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Abstract
Monte Carlo Tree Search (MCTS) is the state of
the art algorithm for many games including the
game of Go and General Game Playing (GGP). The
standard algorithm for MCTS is Upper Confidence
bounds applied to Trees (UCT). For games such as
Go a big improvement over UCT is the Rapid Ac-
tion Value Estimation (RAVE) heuristic. We pro-
pose to generalize the RAVE heuristic so as to have
more accurate estimates near the leaves. We test
the resulting algorithm named GRAVE for Atarigo,
Knighthrough, Domineering and Go.

1 Introduction
Monte Carlo Tree Search (MCTS) is a general search algo-
rithm that was initially designed for the game of Go [Coulom,
2006]. The most popular MCTS algorithm is Upper Confi-
dence bounds applied to Trees (UCT) [Kocsis and Szepesvári,
2006]. All modern computer Go programs use MCTS. It has
increased the level of Go programs up to the level of the
strongest amateur players. Rapid Action Value Estimation
(RAVE) [Gelly and Silver, 2007; 2011] is commonly used in
Go programs as it is a simple and powerful heuristic.

MCTS and RAVE are also used in MoHex the best Hex
playing program [Arneson et al., 2010]. Adding the RAVE
heuristic to MoHex produces a 181 Elo strength gain.

Another successful application of MCTS is General Game
Playing (GGP). The goal of GGP is to play games unknown
in advance and to design algorithms able to play well at
any game. An international GGP competition is organized
every year at AAAI [Genesereth et al., 2005]. The best
GGP programs use MCTS [Finnsson and Björnsson, 2008;
Méhat and Cazenave, 2011]. In this paper we propose an al-
gorithm that can be applied to many games without domain
specific knowledge. Hence it is of interest to GGP engines.

MCTS can also be applied to other problems than games
[Browne et al., 2012]. Examples of non-games applications
are Security, Mixed Integer Programming, Traveling Sales-
man Problem, Physics Simulations, Function Approxima-
tion, Constraint Problems, Mathematical Expressions, Plan-
ning and Scheduling.

The paper is organized in three remaining sections: section
two presents related works for games, MCTS and RAVE, sec-

tion three details the GRAVE algorithm and section four gives
experimental results for various numbers of playouts and var-
ious sizes of Atarigo, Knightthrough, Domineering and Go.

2 Related Work
UCT is the standard MCTS algorithm. It uses the mean of
the previous random playouts to guide the beginning of the
current playouts. There is a balance between exploration and
exploitation when choosing the next move to try at the be-
ginning of a playout. Exploitation tends to choose the move
with the best mean, while exploration tends to try alterna-
tive and less explored moves to see if they can become bet-
ter. The principle of UCT is optimism in face of uncertainty.
It chooses the move with the UCB formula, m is a possible
move:

argmaxm(meanm + c×
√

log(playouts)
playoutsm

)

The c exploration parameter has to be tuned for each prob-
lem. Low values encourage exploitation while high values
encourage exploration.

The All Moves As First heuristic (AMAF) [Bouzy and
Helmstetter, 2003] is a heuristic that was used in Gobble, the
first Monte Carlo Go program [Brügmann, 1993]. It consists
in updating the statistics of the moves of a position with the
result of a playout, taking into account all the moves that were
played in the playout and not only the first one.

RAVE [Gelly and Silver, 2007; 2011] is an improvement of
UCT that was originally designed for the game of Go and that
works for multiple games. It consists in memorizing in every
node of the tree the statistics for all possible moves even if
they are not yet tried in the node. When a playout is over,
the statistics of all the nodes it has traversed are updated with
all the moves of the playout. Another way to describe it is
that the AMAF value of each possible move is recorded in a
node. When there are few playouts, the AMAF value is used
to choose a move. When the number of playouts increases
the weight of the mean increases and the weight of AMAF
decreases. The formula to choose the move can be stated
with a weight βm, pm is the number of playouts starting with
movem and pAMAFm is the number of playouts containing



move m:

βm ← pAMAFm

pAMAFm+pm+bias×pAMAFm×pm

argmaxm((1.0− βm)×meanm + βm ×AMAFm)

In their paper [Gelly and Silver, 2011] Sylvain Gelly and
David Silver state: “In principle it is also possible to incorpo-
rate the AMAF values, from ancestor subtrees. However, in
our experiments, combining ancestor AMAF values did not
appear to confer any advantage.”. On the contrary, we found
that it can be useful.

