
Proceedings de IPMU’98

Speedup Mechanisms for Large Learning Systems

Tr istan Cazenave
LIP6, case 169, UPMC, 4, place Jussieu

75252 PARIS CEDEX 05, FRANCE
Tristan.Cazenave@lip6.fr

Abstract

Eliminating combinatorics from the match in
production systems is important for expert
systems, real-time performance, machine
learning, parallel implementation and
cognitive modeling. We describe a way of
managing the tradeoff between generality
and eff iciency in knowledge representation
for large learning systems. We propose an
architecture that enables to combine
eff iciency in problem solving to generality in
learning. Our architecture combines
generality and eff iciency by using two
problem solvers. The first one is interpreted
and uses a general knowledge representation.
It enables the system to learn general rules.
The second one is compiled and uses a
specialized knowledge representation. It
enables the system to solve problems rapidly
and to detect when learning can occur in
order to decide to call the first problem
solver. To speedup rules, we use two
mechanisms which do not affect the
generality of learned rules and three
mechanisms that alter the learning abiliti es of
the system and that are only used in the
second problem solver. This approach has
shown its eff iciency in its application to the
game of Go. The game of Go is the most
complex two person complete information
game.

1 Introduction

Solving a problem in order to learn to solve similar
problems faster is different from solving a problem
in order to solve it quickly. As already pointed out
in [36] and in [7], generality in knowledge
representation is often opposed to eff iciency of
learned rules. In this paper, we propose a system
architecture that enables the system to combine
generality of learning and eff iciency of problem

solving. We also propose different speed-up
mechanisms that are used successfully in this
architecture.
Explanation-Based Generalization [27] and
Explanation-based Learning [8] are powerful
learning methods for domains with an underlying
theory. The use of similar methods to learn in well -
defined domains can be traced back to [31] and [21].
Well -known planning and learning systems as Soar
[18], Prodigy [22] and Theo [28] use these methods.
Unfortunately, learned knowledge can hurt
performance [22], this is known as the utilit y
problem. Some reports showed that in some
systems, learning degrades problem solving
performance [10,35].
One approach to this problem is to use some form of
selective learning or forgetting. [20] provides a
general framework for analyzing this approach.
Examples include discarding learned rules if they
turn out to cause overall system slowdown [22],
disabling the learning component after some desired
or peak performance level has been reached [16],
learning only certain types of rules (non recursive)
that are expected to have low match cost [12], and
employing statistical approaches to ensure that only
rules that improve performance are added to the
knowledge base [14,15].
Unfortunately, this approach alone is inadequate
because it enforces the system to learn only a few
number of rules and reduces the gain of learning.
However, it can be complemented by another
approach to reducing match cost, enabling the
system to learn more rules before reaching its
maximum. Many techniques have been developed
for that. [36] and [37] prevent the formation of
expensive rules that have a combinatorial match cost
by restricting the representation a system uses.
Prodigy reduces match cost by simpli fying the
conditions of learned rules using a compression
module [22]. Static [11] and Dynamic [30] analyze
the structure of a problem space to build simpler
rules with lower match cost than Prodigy/EBL. [7]
generalizes or specializes the conditions of search

control rules so as to reduce their match cost. [19]
uses statistical information on program runs to
dynamically unfold and reorder clauses of a logic
program. Researchers in production systems have
also devised methods to eff iciently match
production rules. [17] uses some heuristic rules to
order the conditions of rules. Rete networks [13]
have been enhanced by [9] to support large
production systems. In [29], a production system
learns parameters to be more eff icient. [9] also notes
that the estimation of the utilit y of a learning system
is highly dependent on the eff iciency of its
matching part.
Our learning system is composed of two problem
solvers. The first one is used to learn new rules, it is
interpreted and composed of general rules. The
second one is used to solve problems using limited
time resources, and to decide when to learn new
rules. It is compiled and composed of specific and
eff icient rules but it has the same knowledge as the
first problem solver.
The generality of learning associated to the
eff iciency of speeded-up learned rules has lead our
system to create a Go program that is better than
most of the hand-coded Go programs.

