
Planning and Execution Control Architecture for Infantry Serious Gaming

Alexandre Menif, Christophe Guettier1 and Tristan Cazenave2
1SAGEM, 27, Rue Leblanc, 75012 Paris, France

2LAMSADE, Universit́e Paris-Dauphine, Paris, France
{alexandre.menif, christophe.guettier}@sagem.com

cazenave@lamsade.dauphine.fr

Abstract

Serious gaming is developing among all modern armies for
teaching and training as well as for developing new concepts
of engagement. To reach a realistic level of simulation, on-
line planning techniques provide an expressive and construc-
tive approach to define basic tactical activities. To achieve a
mission goal, a virtual soldier must follow a short-term plan
that can be quickly reprocessed in order to follow changes
in the environment, orders or situation awareness. This pa-
per presents a planning and execution control architecture
for simulating the behaviour of virtual infantry soldier. The
planning approach relies on the frequent generation of short
plans using a Hierarchical Task Networks approach. Execu-
tion control handles synchronisations of soldiers and trigger
replanning whenever action cannot be executed in simulation.
Applied to two generic types of action, preliminary results
show that response times match the level of reactivity needed
for serious gaming.

Introduction
Automatic planning has always given major challenges in
defence domains. Many problem models and search tech-
niques have been considered at strategic, operative or tacti-
cal command levels. However, simulation of low level tac-
tics and basic soldier behaviours refer in general to action
scripting. In order to match the expected level of realism
required by modern armies, this practice tends to become a
tremendous and time-consuming engineering activity.

In video game, however, planning techniques have be-
come more and more popular for a decade. The experience
of planning in video games has started with FEAR, a first
person shooter issued in 2005, which implements an algo-
rithm called GOAP (Goal Oriented Action Planning) to pro-
vide an efficient coordinated behaviour to the enemies. Al-
though GOAP was inspired on STRIPS, one of the oldest
algorithm in actions planning, this experience has success-
fully illustrated the possibility to compute short linear plans
for a few coordinated agents in real time (Orkin 2006).

Planning techniques provide an expressive way to model
tactical behaviour, by developing a compositional approach
to basic activities. Several dedicated planning domains can
be developed according to the type of mission, environment

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or military action. Using search techniques, automatic plan
generation can be used at different hierarchical levels to sim-
ulate both the command chain and soldier activities.

The paper exhibits a planning and execution control ar-
chitecture that integrates mission management along the
command-chain, automatic tactical sequence generation and
execution control. The architecture makes use of Hierar-
chical Task Networks (HTN) representations, that facilitate
command-chain modelling, automatic goal breakdown as
well as sequential task synthesis. To match mission exe-
cution tempo and contingencies, the planning functionality
can generate very short plans over small horizons. Once a
plan is generated, each action is tentatively executed by the
execution controler which interacts with the simulated en-
vironment. Execution control also handles synchronisations
of soldiers and trigger replanning whenever action cannot be
executed.

Applied to two generic types of action, preliminary re-
sults show that response times match the level of reactivity
needed for serious gaming.

First section focuses on the relation between serious gam-
ing and military requirements for infantry warfare at tactical
level. The second section describes a software planning ar-
chitecture intended to meet those requirements. The next
section presents the modelling of a planning domain for in-
fantry tactical behaviours and provide details about a new
implementation of SHOP2. Finally the last parts are dedi-
cated to the state of the art and conclusion.

Soldier Level Serious Gaming
Rather than using old fashion tactical simulation, serious
gaming is a very promising approach to teach, train and de-
velop new concepts of engagement. Serious gaming reuses
video game design and offers immersive and interactive en-
vironment to armies end-users. To be effective in profes-
sional tasks, these environments necessitate realistic and in-
telligent behaviour for simulated soldiers.

Different requirements stress both agents behaviour as
well as the architectural design of such serious gaming:

• Teaching: Basic infantry scenarii must be easy to pro-
gram, and soldier behaviour must be realistic enough to
stimulate the end-user. Basic action sequences can be
analysable to give explanations during after action review.



• Training: Such training stresses coordination, orders and
reporting capabilities of the end-user. The serious game
must be able to handle a large set of soldiers, and to con-
struct complex situation. Again, in spite of their complex-
ity, user performances can be analysed during after action
review.

• Concept development: the development of new opera-
tional concept or the integration of new systems need doc-
trinal evolution. On one hand, serious gaming can help
understanding the impact of new tactics, operational tech-
niques and procedures. On the other hand, it provides a
strong support to evaluate new system performances and
man-machine interactions.