RAVE is used in many computer Go programs. Examples
of such programs are Mogo [Lee et al., 2009] and Fuego [En-
zenberger et al., 2010].

RAVE has also been used for GGP in CadiaPlayer [Finns-
son and Björnsson, 2010]. CadiaPlayer with RAVE is much
stronger at Breakthrough, Checkers and Othello than the
usual MCTS. On the contrary it is slightly weaker with RAVE
at Skirmish.

An alternative to RAVE for Go programs is to use learned
patterns and progressive widening [Coulom, 2007; Ikeda and
Viennot, 2014]. The principle is to learn a weight for each
pattern. This weight can be used in playouts to bias the pol-
icy and in the tree to select promising moves. Progressive
widening starts with only the best ranked move as a possible
move in a node and then increases the number of moves that
can be tried as the number of playouts of the node also in-
creases. It is related to GRAVE since it only tries the most
promising moves when there are few playouts.

In Mogo, an improvement of RAVE is to start with heuris-
tic values for moves sampled only a few times [Lee et al.,
2009]. The heuristic value is computed after patterns that
match around the move. The score of a move is calculated
according to three weights, α, β and γ. The weight for the
mean of the playouts is α, it starts at zero for few playouts
and then increases as more playouts are played. The weight
for the AMAF mean is β. It starts at zero then increases to 1
with more playouts and then decreases to zero with even more
playouts. The last weight is γ, it starts with a value greater
than 1 and then decreases as more playouts occur.

The GRAVE algorithm also uses an estimate different from
the node’s AMAF mean for moves that have only few play-
outs. But on the contrary of the γ weight associated to a
valued pattern it does not use domain specific and learned
knowledge. It is more simple and more general.

Another improvement of Mogo is to use the RAVE values
of moves during the playouts [Rimmel et al., 2011]. This
improvement gives good results for the game of Havannah
and for the game of Go. The algorithm descends the tree
using the usual RAVE algorithm and when it is outside the
tree it uses the RAVE values of the last node with at least
50 simulations. During the playout it chooses one of the k
moves with the best RAVE values with a given probability.
Otherwise it uses the usual playout policy.

3 GRAVE
RAVE computes an estimate of each possible move when
only a few playouts have been played. The principle of
GRAVE is to use AMAF values of a state higher up in the
tree than the current state. There is a balance between the ac-
curacy of an estimate and the accordance to the current state
of the estimate. A state upper in the tree has better accuracy
since it has more associated playouts. However the statistics
are about a different state some moves before and are less to
the point for the lower state in the tree than the statistics of
lower states. GRAVE principle is to only use statistics that
were calculated with more than a given number of playouts.
We take as a reference state the closest ancestor state that has
more playouts than a given ref constant. The reference state
can be the current state if the number of playouts of the cur-
rent state is greater than ref .

The GRAVE algorithm is given in algorithm 1. The algo-
rithm is close to the RAVE algorithm. The main difference
is that it uses a tref parameter that contains the transposition
table entry of the last node with more than ref playouts. The
ref constant is to be tuned as well as the bias. This tref entry
is used to get the RAVE statistics instead of the usual t entry.
If the number of playouts of a node is greater than ref then
tref is equal to t and the algorithm behaves as usual RAVE.
If the number of playouts of the current node is lower than
ref then the algorithm uses the last entry along the path to
the node that has a number of playouts greater than ref . This
entry is named tref and is used to compute the AMAF values
at the current node.

Instead of only updating the AMAF statistics for the color
and the moves of the node, GRAVE updates statistics for all
possible moves by both colors at every node.

GRAVE is a generalization of RAVE since GRAVE with
ref equals to zero is RAVE.

