
Improved Policy Networks for Computer Go

Tristan Cazenave

Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, PARIS, FRANCE

Abstract. Golois uses residual policy networks to play Go. Two improvements
to these residual policy networks are proposed and tested. The first one is to use
three output planes. The second one is to add Spatial Batch Normalization.

1 Introduction

Deep Learning for the game of Go with convolutional neural networks has been ad-
dressed by [2]. It has been further improved using larger networks [7, 10]. AlphaGo [9]
combines Monte Carlo Tree Search with a policy and a value network.

Residual Networks improve the training of very deep networks [4]. These networks
can gain accuracy from considerably increased depth. On the ImageNet dataset a 152
layers networks achieves 3.57% error. It won the 1st place on the ILSVRC 2015 classifi-
cation task. The principle of residual nets is to add the input of the layer to the output of
each layer. With this simple modification training is faster and enables deeper networks.

Residual networks were recently successfully adapted to computer Go [1]. As a
follow up to this paper, we propose improvements to residual networks for computer
Go.

The second section details different proposed improvements to policy networks for
computer Go, the third section gives experimental results, and the last section con-
cludes.

2 Proposed Improvements

We propose two improvements for policy networks. The first improvement is to use
multiple output planes as in DarkForest. The second improvement is to use Spatial
Batch Normalization.

2.1 Multiple Output Planes

In DarkForest [10] training with multiple output planes containing the next three moves
to play has been shown to improve the level of play of a usual policy network with 13
layers.

We propose to test this improvement for residual networks and for deeper networks.
So instead of having only one output plane we will test multiple output planes for our
architectures.



2.2 Spatial Batch Normalization

The usual layer used in computer Go program such as AlphaGo [7] and DarkForest [10]
is composed of a convolutional layer and of a rectified linear unit (ReLU) layer [8] as
shown in figure 1. A ReLU layer simply takes the maximum between 0 and the input
of the layer. It enables to train deeper networks by reinforcing the signal through the
network. Convolutional layers are composed of small filters (usually 3× 3 filters) that
are passed all over the input plane to compute the output plane.

Fig. 1. A usual layer.

Fig. 2. A layer of DarkForest.

In [1] we proposed to use residual layers as used for image classification. A residual
layer adds the input of the layer to the output of the layer using addition and identity as
shown in figure 5.

In the code of the open source DarkForest Go program, Spatial Batch Normalization
[6] is used after the ReLU layer as shown in figure 2.

Batch Normalisation uses the mean and the variance of the training examples in
minibatches to normalize the activations of the network [6]. The principle of Spatial
Batch Normalization is to use Batch Normalization for convolutional networks that
deal with two dimensional inputs and outputs.

Batch normalization approximates the statistics of the training set with sample
statistics drawn from a mini-batch. Given a batch of examples x1, . . .xm, the sample
mean and sample standard deviation are

x̄ =
1
m

m

∑
i

xi (1)

σ
2 =

1
m ∑(xi − x̄)2. (2)

They can be used to standardize the data

x̂i =
xi − x̄

σ
. (3)



To account for the change in the representational capacity of a layer, batch normal-
ization uses additional learnable parameters γ and β , which respectively scale and shift
the data, leading to a layer of the form

BN(xi) = γ × x̂i +β . (4)

By setting γ to the standard deviation and β to the expectation, we can recover the
original layer representation.

The usual residual layers described in [4] already use Spatial Batch Normalization
to improve training on images. The architecture commonly used is given in figure 3.

Fig. 3. The original residual layer. Fig. 4. A residual layer with identity mapping.

Identity mappings were proposed in [5] as an improvement to the original resid-
ual layer of [4]. The proposed improved architecture is given in figure 4. The original
residual layers also use identity mappings but in a different way.

We propose a new residual layer architecture. It is given in figure 6. It adds a Spatial
Batch Normalization after the ReLU layer and outside of the residual block. This is a
new architecture that we propose and test in this paper. We call it the Golois layer.

