
Metarules to Improve Tactical Go Knowledge

Tristan Cazenave
Labo IA, Université Paris 8

2 rue de la Liberté, 93526, St-Denis, France
e-mail: cazenave@ai.univ-paris8.fr

Abstract

Three main problems arise with automatically
generated rules databases. They are too large
to fit in memory, they can take a lot of time to
generate, and it takes time to match many rules
on a board. I propose to use exceptions and
metarules to reduce the size of the databases.
The reduction in size enables larger rules to be
used, at the cost of small overheads in genera-
tion and matching times. However, the reduc-
tion in search depth provided by the new larger
rules decreases much the overall search time,
stopping search at smaller depths.

1 Introduction

I have written an automatic rule generator based on
retrograde analysis of patterns with external conditions
[3],[5],[2]. It generates rules about eyes and life in the
game of Go. Life and death in the game of go has
been already studied, and some clever algorithms have
been designed. Beginning with Benson’s algorithm [1]
that detects unconditional life with the opponent mov-
ing as many times he wants to and still being unable
to kill. More heuristic approaches have followed such
as in Star of Poland [14] or Go Intellect [9],[10]. The
usual way to approach the problem is to write an elab-
orate static life and death evaluation function [11], and
to use a search algorithm based on it such as in Gotools
[16],[17],[18],[19],[20].

Related works on retrograde analysis and databases
include D. Dyer’s shapes database [12] that enumerates
completely enclosed living shapes, and R. Gasser’s work
on finding exceptions in Nine Men’s Morris endgame
databases [13].

The second section describes the generations of rules
for eyes and life and death. The third section explains
different metarules that can be used to reduce the num-
ber of rules, including exceptions rules. The fourth sec-
tion gives some experimental results on the generated
patterns databases. The fifth section underlines future
work.

2 Automatic generation of rules
A rule is composed of a rectangular pattern, and of some
associated conditions on liberties external to the pattern.
A rule can conclude on the life of strings, or on the eye
potential of strings. There are two type of rules: rules
that conclude on a won state (the goal can always be
reached, whatever the opponent plays), and rules that
conclude on winning states (the goal can be reached if
the friend color plays first).

2.1 Generation of rules by retrograde analysis
A naive and very inefficient implementation of an auto-
matic rule generator would generate all possible rules,
and perform an alpha-beta on each rule to verify life. We
use a much more efficient algorithm, albeit more com-
plex. Previous versions and some optimizations were
already described [5]. Our current retrograde analysis
is an improvement. It uses an unmove function and di-
rectly finds all the rules that lead in one move to the rule
at hand. Therefore, once this unmove function is written,
the algorithm is quite simple: it consists of alternatively
performing two passes. The first pass unmoves opponent
moves on winning rules to find new won rules (verifying
all the opponent moves on the unmoved rule lead to a
winning rule). The second pass unmoves friendly moves
on won rules to find new winning rules. The algorithm
stops when no new winning rule is found in a second
pass.

2.2 Conditions on external liberties
The conditions associated to the liberties outside of the
pattern (external liberties) are restricted. The restric-
tions on the possible conditions ensures that the gener-
ated rules are always correct (provided the friend player
is the komaster). The algorithm always consider that the
worst things can happen to the friend player, and the best
things to the opponent. This means that we assume the
opponent will only need one move to reduce each of the
player’s external liberties, and will also only need one
move to get as much liberties as he needs to for one of
its strings. On the contrary, the friend player can only
remove an external liberty of an opponent string if it is
the last one of the string.

Friend strings in the pattern can only be associated to
conditions on the minimum number of external liberties



they can have. Opponent strings can only be associated
to conditions on the maximum number of liberties they
can have outside the pattern. Empty intersections can be
associated to either a minimum number of external lib-
erties if friend plays on the intersections, or a maximum
number of external liberties if the opponent plays on the
intersection.