We will now detail algorithm 1. It starts with calculating
the possible moves that will be used later to find the most
promising move. If the board is terminal, the game is over
and the score is returned. The algorithm does not explic-
itly represent the tree. Instead it uses a transposition table
to remember all the visited states and stores in each entry of
the transposition table the number of wins of each move, the
number of playouts of each move, the number of AMAF wins
for all possible moves in the entire game and not only in the
state, that is including the opponent player moves, the number
of AMAF playouts for all possible moves in the entire game.
These values stored in the variables w, p, wa, pa are used to
calculate the βm parameter as well as the AMAF and mean
values of a move. The usual RAVE formula is then used to
calculate the value of a move. The move with the best value is
played and the algorithm is recursively called. The recursion
ends when reaching a state that is not in the transposition ta-
ble. In this case the state is added in the transposition table, a
playout is played and the transposition table entry is updated
with the result of the playout.

The only difference to the usual RAVE algorithm is the
tref parameter and the ref constant. Instead of using the
usual t entry of the transposition table in order to calculate the
AMAF value of a move, the algorithm calculates the AMAF



value using the tref entry. The tref entry is updated using
the condition t.playouts > ref . It means that tref contains
the last entry in the recursive calls with a number of playouts
greater than ref .

Algorithm 1 The GRAVE algorithm
GRAVE (board, tref )
moves← possible moves
if board is terminal then

return score(board)
end if
t← entry of board in the transposition table
if t exists then

if t.playouts > ref then
tref ← t

end if
bestV alue← −∞
for m in moves do
w ← t.wins[m]
p← t.playouts[m]
wa← tref.winsAMAF [m]
pa← tref.playoutsAMAF [m]
βm ← pa

pa+p+bias×pa×p

AMAF ← wa
pa

mean← w
p

value← (1.0− βm)×mean+ βm ×AMAF
if value > bestV alue then
bestV alue← value
bestMove← m

end if
end for
play(board, bestMove)
res← GRAV E(board, tref)
update t with res

else
t← new entry of board in the transposition table
res← playout(player, board)
update t with res

end if
return res

4 Experimental Results
In order to test GRAVE we have used the following method:
the RAVE bias is first tuned playing different RAVE bias
against UCT with a 0.4 exploration parameter (the explo-
ration parameter used for GGP), then the GRAVE bias as well
as the ref constant are tuned against the tuned RAVE. The re-
sulting GRAVE algorithm is then tested against RAVE with
different bias to make sure there is no over-fitting nor a miss
of a good RAVE bias and that GRAVE performs well against
all possible RAVE. In order to tune both RAVE and GRAVE
we test as bias all the powers of 10 between 10−1 and 10−15.
Additionally the ref constants tested for GRAVE are 25, 50,
100, 200 and 400.

The tested games are Atarigo 8 × 8, Atarigo 19 × 19,
Knightthrough 8 × 8, Domineering 8 × 8, Domineering

Table 1: Tuning the RAVE bias against UCT at Atarigo 8× 8
with 10,000 playouts.

bias 0.1 0.01 0.001 10−4 10−5

74.4 % 91.2 % 90.6 % 92.8 % 91.4 %
bias 10−6 10−7 10−8 10−9 10−10

92.8 % 94.2 % 91.4 % 91.6 % 91.0 %
bias 10−11 10−12 10−13 10−14 10−15

93.8 % 92.2 % 92.2 % 92.2 % 92.2 %

Table 2: GRAVE against RAVE at Atarigo 8× 8 with 10,000
playouts.

ref 25 50 100
bias 10−8 10−10 10−3

86.2 % 88.4 % 87.8 %

19 × 19, Go 9 × 9, Go 19 × 19 and three color Go. The
algorithms are tested for 1,000 and 10,000 playouts. For two-
player games each result is the average winning rate over 500
games, 250 playing first and 250 playing second.

4.1 Atarigo 8× 8

Atarigo is a simplification of the game of Go. The winner of
a game is the first player to capture a string of stones.

Atarigo has been solved up to size 6× 6 with threat based
algorithms [Cazenave, 2003; Boissac and Cazenave, 2006].
In this paper we use the 8× 8 board size.

All algorithms use 10,000 playouts. We first tuned the
RAVE bias against UCT. Results are given in table 1. The
best bias is 10−7 and it wins 94.2 % of the games against
UCT.