A

B

Figure 1

For the sake of simplicity, we will adopt a
simpli fied representation of rules, so as to make it
easy for the reader to understand them. Moreover,
we will give examples using the grid task described
in [36]. The grid task consists in finding a path of
length four between point A and point B in the
figure 1. This task is easier to understand than the
game of Go which is our principal application. A
Go board is also a grid, and all the mechanisms
described in this paper also apply to the rules
learned in the application of our learning system to
the game of Go.
The speedup mechanisms used in our learning
system can be divided into two categories. The
mechanisms of the first category do not modify the
generality of learned rules, and those of the second
category trade generality against eff iciency. In
Section 2, we begin with a description of two

speedup mechanisms which do not modify the
generality of learned rules. In Section 3, we follow
with three other mechanisms which alter generality
and the abilit y of the system to observe itself. Then
we give the architecture of our learning system, this
architecture enables us to combine generality and
eff iciency in the same system. The Section 4
describes the main application of our system, the
game of Go.

2 Speedup mechanisms not modifying
Learning

In this section, we present two mechanisms used to
speedup problem solving. The first one is the
reordering of the conditions of a rule. The second
one is the deletion of some useless conditions of the
learned rules. These two mechanisms do not modify
the generality of learning. They are applied to
modify the rules of our two problem solvers.

2.1 Reordering conditions

In [19], statistics on several runs of a program are
used to reorder and to unfold clauses of this
program. [17] also dynamically uses some simple
heuristics to find a good ordering of conditions for a
production system. Our approach is somewhat
different, it takes examples of working memories to
create metarules that will be used to reorder the
clauses. A metaprogram is automatically created to
reorder the clauses, we do not dynamically reorder
conditions of the rules. One advantage is that we can
create this metaprogram independently. Moreover,
once the metaprogram is created, running it to
reorder learned rules is faster than dynamically
optimizing the learned rules. This feature is
important for systems li ke Introspect [4] that learn a
large number of rules. The creation of the
metaprogram is also fast.
We rely on the assumption that domain-dependent
information can enhance problem solving [25]. This
assumption is given experimental evidence in [26].
On the contrary of Minton, we do not specialize
heuristics on specific problems instances, we rather
create metaprograms according to specific
distributions of working memories.
Reordering conditions is important for the
performance of learned rules. A simple example that
shows this importance is the two following clauses

that give the same results but that do not have the
same eff iciency :
actor (X) :- brother (X, X1), minister_of (X,
DOMAIN).
actor (X) :- minister_of (X, DOMAIN), brother (X,
X1).

Reordering based only on the number of
instanciated variables in a predicate does not work
for the above rule. In the constraint domain
literature, constraints are reordered according to two
heuristics concerning the variables to instanciate
[26] : the range of values of the variables and the
number of other variables it is linked to. These
heuristics dynamically choose the order of
constraints. But to do so, they have to keep the
number of possible instanciations for each variable,
and to lose time when dynamically choosing the
variable. These lost of time is justified in the
domain of constraints solving because the range of
values of a variable, affects a lot the eff iciency, and
can change a lot from one problem to another. It is
not justified in some other domains where the range
of values a variable can take is more stable. We
have chosen to do the choices statically by
reordering once for all and not dynamically at each
match because it saves more time in the domains in
which we have tested our approach.
To reorder conditions in our learned rules, we use a
simple and eff icient algorithm. It is based on the
estimated number of following nodes the firing of a
condition will create in the semi-unification tree. An
example of metarule is given in Figure 2.

branching (R, neighbor (V, V1), 3.76) :-
rule (R),
condition_to_order (R, connected (V, V1)),
instanciated (V),
not_instanciated (V1).