Planning and Execution Control Architecture
Figure 1 gives an overview of the Planning and Execution
Control Architecture. It features two different levels of plan-
ning functionalities. Mission management solves medium
and long term planning from brigade down to the platoon
level. Below this level, squads and soldier sequence of ac-
tions are generated by a dedicated HTN planner. This core
component drives the quality of virtual soldier behaviour
and is detailed in a dedicated section.

The planning architecture is meant to be integrated in a
real time simulator, which means that it is not possible to
spend much processing power in planning procedures that
may alter frame rate, gameplay and graphical rendering. The
architecture must scale up to several dozens of entities to be
managed in parallel, potentially leading to many planning
queries to be conducted simultaneously (see figure 2).

Both planners takes inputs from a situation awareness and
threat assessment components that gathers and fuses data
from the simulation environment. The execution control
component processes the realisation of a sequence of actions
in the simulator kernel. Whenever a basic sequence of action
cannot be correctly executed in the simulation environment,
a replanning event is triggered.

Mission manager, situation awareness, threat assessment
and execution control modules are fundamental software
components for the architecture design, however their de-
tailed design are out of the scope of this paper.

Mission manager
The mission manager combines mission planning and
scheduling as well as plan decomposition for lower units.
Given initial conditions (on both friendly and enemy units),
mission planning and scheduling (P&S) defines the course
of actions to reach mission objectives. P&S takes in account
terrain structure, unit capabilities and their coordination :

• Terrain representation involve axis of advances, observa-
tion points, covers and concealments.

• Capabilities refer to mobility, engagement, communica-
tion and observations.

• Coordination of actions is needed in time and space for
self protection, or to reach an expected effect.

The problem solved by the mission manager P&S is to
find, for each unit, a course of actions and movements (e.g.

Figure 1: Global planning architecture for agent gaming

squad platoon company battalion
timeline < second < 5 mins 5 to 15 mins > hour
units 10 4 16 70

Figure 2: This table gives the timeliness with respect to the
number of units to plan for

a plan) with an associated schedule from the initial position
to the mission objective. The mission planning problem can
be modelled and solved following a complete constraint pro-
gramming approach (Guettier 2007).

The mission manager must also handle plan breakdown
along the tactical command chain. Each hierarchical level
defines an operational order (OPORD) using its own mission
goal. The OPORD tasks / organises units of a lower eche-
lon and allocates resources. This part is not automated yet,
since many constructive parameters have to be taken in ac-
count simultaneously (organisational, logistics, assessment
of enemy situation and associated course of action, complex
coordination procedures...). However, it is possible to auto-
matically structure the different OPORD by using the out-
come of both mission planner and units organisation.

When major changes occur during mission execution,
global replanning might be necessary. This has two impacts:

• A new problem instance is provided to the planner. Then,
plan repair or local search can be used to find a plan that
cope with the new situation.

• OPORD are updated, using so-called FRAGmentary Or-
ders (FRAGO).

Execution Controller
The execution controller executes action provided by the se-
quence generator. In several ways it interacts with the sim-
ulation environment by controlling the virtual soldier. For
a given action, it will set the virtual soldier mobility, ori-
entation, and posture. Through the simulator, the controller
can request a waypoint to reach, assess visibility of a line-
of-sight, or find threatening objects within its field of view.
To evaluate the success of an action, the execution controller
uses the following logic:



• Preconditions are verified. Their scope are mobility (way
points), previous action termination, observation results,
or event occurring in the environment.

• Request to the simulator succeeds (for instance, the path
finder has been able to find a waypoint).

• Time / space coordination can be met. These coordination
can be either defined by the mission planner or by collab-
orative type of actions (for instance a mutual protection or
a synchronised mobility action).

Whenever an action cannot be successfully achieved, a
replanning event is triggered.

Situation awareness and threat assessment
Situation awareness is maintained by a Red Force Tracker
(RFT) directly inspired from target acquisition and tracking
systems (Sella & al. 2011). The RFT service tackles ob-
servation reports, target association, short term position es-
timate, long term enemy course of action prediction. Data
fusion algorithms such as Kalman Filtering (KF), Interac-
tive Multiple Models, or Multiple Hypothesis Tracking are
integrated to associate observations, remove inconsistencies,
and to manage an active list of tracks. Delayed reporting and
tracking are also simulated such that two units does not nec-
essarily have the same immediate awareness (note that in
real life, this knowledge is actuated by issuing an OPORD
through the chain of command).

Based on these outputs, whenever the enemy situation
changes, each soldier or squad evaluates its own threat level
in order to potentially recompute a new plan sequence.

Tactical sequence generator
Each hierarchical unit uses planning for its level and then
assigns orders for its sub-level units. Units coordinationis
verified by planning at the upper level, so that each level
can behave more autonomously within its own action area.
It also results in time / space synchronisations, enforced by
the execution controller.