We then tuned GRAVE against the best RAVE. Results are
given in table 2. The best GRAVE has a ref equals to 50 and
a bias of 10−10, it wins 88.4 % of the games against RAVE.

When playing GRAVE with ref equals to 50 and bias
equals to 10−10 against all RAVE bias, the worst score ob-
tained by GRAVE was 85.2 % against a RAVE bias of 10−4.

4.2 Atarigo 19× 19

We played RAVE with 1,000 playouts and with various bias
against UCT with 1,000 playouts. The results are in table 3.
The best result is 72.4 % for a bias of 0.001.

We then played GRAVE with different bias and ref against
the best RAVE. The results are in table 4. The best GRAVE
wins 78.2 % with ref equals to fifty and a 10−5 bias.

Table 3: Tuning the RAVE bias against UCT at Atarigo 19×
19 with 1,000 playouts.

bias 0.1 0.01 0.001 10−4 10−5

63.6 % 67.6 % 72.4 % 73.2 % 68.6 %
bias 10−6 10−7 10−8 10−9 10−10

67.8 % 66.8 % 67.0 % 67.8 % 70.4 %
bias 10−11 10−12 10−13 10−14 10−15

70.4 % 70.4 % 70.4 % 70.4 % 70.4 %



Table 4: GRAVE against RAVE at Atarigo 19×19 with 1,000
playouts.

ref 50 100 200
bias 10−5 10−5 10−8

78.2 % 74.4 % 75.2 %

Table 5: Tuning the RAVE bias against UCT at Knight-
through 8× 8 with 1,000 playouts.

bias 0.1 0.01 0.001 10−4 10−5

63.4 % 69.4 % 65.2 % 69.4 % 68.2 %
bias 10−6 10−7 10−8 10−9 10−10

68.8 % 69.0 % 68.6 % 69.4 % 65.0 %
bias 10−11 10−12 10−13 10−14 10−15

64.4 % 66.0 % 66.0 % 66.0 % 66.0 %

4.3 Knightthrough 8× 8

Knightthrough is played on a 8 × 8 chess board. The initial
position has two rows of white knights on the bottom and two
rows of black knights on the top. Players alternate moving a
knight as in chess except that the knight can only go forward
and not backward. Captures can occur as in chess. The first
player to move a knight on the last row of the opposite side
has won. Knightthrough is a game from the GGP competi-
tions, it is derived from Breakthrough that is a similar game
with pawns.

Table 5 gives the results of RAVE against UCT. Each
player is allocated 1,000 playouts at each move. The best
bias is 0.01 as it wins 69.4 % against UCT.

Table 6 gives the results for GRAVE with different ref
values against RAVE with a bias of 0.01. They both use 1,000
playouts for each move. GRAVE with ref equals to 50 and a
bias of 10−4 wins 67.8 % against RAVE.

Table 7 gives the results of RAVE against UCT for different
bias and 10,000 playouts each. The best bias is 10−10 as it
wins 56.2 % against UCT.

Table 8 gives the results for GRAVE with different ref
values against RAVE with a bias of 10−10. Each player uses
10,000 playouts per move. The best GRAVE player with ref
equals to 50 and a bias of 0.001 wins 67.2 % against the tuned
RAVE.

4.4 Domineering 8× 8

Domineering is a two player combinatorial game usually
played on an 8×8 board. It consists in playing 2×1 dominoes
on the board. The first player put the dominoes vertically and
the second player put them horizontally. If a player cannot
play anymore, he loses the game.

Domineering was invented by Göran Andersson [Gardner,
1974]. As it decomposes in independent parts it was studied

Table 6: GRAVE against RAVE at Knightthrough 8× 8 with
1,000 playouts.

ref 25 50 100
bias 0.01 10−4 0.01

62.0 % 67.8 % 63.0 %

Table 7: Tuning the RAVE bias against UCT at Knight-
through 8× 8 with 10,000 playouts.

bias 0.1 0.01 0.001 10−4 10−5

38.0 % 55.2 % 52.6 % 53.8 % 53.8 %
bias 10−6 10−7 10−8 10−9 10−10

49.4 % 52.8 % 53.6 % 53.6 % 56.2 %
bias 10−11 10−12 10−13 10−14 10−15

52.0 % 52.0 % 52.0 % 52.0 % 52.0 %

Table 8: GRAVE against RAVE at Knightthrough 8× 8 with
10,000 playouts.

ref 25 50 100
bias 10−9 0.001 0.001

65.8 % 67.2 % 65.4 %

by the combinatorial games community. They solved it for
small boards [Lachmann et al., 2002]. Boards up to 10 × 10
were solved using αβ search [Bullock, 2002]. Recently a
knowledge based method was proposed that can solve large
rectangular boards without any search [Uiterwijk, 2014].