Figure 2

A metarule evaluates the branching factor of a
condition based on the estimated mean number of
facts corresponding to the condition in the working
memory. Metarules are fired each time the system
has to give a branching estimation for all the
conditions left to be ordered. When reordering a rule
containing N conditions, the metarule will be fired
N times: the first time to choose the condition to put
at first in the rule, and at time number T to choose
the condition to put in the Tth place. The first

condition ‘rule (R)’ instanciates in the variable R all
the rules of the set of learned rules to reorder. The
second condition, ‘condition_to_order (R,
Connected (V, V1))’ , instanciates the metavariables
V and V1 on two variables of type intersection. The
metavariables are instantiated in all the rules that
contain a condition matching ‘neighbor (V, V1)’ , if
this condition has not been ordered yet. The third
condition ‘ instanciated (V)’ , verifies that the
variable contained in V has been instanciated in the
previous conditions of the rule R. The fourth
condition ‘not_instanciated (V1)’ , verifies that the
variable contained in V1 has not been instanciated in
the previous conditions of the rule R. The
instanciations of the variable contained in V1 is
therefore a potential cause of branching. In
conclusion, the metarule estimates the branching
factor to be 3.76 (this is the mean number of
neighbor intersections of an intersection on a 19*19
grid, this number can vary from 2 to 4).
The branching factors of all the conditions to reorder
are compared and the condition with the lowest
branching factor is chosen. The algorithm is very
eff icient, it orders rules better than humans do and it
runs fast even for rules containing more than 200
conditions. More examples of conditions reordering
by hand-coded metaprograms are given in [2].

preferpath (X, Y) :-
currentstate (X) 1
color (X, +) 1
color (Y, +) 81
connected (X, Y) 4
desired (Y).

Figure 3
preferpath (X, Y) :-

currentstate (X) 1
color (X, +) 1
connected (X, Y) 4
color (Y, +) 4
desired (Y).

Figure 4

Figure 3 and 4 give an example of the difference in
the number of instanciations and tests between a bad
ordered rule and a well ordered rule. The rule
ordered with naive constraints on the number of
variables makes 87 instanciations and tests whereas
the reordered rule only makes 10 instanciations and
tests. For large rules (some of our learned rules for
the game of Go contain more than 200 conditions),

the right ordering of conditions by metarules leads
to much greater speedups.

2.2 Deletion of useless conditions

The system sometimes learns some rules which
contains useless conditions. The figure 5 gives a
rule that finds a path of length four to go from one
point of a grid to another one without passing twice
on the same point. After each new instanciation of a
variable in the conditions, the rule verifies that the
instanciated point is different from any previously
instanciated one.

preferpath (X, Y) :-
currentstate (X), 1
connected (X, Y), 4
different (X, Y), 4
connected (Y, Z), 16
different (Z, X), 12
different (Z, Y), 12
connected (Z, W), 48
different (W, X), 48
different (W, Y), 36
different (W, Z), 36
connected (W, D), 144
desired (D).

Figure 5

A

Figure 6

preferpath (X, Y) :-
currentstate (X), 1
connected (X, Y), 4
connected (Y, Z), 16
different (Z, X), 12
connected (Z, W), 48
different (W, Y), 36
connected (W, D), 144
desired (D).

Figure 7

However, in some cases, it is useless to verify that
some points are different due to the topology of the
grid. For example, two connected points are always
different. We can use a metarule that tell s to remove
the condition ‘different (V, V1)’ if the condition

‘connected (V, V1)’ is present in the rule. Such a
metarule is given in figure 8. Another metarule
given in figure 9 removes the same condition when
there is a path of length three between two points,
this is a consequence of figure 6 that shows all the
points that are at a three step path from point A, they
are all different from point A. The initial rule of
figure 5 makes 361 instanciations and tests. After
firing the metarule of deletion on the initial rule, we
obtain the rule of figure 7 which makes only 261
instanciations or tests with the same results.

removecondition (R, different (V, V1)) :-
rule (R),
condition (R, connected (V, V1)),
condition (R, different (V, V1)).

Figure 8

removecondition (R, different (V, V3)) :-
rule (R),
condition (R, connected (V, V1)),
condition (R, connected (V1, V2)),
condition (R, connected (V2, V3)),
condition (R, different (V, V3)).

Figure 9

Figure 8 and 9 give the metarules used to remove
the unnecessary conditions of the rule in figure 5.

3 Speedup mechanisms modifying Learning

In this section, we present three mechanisms used to
speedup problem solving. The first one is the
insertion of cuts in the unification graph. The second
one is the specialization of some multi -attributes
predicates. The third one is the compilation of the
learned rules into C++ programs. These three
mechanisms modify the generality and the abilit y of
learning. They are only applied to create the rules of
our eff icient problem solver. We finish this section
by showing how these mechanisms can be used in a
learning architecture without altering the generality
of learning.