In combat simulation, the tactical environment is con-
stantly evolving, so that plans can be quickly invalidated.
Replanning is necessary to comply with the up to date situa-
tion awareness. Relying on a planning domain where actions
would be interleaved between hierarchical levels would be
hard to manage. Indeed this would likely produce complex
and expensive plans that would be compromised by the first
unexpected event.

Instead, the proposed approach is closed to the Com-
mand Hierarchies concept (Pittman 2008). This results in
a much more flexible way of planning: not only the global
plan search complexity would be reduced, but an unexpected
event would only affect a tiny sub-part of the overall plan
and not trigger a re-planning for the whole operation. An-
other aspect is that low-levels units would probably be much
more subjected to planning events than high-levels ones. For
example, the detection of obstacles, traps or enemies would
surely alter the way a fireteam had planned to conduct its
mission, but not necessarily the global manoeuvre of a pla-
toon.

; monitor problem definition
(defproblem problem monitor

; this line describe the environment as a set of predicates
((down soldier1) (detected soldier1 target sector))
; the task assign to the soldier
((monitor soldier1 sector)))

; a computed plan for the monitor problem
(:task !report soldier1 target)
(:task !stand-up soldier1)
(:task !use-weapon soldier1 target)

; patrol problem definition
(defproblem problem patrol

((sector front) (sector sector1) (unsafe sector1) (front fireteam soldier2)
(back fireteam soldier1) (covering soldier1 front) (covering soldier2 sector1)
(up soldier1) (up soldier2))

((patrol fireteam)))

; a computed plan for the patrol problem
(:task !cover soldier2 sector1)
(:task !cover soldier1 front)
(:task !find-cover-point soldier1 sector1)
(:task !go-to-cover-point soldier1 sector1)
(:task !pass soldier1 soldier2)
(:task !cover soldier1 sector1)

Figure 3: Planning request and plan answer for monitoring
actions

Infantry domain modelling
It sounds crucial that the lower a unit is in the command
chain, the simpler its behaviour should be defined. For ex-
ample, a single soldier would probably be constantly plan-
ning to adapt his activity to a constantly changing environ-
ment, so his behaviour should be extremely cheap to plan.
Therefore, our requirement for a planning domain relies on
two aspects: actions at one hierarchical level should only
focus on its level and the synchronization of the direct sub
level, and at the bottom of the hierarchy, planning should be
extremely simple. With those rules in mind, we have started
to design a simple planning domain that could match our
expectation, using SHOP formalism (Nau & al. 2003).

The planning domain (see appendix) describes a set of
very simple actions for monitoring and patrolling tasks, car-
ried out by one soldier or a two-soldiers fireteam. The ”mon-
itor” action illustrates how planning would interact with
events from the simulator. Here the simulator would request
planning for the ”monitor” task each time an event modifies
the situation (in this case, simply either there is an enemy
which is detected or not). Then, the virtual soldier has a
few possible behaviours. He may or may not engage the tar-
get, according to its ability to do it or if it is allowed to do
it. The ”patrol” action is collaborative (it involves two sol-
diers from a fireteam) and handles the coordination between
the two soldiers (so one soldier only moves if it is covered
by the other), and will assign very simple tasks to each sol-
dier agent. Figure 3 representes two typical queries for both
examples (planning requests for actions ”monitor” and ”pa-
trol”) as they would be issued by the simulated environment,
and the replies from the planning system: two plans as se-
quences of tasks.

Search Algorithm
In order to constitute a benchmark of popular planning al-
gorithms, a first implementation of SHOP2 is under devel-
opment. The C++ programming language is used as it is



the one employed in the targeted simulator product. At its
current state, the planner implements the main core func-
tionalities of the original one from Nau (Nau & al. 2003),
alongside with a parser component that is able to read plan-
ning domains and problems written with a subset of the for-
malism described for SHOP.

On different situations, all the previously detailed exam-
ples (figures 3) are computed in less than a millisecond with
our current implementation of SHOP2. Even if actual plan-
ning domains would probably be more sophisticated, this is
the target time we will have to achieve for such basic level
hierarchical units.

Conclusion
This paper proposed a way to apply planning techniques
from the video games experience on basic military units be-
haviour to professional simulation tools. The main objec-
tive is to demonstrate that tactical behaviours for low level
entities of military hierarchy (individual soldier, fireteam,
squad...) could be encoded and executed with low computa-
tional power through two main considerations.

On one hand, hierarchical planners seem adapted to
model complex behaviour for coordinated units. They af-
fords a segregation of the chain of command from the lo-
cal virtual agent behaviour, alongside with a convenient ex-
pression of action sequences. On the other hand, a reactive
architecture, aware of any triggered events from the simu-
lated environment, can restrict the time horizon for planning
request considerably, and thus reduces the need for compli-
cated planning processes.