3 Metarules to reduce the number of rules
One major problem with generated rule databases is their
size. Many very useful life rules do not fit in a 4x3 pat-
tern size, but as the number of rules grows exponentially
with the size of the pattern associated to the rule, it is
currently hard to have pattern sizes greater than 5x3 in
the corner. In this section, we will give some methods
to reduce the number of generated rules, without reduc-
ing the number of situations covered by the system. The
methods are called metarule as they are rules on rules.
The first one consists in removing all the rules that are
special cases of another rules with a smaller pattern size.
The second one is the suppression of the rules that can
be easily and cheaply found at runtime. The third one is
the use of generated rules on eyes to reduce the number
of generated rules on life.

3.1 Metarules to suppress subsumed rules
Each time the system generates a rule, it verifies that it is
not a special case of another rule. If the rule is original,
it adds it to the rule database, and search the database
for rules that are a special case of the new added rule.
If such special cases are found, the system removes the
subsumed rules.

A tricky part of this mechanism is when the system
verifies if a rule with a smaller pattern subsumes a rule
with a larger pattern. In this case, the system has to com-
pare conditions on strings and intersections that are not
the same, and that change according to the colors of the
intersections which are present in the large pattern and
absent of the small one.

For example, if a condition in the small pattern is that
the friend player has at least two external liberties if he
plays on an empty intersection on the border of the pat-
tern. Then if in the larger pattern, this same intersec-
tion is now neighboring a new empty intersection of the
enlarged pattern, the condition on the intersection has
changed for the larger pattern: the friend player has now
at least only one external liberty if he plays on the inter-
section, since the neighboring empty intersection is part
of the larger pattern but is external to the smaller.

3.2 Suppression of rules that can be found
dynamically

One optimization that divides the sizes of the databases
by ten is to remove the conditions associated to winning
rules, only keeping the patterns. In the Tsume Go solver,
the winning state can be found by verifying the pattern,
and then trying all the relevant moves to see if they lead
to a won state. This optimization has some similarity
with Abstract Proof Search [4] which also dynamically
finds such states.

3.3 Suppression of some rules on life given
rules on eyes

The system has generated rules for different eye sizes. A
group is alive when it has two eyes. Therefore patterns
on eyes can be used to detect life. However, the two
eyes need to be independent for the string to be alive.
For example when a string has two won eyes on differ-
ent locations, if they share an empty intersection, their
combination may not give life as an opponent move on
the empty intersection can threaten both eyes, and it is
possible that no friend move can save both eyes in one
move.

Nevertheless, if a life rule contains two independent
eyes, it is not necessary to keep it as it can be deduced
from the rules on eyes, provided there is a method to
detect the independence of the two won eyes. A sim-
ple metarule that ensures independence of the two won
eyes most of the times is the following one: if the inter-
section of the two won eye patterns contains only empty
and friend stones, and if all the empty intersections are
protected intersections (i.e. if the opponent plays on one
of them it has at most one external liberty and no internal
liberty) then the string is alive. This metarule enables to
remove many rules on life, however it is sometimes false.
In order to preserve the correction of our algorithm, a
good way to overcome the difficulty is to generate all
the rules for a given pattern size that put the indepen-
dence metarule above at default. Once these exception
rules are generated, the rule database is safe again as all
the exceptions to the potentially false metarule have been
generated.

3.4 Suppression of low utility rules
Many of the generated rules have conditions of no ex-
ternal liberties for opponent strings or opponent moves.
When a rule has many of these conditions, it has a low
probability to apply, and usually, life can be detected by
other means than matching the rule. Another parame-
ter related to the utility of a rule is the depth of the rule
(i.e. the minimum number of moves to make life under
best defense). We evaluate each generated rule accord-
ing to an utility function that gives large penalties for
conditions that a rarely matched, and gives bonus for the
depth of the rule. Then only rules that have an utility
value below some given threshold are kept. A better but
more difficult way to find the utility of the rules is to keep
statistics on their use inside the problem solver, and then
after having used it on a large number of problems, to
remove the ones with a low number of matching.

