtained by self test, the results of tlegeriments have to be
considereccum grano salisSome of the algorithms may present deficiencies that the
variant of the same player is not able to exploit, but that libdne disastrous against
another opponent.

UCT vsPure Monte-Carlo Here we compare the scores oRAagainst itself, when
using Pure Monte Carlo against UCT. Each set of rules wasddsttwenty games,
alternating the first and the second player. The resultsrasepted in the table 1.

Table 1. UCT vs Pure Monte-Carlo

gamefirst player UCT| PMC

Quartq UCT| 60 40

PMC| 75 25

Breakthrough UCT| 90| 10
PMC| 60 40

Breakthrough (Suicide) UCT| 90| 10
PMC| 80 20

Pentago UCT| 60, 40

PMC| 80 20

Pentago (Suicide) UCT| 60 40
PMC| 90 10

Othellg UCT| 75 25

PMC| 90 10

Amazons UCT| 80| 20

PMC| 70| 30

Checkers UCT| 96.4 88.4

PMC| 98.2 86.4

Meal 78.4132.18

As can be seen from the table, UCT allows a significant gaitrength. It wins
each set of ten games, playing as the first or the second player

A part of the advantage of UCT over Pure Monte Carlo is propdbk to the tree
constructed by UCT that allows to play the first moves of a playby a simple tree
descent, with no need to generate the legal moves and mddifpdard state, thus
avoiding the slow interaction with the Prolog interpreter.

Note that Checkers is not scored as a zero sum game but augoodhe captured
material.

UCT vsAll MovesAsFirst In the same vein as the preceding section, we present here
the results of &Ry using UCT playing against itself usirijl Moves As FirstThe score
presented are the means of the scores obtained in twentysgaiternating first and
second role. The results are presented in table 2.

Table 2. UCT vsAll Moves As First

gamefirst player UCT|AMAF

Quartg UCT| 60 40
AMAF| 95 5
Breakthrough UCT| 80 20
AMAF| 50 50
Breakthrough (Suicide) UCT| 70 30
AMAF| 70 30
Pentago UCT| 50 50
AMAF| 30 70
Pentago (Suicide) UCT| 75 25
AMAF| 40 60
Othellg UCT| 40 60
AMAF| 40 60
Amazons UCT| 40 60
AMAF| 75 25
Checkers UCT| 100 65
AMAF| 100 66.4
Meal 63.44 44.79

On some game&ll Moves As Firstobtains better results than UCT, probably be-
cause, for these games, the number of playouts is so smigthé&iaformation, gathered
by the statistics on the first moves only, is not relevant.l@mther hand, the advantage
of UCT in the last phase of the game compensates for its disaidge in the beginning
in most of the studied games.

7 Conclusion and Future Research

UCT is a competitive algorithm for General Game Playing Litppeerforms Pure Monte-
Carlo on seven games from the 2007 AAAI competition. Resafitsompetition be-
tween UCT andhll Moves As Firseare more balanced and seem to be game dependent.

The time given to the program to analyze games before playontf be used to match
UCT andAll Moves As Firstto decide which one to use, and in which phase of the
game.

A version of ARY using Pure Monte-Carlo ranked 3 out of 8 in the 2007 competi-
tion, and we believe the current UCT-based version woulé Isaered even better.

To avoid the time consumed by translating question and ankeigveen the core
of the algorithms and the Prolog interpreter, we intend tegrate the program and the
logic engine, either by writing a unifier in C or by deportingeast the Monte-Carlo
exploration into the Prolog interpreter.

We will parallelize the search to exploit the capacities BfRSand multi-core pro-
cessors. Stochastic algorithms are good candidates fallgdamation, as the branches
can be explored independently, with few interactions.

References

1. Bruegmann, B.: Monte Carlo Go. white paper (1993)
2. Coulom, R.: Efficient selectivity and back-up operatararionte-carlo tree search. In:
Computers and Games 2006. Volume 4630 of LNCS, Torino,, I€tyinger (2006) 72—83
3. Kacsis, L., Szepesvari, C.: Bandit based monte-cadarphg. In: ECML. Volume 4212 of
Lecture Notes in Computer Science., Springer (2006) 282—-29
4. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: ModificatidlCT with patterns in monte-
carlo go. Technical Report 6062, INRIA (2006)
5. Gelly, S., Silver, D.: Combining online and offline knodge in UCT. In: ICML. (2007)
273-280
6. Pitrat, J.. Games: The next challenge. ICCA JouPiéB) (1998) 147-156
7. Pitrat, J.: Realization of a general game-playing pnwgrdn: IFIP Congress (2). (1968)
1570-1574
8. Pell, B.: A strategic metagame player for general chi&ggsghmes. In: AAAI. (1994) 1378—
1385
9. Cazenave, T.: Systeme d'Apprentissage Par Auto-Oasenv Application au jeu de Go.
Phd thesis, Université Paris 6 (1996)
10. Quenault, M., Cazenave, T.: Extended general gaminggméd CGW 2007. (2007) 195—
204
11. Clune, J.: Heuristic evaluation functions for geneahg playing. In: AAAI. (2007) 1134—
1139
12. Schiffel, S., Thielscher, M.: Fluxplayer: A successfaheral game player. In: AAAI. (2007)
1191-1196