The dedicated planner fits easily with other components
(long term mission planning, situation awareness and execu-
tion control). In terms of software engineering, the approach
provides a strong gain compared to scripting methods.

References
Guettier C. Solving Planning and Scheduling Problems in Net-
work based Operations. Proceedings of CP’07, USA. 2007.

Sella, G.; Cherrier, O.; Guettier, C. & Yelloz, J. Development and
Experimentation of Collaborative Red Force Tracking in Service
Oriented Architecture for Tactical Networking Systems Procees-
dings of MILCOM’11, USA. 2011

Orkin, J.. Three states and a plan: the AI of FEAR. In Game
Developers Conference. 2006.

Nau, D. S.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D. & Yaman, F. SHOP2: An HTN planning system. J. Artif.
Intell. Res. (JAIR), 20, 379-404. 2003.

Pittman, D. Command Hierarchies Using Goal-Oriented Action
Planning, AI Game Wisdom 4, Charles River Media (2008),
pages 383 to 391. 2008.

Planning domain
(defdomain monitor (

(:operator (!use-weapon ?soldier ?target) ((up ?soldier)) () ())

(:operator (!watch ?soldier ?area) ((up ?soldier)) () ())

(:operator (!report ?soldier ?target) () () ((can-engage ?soldier ?target)))

(:operator (!bend-down ?soldier)
((up ?soldier))

((up ?soldier))
((down ?soldier)))

(:operator (!stand-up ?soldier)
((down ?soldier))
((down ?soldier))
((up ?soldier)))

(:operator (!cover ?soldier1 ?sector1)
(and (sector ?sector2) (covering ?soldier1 ?sector2))
((covering ?soldier1 ?sector2))
((covering ?soldier1 ?sector1)))

(:operator (!follow ?soldier1 ?soldier2) () () ())

(:operator (!go-to-waypoint ?soldier1) ((have-waypoint ?soldier1)) () ())

(:operator (!find-cover-point ?soldier1 ?sector1)
()
()
((have-cover-point ?soldier1 ?sector1)))

(:operator (!go-to-cover-point ?soldier1 ?sector1)
((have-cover-point ?soldier1 ?sector1))
()
((at-cover-point ?soldier1 ?sector1)))

(:operator (!pass ?soldier1 ?soldier2)
(and (front ?fireteam ?soldier2) (back ?fireteam ?soldier1))
((front ?fireteam ?soldier2) (back ?fireteam ?soldier1))
((front ?fireteam ?soldier1) (back ?fireteam ?soldier2)))

(:method (use-weapon ?soldier ?target)
; soldier cannot use weapon if down
((down ?soldier))
((!stand-up ?soldier) (!use-weapon ?soldier ?target))
; soldier already up
()
((!use-weapon ?soldier ?target)))

(:method (watch ?soldier ?area)
; soldier cannot watch if down
((down ?soldier))
((!stand-up ?soldier) (!watch ?soldier ?area))
; soldier already up
()
((!watch ?soldier ?area)))

(:method (engage ?soldier ?target)
; soldier must protect itself
((under-fire ?soldier))
((!bend-down ?soldier))
; target is neither hostile nor can be engaged
; according to rule of engagement
((not (hostile ?target)) (not (can-engage ?soldier ?target)))
((!report ?soldier ?target) (use-weapon ?soldier ?target))
; else engage target
()
((use-weapon ?soldier ?target)))

(:method (monitor ?soldier ?area)
; a target is detected while monitoring
(and (detected ?soldier ?target ?area))
((engage ?soldier ?target))
; else, keep watching
()
((watch ?soldier ?area)))

(:method (patrol ?fireteam)
; if a target is detected in a given sector, engage it
((detected ?target ?sector1) (covering ?soldier1 ?sector1))
((engage ?soldier1 ?target))
; if there is an unsafe sector, use parrot-like move
((sector ?sector1) (unsafe ?sector1)
(front ?fireteam ?soldier1) (back ?fireteam ?soldier2))
((!cover ?soldier1 ?sector1) (!cover ?soldier2 front)
(!find-cover-point ?soldier2 ?sector1)
(!go-to-cover-point ?soldier2 ?sector1)
(!pass ?soldier2 ?soldier1) (!cover ?soldier2 ?sector1))
; else progress normally
((have-waypoint ?soldier1) (front ?fireteam ?soldier1)
(back ?fireteam ?soldier2))
((!cover ?soldier1 front) (!cover ?soldier2 far)
(!follow soldier2 soldier1) (!go-to-waypoint ?soldier1)))))