3.1 Cuts in the unification graph

A mechanism is used so as not to deduce many
times the same conclusion using different paths in
the semi-unification graph. It consists in verifying
that the conclusion has not been already deduced
when instanciating new variables. This is done by
inserting cuts after conditions instanciating variables

with multiples values. A priority is given to the
instanciation of the variables present in conclusion
in order to instanciate them as soon as possible in
the semi-unification of the rule. The sooner they are
instanciated in the rules, the more cuts are possible
and the more savings are done. In our application to
the game of Go, the insertion of cuts approximately
doubles the speed of the semi-unification.
The cuts in the unification graph are represented in
the rule of figure 10 by ‘!’ . We use a depth first
semi-unification strategy. When a variable has
multiple instanciations, li ke Z in the third condition
of the rule, we continue to fire the following
conditions with the first instanciation of Z. And it is
only when all the semi-unification tree following the
instanciation of Z has been traversed that we
continue with the second instanciation of Z. The
cuts after the third condition have worked six times
as we can see by comparing the number of
instanciations with the rule in figure 7. These
savings are done because for these six values of Z, it
was unnecessary to develop the tree further as the
corresponding conclusion had already been deduced.

preferpath (X, Y) :-
currentstate (X), 1
connected (X, Y), 4
connected (Y, Z), ! 10
different (Z, X), 8
connected (Z, W), ! 20
different (W, Y), 16
connected (W, D), ! 40
desired (D).

Figure 10

This speedup mechanism modifies the generality of
learning because it does not deduce the same fact in
various ways. Therefore, when explaining the
deduction of a fact, the explanation module only
produces one explanation. However, it is sometimes
useful to produce several explanations of a fact
because some explanations of different deductions
can be shared and other cannot be shared. If the
system has several explanations, it can choose the
explanation which makes the learned rules contain
the less number of conditions. Moreover, the system
can learn several rules from the same example using
different explanations for each rule. Cutting the
semi-unification graph leads to less explanations
and longer learned rules. It prevents from learning
multiple rules and makes learned rules contain
unnecessary facts and therefore be less general than
rules learned without cuts.

3.2 Specialization of some predicates

In order to show the originality of our approach, we
will compare it to the description of [36] also using
the grid task.

A

BC

Figure 11

preferpath (X, Y) :-
currentstate (X),
upconnected (X, Y),
rightconnected (Y, Z),
upconnected (Z, W),
rightconnected (W, D),
desired (D).

Figure 12

Tambe [36] compares the influence of the
knowledge representation on the generality and the
eff iciency of learned rules. The number of unique-
attribute chunks required for the same level of
generality as the multi -attributes chunk for a path of
length p is (p+1)2. However, (p+1)2 is the number of
points that can be reached with a path of length p.
The number of paths to go to this point is greater
than one. In some cases, it is necessary to have a
chunk for each different path. For example, when
you want the system to reach multiple goals with the
same move. This is very important in some complex
applications li ke Go, where a move achieving
multiple goals is preferred to a move achieving only
one goal. Another example, if when there are many
paths of length four to go from point A to point B,
but that only some paths enables to pass to point C
which contains something to pick up, li ke in figure
11. It is better for a robot to know all the paths so as
to be able to choose the one which pass through
point C and pursue two goals in one move.
Therefore, the number of chunks required for the
same level of generality is much higher than (p+1)2

in more complex applications li ke the game of Go or
the achievement of multiple goals in the grid task.
However, the unique attribute representation is
faster than the multi -attribute representation, but for
other reasons than those given in [36]. The reason

that the unique attribute representation is faster is
that it enables the system to evaluate some
conditions at compile time. Thus, some of the
computations which where done each time the
learned rule was fired are now done only once at
compile time. If we replace the general rule of
figure 7 by its specialized rules, we obtain 144
rules, each of one containing 5 instanciations as
shown in figure 12. Therefore we have 5*144=720
instanciations when matching all the rules. To avoid
that specialization makes matching slower, we have
to share the conditions between rules. If we share
the conditions of the partiall y specialized rules into
a tree of conditions, we now have
1+4+12+36+144=197 instanciations for the same
result. This is now less than the 261 instanciations
and tests of the general rules. What we have done is
the removal of the tests and of some instanciations,
we still have 197 out of the 261 instanciations of the
general rule but we have no more the 36+12=48
tests of the general rule and the 16 useless
instanciations which were cut by the tests.
Sometimes, the specialization module creates a rule
more than once, the unification between rules
enables the system to remove redundant rules.