In order to tune the RAVE bias we played RAVE against
UCT with 10,000 playouts. The best RAVE bias is 10−3

which wins 72.6 % of the time against UCT as can be seen in
table 9.

We then played different GRAVE algorithms against the
tuned RAVE. The results are given in table 10. With ref
equals to 25 and a bias of 10−5, GRAVE wins 62.4 % of the
time against the tuned RAVE.

When playing GRAVE with ref equals to 25 and bias
equals to 10−5 against all RAVE bias, the worst score ob-
tained by GRAVE was 58.2 % against a RAVE bias of 10−4.

4.5 Domineering 19× 19

In order to tune the RAVE bias for Domineering 19 × 19 we
ran the experiment RAVE with 1,000 playouts against UCT
with 1,000 playouts, but RAVE won all of its games with all
bias. So we ran another experiment: RAVE with 1,000 play-
outs against UCT with 10,000 playouts. The results are given
in table 11. The best score is 63.8 % obtained for a bias of
10−7.

We tuned GRAVE against the best RAVE algorithm. Re-
sults are given in table 12. The best score is 56.4 % with ref
equals to 100 and a bias of 10−6.

Table 9: Tuning the RAVE bias against UCT at Domineering
8× 8 with 10,000 playouts.

bias 0.1 0.01 0.001 10−4 10−5

50.6 % 71.2 % 72.6 % 68.4 % 68.0 %
bias 10−6 10−7 10−8 10−9 10−10

67.8 % 71.6 % 70.6 % 69.2 % 65.2 %
bias 10−11 10−12 10−13 10−14 10−15

69.2 % 69.2 % 69.2 % 69.2 % 69.2 %



Table 10: GRAVE against RAVE at Domineering 8× 8 with
10,000 playouts.

ref 25 50 100
bias 10−5 10−9 10−10

62.4 % 60.4 % 59.2 %

Table 11: Tuning the RAVE bias with 1,000 playouts against
UCT with 10,000 playouts at Domineering 19× 19.

bias 0.1 0.01 0.001 10−4 10−5

28.0 % 51.4 % 59.6 % 59.0% 60.8%
bias 10−6 10−7 10−8 10−9 10−10

60.2 % 63.8 % 59.6 % 62.8 % 60.0 %
bias 10−11 10−12 10−13 10−14 10−15

62.4 % 62.4 % 62.4 % 62.4 % 62.4 %

4.6 Go 9× 9

Go is an ancient oriental game of strategy that originated in
China thousands of years ago [Bouzy and Cazenave, 2001;
Müller, 2002]. It is usually played on a 19× 19 grid. Players
alternate playing black and white stones on the intersections
of the grid. The goal of the game using Chinese rules is to
have more stones on the board than the opponent at the end
of the game. There is a capture rule: when a string of stones
of the same color is surrounded by stones of the opposing
color, the surrounded string is removed from the board. There
are a lot of Go players in China, Japan and Korea and hun-
dreds of professional players. Go is the last of the popular
board games that is better played by humans than by comput-
ers. The best computer Go players are currently four stones
behind the best Go players.

MCTS has been very successful for the game of Go. The
original RAVE algorithm was designed for computer Go
[Gelly and Silver, 2007].

This section deals with Go 9× 9, the next section is about
Go 19× 19.

The playout policy we used in our experiments for Go 9×9
and Go 19 × 19 is Mogo style playouts with patterns [Gelly
et al., 2006].

We have first tuned RAVE with 1,000 playouts against
UCT with 1,000 playouts. The results are given in table 13.
The best bias is 10−7 and it wins 89.6 % of the games against
UCT.