The input layer of our network is also residual. It uses a 5×5 convolutional layer in
parallel to a 1×1 convolutional layer and adds the outputs of the two layers before the
ReLU layer. It is depicted in figure 7.



Fig. 5. A residual layer.
Fig. 6. A Golois layer with Spatial Batch Nor-
malization.

Input

Addition

ReLU

Output

5x5 Convolution 1x1 Convolution

Fig. 7. The first residual layer of the network for computer Go.

The output layer of the network is a 3× 3 convolutional layer with one to three
output planes followed by a SoftMax.



3 Experimental Results

In this section we will explain the experiments evaluating policy networks. We first
present the data that was used for training and testing. We then describe the input planes
of the networks and the training and testing phases with results given as percentages on
the test set. We give experimental results comparing networks with one and three output
planes. We also compare the Golois layer to other residual layers. We finish the section
describing our Go playing program Golois.

3.1 The Data

We use the GoGoD dataset [3]. It is composed of many professional games played until
today. We used the games from 1900 to 2014 for the training set and the games from
2015 and 2016 as the test set. In our experiments we use the first 500 000 positions of
the test set to evaluate the error and the accuracy of the networks.

3.2 Input and Output Planes

The networks use 45 19× 19 input planes: three planes for the colors of the intersec-
tions, one plane filled with ones, one plane filled with zeros, one plane for the third line,
one plane filled with one if there is a ko, one plane with a one for the ko move, ten
planes for the liberties of the friend and of the enemy colors (1, 2, 3, 4, ≥ 5 liberties),
fourteen planes for the liberties of the friend and of the enemy colors if a move of the
color is played on the intersection (0, 1, 2, 3, 4, 5, ≥ 6 liberties), one plane to tell if a
friend move on the intersection is captured in a ladder, one plane to tell if a string can be
captured in a ladder, one plane to tell if a string is captured in a ladder, one plane to tell
if an opponent move is captured in a ladder, one plane to tell if a friend move captures
in a ladder, one plane to tell if friend move escapes a ladder, one plane to tell if a friend
move threatens a ladder, one plane to tell is an opponent move threatens a ladder, and
five planes for each of the last five moves.

The output of a network is a 19× 19 plane and the target is also a 19× 19 plane
with a one for the move played and zeros elsewhere.

The choice of these input planes is similar to other Deep Learning programs such
as DarkForest [10] and AlphaGo [7, 9] with a little more focus on tactical ladders cal-
culations.

3.3 Training

In order to train the network we build minibatches of size 50 composed of 50 states
chosen randomly in the training set, each state is randomly mirrored to one of its eight
symmetric states. The accuracy and the error on the test set are computed every 5 000
000 training examples. We define an epoch as 5 000 000 training examples.

We do not use an epoch as the total number of examples as there are many examples
and as the training procedures chooses examples randomly in the training set to build
minibatches.



The algorithm for updating the learning rate is the same as in [1]. The principle is
to divide the learning rate by two each time the training error stalls, i.e. is greater than
the previous average training error over the last 5 000 000 training examples.

3.4 Multiple Output Planes

We compare training a 28 convolutional layers residual network with one and three
output planes. In DarkForest it was found that it improves the level of play but does not
change the training and testing phases. We found that training was slightly more difficult
with three output planes. Figure 8 gives the evolution of the accuracy for networks with
one and three output planes. We can see that even if the network with three output
planes is initially worse, it eventually reaches a greater accuracy. Training was stopped
when the learning rate became too small to induce changes in the performance of the
network. This is why the three output planes network was trained longer than the other
network, its learning rate stayed greater for a longer time. We also found that using three
output planes enables the network to better generalize. We can see in figure 9 that the
training error stays close to the test error for the three output planes network. In figure
10 the difference between the test error and the training error becomes greater for the
one output plane network.