3.3 Compilation in C++

Another source of ineff iciency is the interpretation
of production rules. When an interpreted problem
solver instanciates a variable, it has to go through
trees representing the working memory, to create a
linked li st of the instanciations of the variable and
to go through this linked li st. Instanciating a
variable or making a test requires a lot of
instructions at the assembly language level. If a rule
is compiled into a C++ program,
tests are represented by only one
instruction and multiple
instanciations by a simple loop.

x=current_state;
y=up_connected [x];
z=right_connected [y];
w=up_connected [y];
d=right_connected [w];
if (d==desired) {

prefer_path (x,y);}

Figure 13

x=current_state;
for (_y=1; _y<number_of_connections [x]; _y++) {
y=connected [x] [_y];
for (_z=1; _z<number_of_connections [y]; _z++) {
z=connected [y] [_z];
if (z!=x) {
for (_w=1; _w<number_of_connections [z]; _w++) {
w=connected [z] [_w];
if (w!=y) {
for (_d=1; _d<number_of_connections [w]; _d++) {
d=connected [w] [_d];
if (d==desired) {

prefer_path (x,y);}}}}}}}

Figure 14

Our system transforms its learned production rules
into C++ programs so as to match them eff iciently.
Figure 13 gives the program corresponding to the
compilation of the rule in figure 12. The system is
also able to compile rules containing multi -attribute
predicates as shown in figure 14 which represents
the compilation of the rule in figure 7. The
compilation of interpreted rules into C++ programs
gives a factor sixty in the speed of matching the
rules.

3.4 How to use these speedup mechanisms in a
learning system

Despite the fact that eff icient and compiled rules are
not used in our interpreted learning system, they are
of great use in the overall architecture of the whole
learning system. Our learning architecture is
composed of two problem solvers. One is
interpreted and is used to learn new rules, and the
other one is compiled and is used to solve problems
quickly and to detect when learning can occur. The

interpreted problem solver uses a general
representation so as to learn general rules. Learning

Problem Interpreted
Problem Solving

Interpreted/General
Learned Rules

Compiled/Efficient
Learned Rules

Learning
Compiled

Problem Solving

= is used to do

Figure 15

general rules is more eff icient than learning a lot of
specific rules. For example, to learn the rule of
figure 5, a system using a general representation
needs only one run. A system using an eff icient but
specialized representation needs 144 different runs.
The use of the general representation requires less
time and less examples than the specialized
representation for the same results. The compiled
version of the problem-solver can be used to detect
that learning can occur. When the compiled
problem-solver detects that learning can occur, it
creates a new problem and gives it to the interpreted
problem-solver which learns new rules and integrate
them in the two problem solvers.
The architecture of the whole learning system is
given in figure 15. Learning and eff icient problem
solving are two different activities that can be done
in parallel.

4 Application to a learning Go system

4.1 Computer Go

Go was developed three to four millennia ago in
China; it is the oldest and one of the most popular
board game in the world. Like chess, it is
deterministic, perfect information, zero-sum game
of strategy between two players. The game of Go is
the most complex two-person complete information
game [1]. Robson [33] proved that Go generalized
to NxN boards is exponential in time. Making a
good Go program is recognized as a challenge for
AI [34]. Today, the best computer Go program is
Handtalk. It has the strength of an advanced
beginner. This is not due to a lack of work in the
computer Go field, the best top programs are the
result of more than 10 years of work. But it is rather
due to the intractabilit y of search in the domain (250
moves per position, up to 60 moves to look-ahead)
and to the huge amount of knowledge necessary to
play the game well . The best Go programs are based
on knowledge intensive approaches. But there is too
much Go knowledge to put in a program to create a
good Go program in a reasonable time. That is why
large learning techniques are of great interest for the
computerization of the game of Go.