We have then played GRAVE against the tuned RAVE. The
results are given in table 14. The best GRAVE configuration
is ref equals to 100 and a bias of 10−6. It wins 66.0 % against
the tuned RAVE.

We repeated the experiments for 10,000 playouts. The
RAVE bias was tuned against UCT. The results are in table
15. The best bias for RAVE is 10−4 and it wins 73.2 % against

Table 12: GRAVE against RAVE at Domineering 19 × 19
with 1,000 playouts.

ref 50 100 200 400
bias 10−7 10−6 10−9 10−8

55.6 % 56.4 % 56.0 % 53.8 %

Table 13: Tuning the RAVE bias against UCT at Go 9 × 9
with 1,000 playouts.

bias 0.1 0.01 0.001 10−4 10−5

83.6 % 88.2 % 87.0 % 89.6 % 87.2 %
bias 10−6 10−7 10−8 10−9 10−10

87.0 % 89.6 % 88.0 % 86.2 % 86.2 %
bias 10−11 10−12 10−13 10−14 10−15

86.2 % 86.2 % 86.2 % 86.2 % 86.2 %

Table 14: GRAVE against RAVE at Go 9 × 9 with 1,000
playouts.

ref 25 50 100 200
bias 10−8 10−10 10−6 10−6

65.2 % 62.6 % 66.0 % 61.2 %

UCT. GRAVE was then played against the tuned RAVE. The
results are given in table 16. GRAVE with a bias of 10−4 and
ref equals to 50 wins 54.4 % against RAVE.

4.7 Go 19× 19

When tuning the RAVE bias against UCT with 1,000 play-
outs, all results were greater than 98 %. We therefore tuned
RAVE with 1,000 playouts against GRAVE with 1,000 play-
outs, ref equals to 400 and a bias of 10−5. The worst result
for GRAVE was 72.2 % against a RAVE bias of 10−5. We
then tuned GRAVE against RAVE with a bias of 10−5. The
results are given in table 17. The best result is 81.8 % with
ref equals to 100 and a bias of 10−9.

The best RAVE bias for 1,000 playouts was reused to tune
GRAVE with 10,000 playouts against RAVE with 10,000
playouts. We only tuned GRAVE with ref equals to 100.
The best result for GRAVE was 73.2 % with a bias of 10−12.
We then played GRAVE with a bias of 10−12 and ref equals
to 100 against all RAVE with bias between 10−1 and 10−12.
The worst result for GRAVE was 62.4 % against the 10−7

bias.

4.8 Three Color Go 9× 9

Multicolor Go is a variation of the game of Go which is
played with more than two players. For example it is pos-
sible to add a third color, say red, and to play with stones
of three different colors [Cazenave, 2008]. The rules are the
same as in the Chinese version of the game. At the end of
the game when all three players have passed, the score for a
given color is the number of stones of the color on the board

Table 15: Tuning the RAVE bias against UCT at Go 9 × 9
with 10,000 playouts.

bias 0.1 0.01 0.001 10−4 10−5

29.0 % 69.4 % 73.2 % 62.8 % 68.6 %
bias 10−6 10−7 10−8 10−9 10−10

64.6 % 64.6 % 63.2 % 63.8 % 67.0 %
bias 10−11 10−12 10−13 10−14 10−15

63.6 % 68.4 % 68.4 % 68.4 % 68.4 %



Table 16: GRAVE against RAVE at Go 9 × 9 with 10,000
playouts.

ref 25 50 100 200
bias 10−5 10−4 10−5 10−5

52.4 % 54.4 % 51.6 % 45.4 %

Table 17: GRAVE against RAVE at Go 19 × 19 with 1,000
playouts.

ref 50 100 200 400
bias 10−7 10−9 10−11 10−6

78.2 % 81.8 % 80.0 % 77.6 %

plus the number of eyes of the color. The winner is the player
that has the greatest score at the end.

In order to test an algorithm we make it play the six pos-
sible combinations of colors against two other algorithms,
one hundred times. This results in six hundreds games
played. The percentage of wins for algorithms that are close
in strength is therefore close to 33.3 %. An algorithm scoring
50.0 % is already much better than the two other algorithms.