Fig. 8. Evolution of the accuracy of 28 convolutional layers residual networks with 1 and 3 output
planes. The learning rate is initially set to 0.2 and divided by two each time the training error
stalls. The accuracy is taken only over the next move to play.



Fig. 9. Evolution of the training and test errors of a 28 convolutional layers residual network with
three output planes. The errors are calculated over the three output planes.

Fig. 10. Evolution of the training and test errors of a 28 convolutional layers residual network
with 1 output plane.



3.5 Spatial Batch Normalization

In order to test Spatial Batch Normalization we trained two 14 layers residual networks
with 128 feature planes on the GoGoD data set. The only difference between the two
networks is that the second adds Spatial Batch Normalization after the residual layer.

The evolution of the mean square error on the test set is given in figure 11. We can
observe that the error of the network with Spatial Batch Normalization is consistently
smaller than the one without Spatial Batch Normalization.

Fig. 11. Evolution of the error of a 14 convolutional layers network with 128 feature planes on
the GoGoD test set with and without Spatial Batch Normalization. The learning rate is 0.2 for
both networks.

Figure 12 gives the evolution of the accuracy for both networks on the GoGoD test
set.

Figure 13 give the evolution of the training error on the GoGoD training set for 4
residual networks composed of 14 layers and 256 feature planes. The resnet.original.14.256
network is composed of the original residual layers of figure 3 [4]. The resnet.mapping.14.256
network is composed of the residual layers with identity mappings of figure 4 [5]. The
resnet.14.256 network is composed of the residual layers without Spatial Batch Nor-
malization of figure 5. The resnet.golois.14.256 network is composed of the residual
layers of figure 6.

The networks are trained on 20 000 000 examples with a minibatch of size 50 and
a learning rate of 2.0. An epoch is defined as 1 000 000 training examples. At every
epoch the average training error over the last 500 000 training examples is plotted.

We can observe that the original resnet performs worse than the other networks. The
identity mapping network starts close to the residual network without Spatial Batch



Fig. 12. Evolution of the accuracy of a 14 convolutional layers network with 128 feature planes
on the GoGoD test set with and without Spatial Batch Normalization. The learning rate is 0.2 for
both networks.

Normalization but performs worse with more examples. The best network is the net-
work with Golois layers.

3.6 Golois

A network with 3 output planes, residual layers and 28 convolutional layers plays on
KGS as Golois7. It plays instantly the best move of the policy network. It has played
more than 6 000 games. It is ranked 4 Dan. In comparison AlphaGo and DarkForest
policy networks reached 3 Dan.

4 Conclusion

We evaluated two improvements to deep residual networks for computer Go. Using
three output planes enables the networks to generalize better and reach a greater accu-
racy. A new residual layer with Spatial Batch Normalization has been shown to perform
better than existing residual layers.

In future work we plan to train a 28 layers network with Spatial Batch Normalization
and to train a residual value network.

References

1. Tristan Cazenave. Residual networks for computer Go. IEEE TCIAIG, available online,
2017.



Fig. 13. Evolution of the training error of 14 convolutional layers residual networks with 256
feature planes on the GoGoD test set for different architectures. The learning rate is 2.0 for all
networks.

2. Christopher Clark and Amos Storkey. Training deep convolutional neural networks to play
go. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15),
pages 1766–1774, 2015.

3. T. Mark Hall and John Fairbairn. Games of go on download. http://gogodonline.co.uk/,
2016.

4. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

5. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep resid-
ual networks. In European Conference on Computer Vision, pages 630–645. Springer, 2016.

6. Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 448–456, 2015.

7. Chris J Maddison, Aja Huang, Ilya Sutskever, and David Silver. Move evaluation in go using
deep convolutional neural networks. arXiv preprint arXiv:1412.6564, 2014.

8. Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning (ICML-
10), pages 807–814, 2010.

9. David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484–
489, 2016.

10. Yuandong Tian and Yan Zhu. Better computer go player with neural network and long-term
prediction. arXiv preprint arXiv:1511.06410, 2015.