4.2 Representation of knowledge in computer Go

A Go board is a grid, therefore the speedup
mechanisms used for the grid task are also used for

the game of Go. However, in the game of Go, some
predicates cannot be specialized. An example of
such a predicate is the Liberty predicate. A string of
stones can have a number of liberties ranging from 1
to 266. On the contrary of the number and of the
location of the intersections connected to a given
intersection, the number and the location of liberties
is variable. Learned rules in the game of Go mix
unique-attribute and multi -attribute predicates.

4.3 Results obtained by our program

Introspect has been used to write the tactical and
most important part of a Go playing program named
Gogol, it plays a move in 10 seconds on a Pentium
133 MHz. For each move it proves about 450
tactical theorems, each theorem requires between 4
and 600 nodes in a search tree to be proved, at each
node of each tree, the rules learned by Introspect are
called to find the useful moves to try. Introspect
discovered these rules by itself only given the rules
of the game. Gogol competed in the international
computer Go tournament held during IJCAI97. It
finished 6 out of 40 participants. The five first
programs are commercial programs that have
required a lot of man*years of work. It has
outperformed other commercial systems that have
required more than 10 man*years of work.

5 Conclusion

We have described a way of managing the tradeoff
between generality and eff iciency in knowledge
representation for large learning systems. We have
proposed an architecture that enables to combine
eff iciency in problem solving to generality in
learning. Our architecture combines generality and
eff iciency by using two problem solvers. The first
one is interpreted and uses a general knowledge
representation. It enables to learn general rules. The
second one is compiled and uses a specialized
knowledge representation. It enables to solve
problems rapidly and to detect when learning can
occur in order to decide to call the first problem
solver. We have described speedup mechanisms that
allow to transform a general representation into a
specialized and eff icient one. This approach has
shown its success in its application to the game of
Go. It is a general approach that has also been
applied successfully to other domains [3,4,5].

References

[1] - L. V. Alli s, Searching for Solutions in Games and
Artifi cial Intelli gence. Ph.D. Thesis, Vrije Universitat
Amsterdam, Maastricht, September 1994.

[2] T. Cazenave, Automatic Ordering of Predicates by
Metarules. Proceedings of the 4th International
Workshop on Metareasonning and Metaprogramming in
Logic, Bonn, 1996.

[3] - T. Cazenave. Learning to Manage a Firm. First
International Conference on Industrial Engineering
Application and Practice, USA, 1996.

[4] - T. Cazenave. Système d’Apprentissage par Auto-
Observation. Application au Jeu de Go. Thèse de
l'Université Paris 6, Décembre 1996.

[5] - T. Cazenave. Automaticall y Improving Agents
Behaviors in an Urban Simulation. Second International
Conference on Industrial Engineering Application and
Practice, USA, 1997.

[6] - M. P. Chase, M. Zweben, R. L. Piazza, J. D.
Burger, P. P. Maglio, H. Hirsh. Approximating learned
search control knowledge. Proceedings of the sixth
International Workshop on Machine Learning, pp. 218-
220, 1997.

[7] - J. Cheng. Management of Speedup Mechanisms in
Learning Architectures. Ph. D. Thesis, Carnegie Mellon
University, Pittsburgh, January 1995.

[8] - G. Dejong, R. Mooney. Explanation Based
Learning: an alternative view. Machine Learning 2,
1986.

[9] - R. B. Doorenbos. Production Matching for Large
Learning Systems. Ph. D. Thesis, Carnegie Mellon
University, Pittsburgh, January 1995.

[10] - O. Etzioni. Why PRODIGY/EBL works. AAA I-
90, pp. 915-922, 1990.

[11] - O. Etzioni. A Structural Theory of Search Control.
PhD thesis, School of Computer Science, Carnegie
Mellon University, 1990.

[12] - O. Etzioni. A structural theory of explanation-
based learning. Artificial Intelli gence 60(1) :93-139,
1993.