4 Experimental results
The Table 1 gives the number of won rules on life gener-
ated for different pattern sizes in the corner of the board.
The only metarule used is the metarule that removes rules
that are special cases of smaller rules. Some generated
rules can replace some quite deep search at a low cost
of matching. The Table 2 gives the number of won rules
generated for different pattern sizes on the border of the
board. The Table 3 gives the number of won eye rules for
thet 3x3 and 4x3 patterns in the center, and for the 3x2,



Table 1: Repartition of won life rules in the corner.

Pattern size in the corner

Depth 4x2 3x3 5x2 4x3 6x2

0 1 10 2 71 10
2 4 18 12 405 60
4 6 29 37 1237 176
6 2 8 78 2625 371
8 1 10 54 3026 615
10 0 3 27 2745 562
12 0 0 13 1202 446
14 0 0 2 272 202
16 0 0 0 39 45
18 0 0 0 5 23
20 0 0 0 1 4

Total 14 78 225 11628 2515

Table 2: Repartition of won life rules on the side.

Pattern size on the side

Depth 5x2 3x4 6x2 4x3

0 1 5 1 42
2 5 22 8 156
4 11 48 35 310
6 6 55 124 243
8 5 47 122 200
10 2 16 102 75
12 1 4 77 40
14 0 2 28 8
16 0 0 14 0
18 0 0 18 0
20 0 0 2 0

Total 31 197 531 1074

4x2 and 3x3 patterns on the side of the board. The Table
4 gives results for eyes in the corner.

5 Future Work
One promising improvement is the association of rules
to gradual games as defined in [7] and [8]. The grad-
ual game is a good indicator of the complexity of finding
the rule using search only. Therefore, it is a good indi-
cator of how much we ae willing to keep the rule. The
rules that are the most difficult to find again should be
preserved, whereas the simple rules that can be found by
search easily can be dropped without too much concern.

Improvements due to the use of generated rules can be
mixed with improvements due to other new search algo-
rithms such as Abstract Proof Search [4], algorithms that
learn to order moves [15], and search heuristics such as
the killer move heuristic used in Gotools [20]. It is inter-
esting to test some combinations of these improvements
on a life and death test suite [20],[6].

Potential reductions in the number of rules can com
from the use of the static life and death heuristics of top

Table 3: Repartition of won eye rules center and side.

Center Side

Depth 3x3 4x3 3x2 4x2 3x3

0 9 0 1 0 9
2 34 25 3 1 37
4 76 333 4 12 120
6 52 2561 0 59 257
8 60 2831 1 38 154
10 26 4430 0 36 89
12 16 1492 0 6 36
14 6 1486 0 0 23
16 0 283 0 0 0
18 0 0 0 0 0
20 0 0 0 0 0

Total 279 13441 9 152 725

Table 4: Repartition of won eye rules in the corner.

Pattern size in the corner

Depth 2x2 3x2 4x2 3x3

0 1 1 0 7
2 2 4 11 31
4 1 13 26 111
6 0 34 93 342
8 0 7 133 387
10 0 0 93 247
12 0 0 25 74
14 0 0 0 1
16 0 0 0 0
18 0 0 0 0
20 0 0 0 0

Total 4 59 381 1200



programs [11]. The system could automatically find all
the exceptions of the heuristic rules. Also, many rules
could be removed as some special cases of the heuristics.

The shapes databases of D. Dyer [12] are a special
case of our retrograde analysis algorithm. However, he
uses isomers of shapes to reduce the number of shapes
and we do not. We could use this heuristic to reduce the
number of rules, detecting equivalent ones.

From a more general point of view, our methods can
be used to help assessing the independence of subgames.
For example, connections are often transitive, but some-
times a string A can be connected to a string B, the string
B can be connected to a string C, but A is not connected
to C. Non-transitivity occurs when the two connections
are dependent [7]. Our rule generating system with ex-
ceptions could find all the non-transitivity cases automat-
ically.