The motivation for testing GRAVE at Three Color Go is
that playouts contain less moves of a given color than in usual
two player Go. The AMAF statistics take more playouts to be
accurate than in two player Go. So GRAVE which uses more
accurate statistics may perform better.

Mogo style playouts do not work well for multicolor Go,
so for these experiments we use a uniform random playout
policy without patterns.

We tuned the RAVE bias with 1,000 playouts against two
UCT players each with 1,000 playouts. The results are given
in table 18. The best RAVE bias is 0.001 with 70.83 % wins.
This is a clear win for RAVE since it is well above the stan-
dard score of 33.33 %.

We played GRAVE against two tuned RAVE with a bias of
0.001. The results are given in Table 19. The best GRAVE
has a ref equals to 100 and a bias of 10−5 and it wins 57.17 %
against a tuned RAVE.

4.9 Three Color Go 19× 19

For Three Color Go on a 19×19 board, RAVE is much better
than UCT when they both use 1,000 playouts. We therefore
did the same as in Go 19 × 19 and tuned RAVE with 1,000
playouts against two players using GRAVE with 1,000 play-
outs, ref equals to 400 and a bias of 10−5. The best result
for RAVE was 18.5 % with a bias of 10−9.

Table 18: Tuning the RAVE bias against UCT at Three Color
Go 9× 9 with 1,000 playouts.

bias 0.1 0.01 0.001 10−4 10−5

49.7 % 70.5 % 70.8 % 66.7 % 68.2 %
bias 10−6 10−7 10−8 10−9 10−10

67.3 % 64.5 % 67.8 % 63.5 % 64.7 %
bias 10−11 10−12 10−13 10−14 10−15

63.3 % 63.3 % 63.3 % 63.3 % 63.3 %

Table 19: GRAVE against RAVE at Three Color Go 9 × 9
with 1,000 playouts.

ref 50 100 200 400
bias 10−4 10−5 10−9 10−11

56.00 % 57.17 % 54.50 % 55.17 %

5 Conclusion
We have presented a generalization of RAVE named GRAVE.
It uses the AMAF values of an ancestor node when the num-
ber of playouts is too low to have meaningful AMAF statis-
tics. It uses a threshold on the number of playouts of the node
to decide whether to use the current node’s statistics or the an-
cestor node’s statistics. It is a generalization of RAVE since
GRAVE with a threshold of zero is RAVE.

GRAVE is better than RAVE and UCT for Atarigo, Knight-
through, Domineering and Go.

For Atarigo 8 × 8 the results show that GRAVE is a large
improvement over RAVE since GRAVE wins 85.2 % against
RAVE when they both use 10,000 playouts. For Atarigo 19×
19 and 1,000 playouts GRAVE wins 78.2 %

For Knightthrough 8×8 GRAVE with 1,000 playouts wins
67.8 % against RAVE with 1,000 playouts. GRAVE with
10,000 playouts wins 67.2 % against RAVE with 10,000 play-
outs. RAVE is a large improvement over UCT for Knight-
through 8×8 and GRAVE is a large improvement over RAVE.

For Domineering 8×8 GRAVE with 10,000 playouts wins
62.4 % against RAVE with 10,000 playouts. For Domineer-
ing 19×19 GRAVE with 1,000 playouts wins 56.4 % against
RAVE with 1,000 playouts.

For Go 9 × 9 GRAVE with 1,000 playouts wins 66.0 %
against RAVE with 1,000 playouts. For 10,000 playouts it
wins 54.4 %. For Go 19 × 19 GRAVE with 10,000 playouts
wins 62.4 % against RAVE with 10,000 playouts.

For Three Color Go 9×9, GRAVE wins 57.17 % against a
tuned RAVE. For Three Color Go 19× 19, RAVE only wins
18.5 % against an unoptimized GRAVE.

GRAVE is a simple and generic improvement over RAVE.
It works for at least four games without game specific knowl-
edge.
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[Coulom, 2006] Rémi Coulom. Efficient selectivity and
backup operators in Monte-Carlo tree search. In Comput-
ers and Games, pages 72–83, 2006.
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[Méhat and Cazenave, 2011] Jean Méhat and Tristan
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