[13] - C.L. Forgy, RETE : A Fast Algorithm for the
Many Pattern / Many Object Pattern Matching Problem,
Artificial Intelli gence vol. 19, pp 17-37, 1982.

[14] - J. Gratch, G. Dejong. COMPOSER : A
probabili stic solution to the utilit y problem in speed-up
learning, AAA I-92, pp 235-240, 1992.

[15] - R. Greiner, I. Jurisica. A statistical approach to
solving the EBL utilit y problem, AAA I-92, pp 241-248,
1992.

[16] - L. B. Holder. Empirical Analysis of the general
utilit y problem in machine learning, AAA I-92, pp 249-
254, 1992.

[17] - T. Ishida. Optimizing Rules in Production System
Programs, AAA I 1988, pp 699-704, 1988.

[18] - J. Laird, P. Rosenbloom, A. Newell . Chunking in
SOAR : An Anatomy of a General Learning Mechanism.
Machine Learning 1 (1), 1986.

[19] - P. Laird. Dynamic Optimization. ICML-92, pp.
263-272, 1992.

[20] - S. Markovitch, P. D. Scott, Information Filtering:
Selection Mechanisms in Learning Systems, Machine
Learning 10, pp. 113-151, 1993.

[21] - Minton S. Constraint-Based Generali zation -
Learning Game-Playing Plans from Single Examples.
Proceedings of the Fourth National Conference on
Artificial Intelli gence, 251-254. Los Altos, Willi am
Kaufmann, 1984.

[22] - S. Minton. Learning Search Control Knowledge -
An Explanation Based Approach. Kluwer Academic,
Boston, 1988.

[23] - S. Minton, J. Carbonell , C. Knoblock, D. Kuokka,
O. Etzioni, Y. Gil . Explanation-Based Learning : A
Problem Solving Perspective. Artificial Intelli gence 40,
1989.

[24] - S. Minton. Quantitative Results Concerning the
Utilit y of Explanation-Based Learning. Artificial
Intelli gence 42, 1990.

[25] - S. Minton. Is There Any Need for Domain-
Dependent Control Information : A Reply. AAA I-96,
1990.

[26] - S. Minton. Automaticall y Configuring Constraints
Satisfaction Programs : A Case Study. Constraints,
Volume 1, Number 1, 1996.

[27] - T. M. Mitchell , R. M. Keller, S. T. Kedar-Kabelli .
Explanation-based Generali zation : A unifying view.
Machine Learning 1 (1), 1986.

[28] - T. M. Mitchell et al. Theo : A Framework for Self-
Improving Systems. In Architecture for Intelli gence, K.
VanLehn, Ed., Erlbaum,1991.

[29] - Y. Parchemal. SEPIAR : un système à base de
connaissances qui apprend à utili ser efficacement une
expertise. Thèse de l’Université Paris 6, 1988.

[30] - M. A. Pérez, O. Etzioni. DYNAMIC : A new role
for training problems in EBL. ICML-92 pp 367-372,
1992.

[31] - J. Pitrat. Realization of a Program Learning to
Find Combinations at Chess. Computer Oriented
Learning Processes, Simon J. Ed., Noordhoff , 1976.

[32] - J. Pitrat, Métaconnaissance - Futur de
l’I ntelli gence Artifi cielle, Hermès, Paris, 1990.

[33] - J. M. Robson - The Complexity of Go -
Proceedings IFIP - pp. 413-417 - 1983.

[34] - B. Selman, R. A. Brooks, T. Dean, E. Horvitz, T.
M. Mitchell , N. J. Nilsson. Challenge Problems for
Artifi cial Intelli gence, AAA I-96, pp. 1340-1345, 1996.

[35] - D. Subramanian, R. Feldman. The utilit y of EBL
in recursive domains, AAA I-90, pp. 942-949, 1990.

[36] - M. Tambe, A. Newell , P. S. Rosenbloom, The
problem of expensive chunks and its solution by
restricting expressiveness. Machine Learning 5 (3)
(1990), pp. 299-348, 1990.

[37] - M. Tambe, P. S. Rosenbloom, Investigating
production system representations for non-combinatorial
match. Artificial Intelli gence 68 (1994), pp. 155-199,
1994.