6 Conclusion
Many rules about life and eyes have been automatically
generated, and are used to speed-up Tsume Go problem
solving. The main limitation of automatically generat-
ing rules is the size of the databases. We have given
metarules to reduce the number of generated rules, there-
fore enabling rules with larger pattern size to be gener-
ated. We also gave some experimental results concerning
the depth and the number of generated rules.

References
[1] D.B. Benson, ‘Life in the game of go’, Information

Sciences, 10, 17–29, (1976).

[2] B. Bouzy and T. Cazenave, ‘Computer go: An ai-
oriented survey’, Artificial Intelligence, 132(1), 39–
103, (October 2001).

[3] T. Cazenave, ‘Système d’apprentissage par auto-
observation. application au jeu de go’, Phd thesis,
Université Paris 6, (December 1996).

[4] T. Cazenave, ‘Abstract proof search’, in Proceed-
ings of Second International Conference on Com-
puters and Games, pp. 81–96, Hamamatsu, (2000).

[5] T. Cazenave, ‘Generation of patterns with exter-
nal conditions for the game of go’, in Advance
in Computer Games 9, eds., H.J. van den Herik
and B. Monien, 275–293, Universiteit Maastricht,
Maastricht, (2001). ISBN 90 6216 566 4.

[6] T. Cazenave, ‘A problem library for computer go’,
in IJCAI-01 Workshop on Empirical Methods in
Artificial Intelligence, eds., Holger H. Hoos and
Thomas Sttzle, Seattle, USA, (2001).

[7] T. Cazenave, ‘Theorem proving in the game of go’,
in Proceedings of the first International Conference
on Baduk, pp. 275–292, Yong-In, Korea, (2001).

[8] T. Cazenave, ‘Gradual abstract proof search’, in
Proceedings of RFIA, Angers, France, (2002).

[9] K. Chen, ‘Group identification in computer go’, in
Heuristic Programming in Artificial Intelligence:
The First Computer Olympiad, eds., D. Levy and

D. Beal, 195–210, Ellis Horwood, Chichester,
(1989).

[10] K. Chen, ‘The move decision process of go intel-
lect’, Computer Go, 14, 9–17, (1990).

[11] K. Chen and Z. Chen, ‘Static analysis of life and
death in the game of go’, Information Sciences,
121, 113–134, (1999).

[12] D. Dyer, ‘An eye shape library for computer go’,
Technical report, (1987).

[13] R. Gasser, ‘Endgame database compression for hu-
mans and machines’, in Heuristic Programming
in Artificial Intelligence 3: the third computer
olympiad, eds., H.J. van den Herik and L.V. Al-
lis, 180–191, Ellis Horwood, Chichester, England,
(1991).

[14] J. Kraszek, ‘Heuristics in the life and death algo-
rithm of a go-playing program’, Computer Go, 9,
13–24, (1988).

[15] J. Ramon, T. Francis, and H. Blockeel, ‘Learning
a tsume-go heuristic with tilde’, in Proceedings of
CG2000, the second international conference on
computer and games, eds., Ian Frank and Tony
Marsland, Hamamatsu, Japan, (2000). To appear in
LNCS.

[16] T. Wolf, ‘Investigating tsumego problems with
risiko’, in Heuristic Programming in Artificial In-
telligence 2, eds., D.N.L. Levy and D.F. Beal, Ellis
Horwood, (1991).

[17] T. Wolf, ‘The program gotools and its computer-
generated tsume go database’, in Game Program-
ming Workshop in Japan ’94, ed., H. Matsubara,
pp. 84–96, Tokyo, Japan, (1994). Computer Shogi
Association.

[18] T. Wolf, ‘About problems in generalizing a tsumego
program to open positions’, in Game Programming
Workshop in Japan ’96, ed., H. Matsubara, pp. 20–
26, Tokyo, Japan, (1996). Computer Shogi Associ-
ation.

[19] T. Wolf, ‘The diamond’, British Go Journal, 108,
34–36, (1997).

[20] T. Wolf, ‘Forward pruning and other heuristic
search techniques in tsume go’, Information Sci-
ences, 122, 59–76, (2000).


