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F-75775 Paris 16 Cedex, France. F-94114 Arcueil Cedex, France.

{cazenave,balbo,pinson}@lamsade.dauphine.fr balbo@inrets.fr

Abstract—In this paper we want to minimize passengers
waiting times at the bus stops by making buses wait at a
stop. We compare a simple rule based approach to a Monte-
Carlo method for this problem. When allocated enough
time, the Monte-Carlo method gives better results. If the
passengers arrivals and the bus travel times are known, the
best algorithm is nested Monte-Carlo search with mem-
orization which clearly outperforms nested Monte-Carlo
search without memorization as well as Monte-Carlo and
rule based regulation.

I. Introduction

The development of surface public transportation net-
works is a major issue in terms of ecology, economy and
society. To improve its attractiveness, the urban networks
must increase their quality in terms of punctuality and ve-
hicle frequency while at the same time they must decrease
management costs. A project like the Bus Rapid Transit
shows the benefits of improving infrastructures; but better
management of the available resources is less costly than
improving network infrastructures. Intelligent Transporta-
tion Systems1 (ITS), based on synergy between new infor-
mation technologies for simulation, real-time control, and
communications networks are an alternative to improve
available resource management. Urban traffic control sys-
tems are ITS enabling a better real-time management of
available resources. The usability and the effectiveness of
the urban traffic control systems greatly depends on their
ability to locate, assess and react to traffic disturbances.

In order to automate the transportation activity, the
theoretical bus supply is computed. It gives the trans-
portation plan which represents the optimum supply in a
theoretical context. It may become obsolete as the urban
traffic conditions evolve. Regulators (the staff in charge of
monitoring the bus networks) have to ensure the success of
the transportation plan, in the sense of adapting theoret-
ical supply to satisfy the passenger demand according to
the urban traffic disturbances. Regulators use urban traf-
fic control systems known as Automatic Vehicle Monitoring
(AVM) systems in order to collect and display data. The
use of an AVM system is the first step to the computeriza-
tion of the transportation network activity. However this
system is limited to detecting disturbances linked to unan-
ticipated demands and to traffic conditions but is not able
to deal with difficulties related to the real-time manage-
ment of the bus network: managing the inconsistencies of
data coming from sensors that locate the vehicles, assessing

1 http://www.ewh.ieee.org/tc/its/

a disturbance according to its context as well as proposing
feasible solutions. These limits are due to the inadequacy
of the data collecting, shaping and displaying processes.
To cope with these limits, we have proposed to complete
the AVM system with a Decision Support System (DSS) in
order to analyze the data so as to give a dynamic and con-
textual assessment of the disturbances in real-time, as well
as action planning and decision making aid. The integra-
tion of an AVM system and a DSS is what we have called
a Transportation Regulation Support System (TRSS). We
have developed a TRSS prototype called SATIR (Système
Automatique de Traitement des Incidents en Réseau - Au-
tomatic System for Network Incident Processing) [1], [2]
that was tested on the Brussels transportation network
(STIB). SATIR is based on a multi-agent paradigm which
opens perspectives regarding the development of new func-
tionalities to improve the management of a bus network. In
this paper, we propose a new approach for bus regulation
i.e. new heuristics based on Monte-Carlo simulations.

Section II describes real-time management of urban
transportation networks and underlines their advantages
and limits. Section III presents the different algorithms we
have used. Section IV presents our experimentation and
conclusions are drawn in section V.

II. Notions of the Domain

A. The Automatic Vehicle Monitoring System (AVM)

In urban transportation control domain, human regula-
tors are located in a control center. They have to manage
the transportation network under normal operating condi-
tions (where are the buses located?) and also under dis-
turbed conditions (where are disturbances - bus delays, bus
advances - located?). What action has to be taken to solve
the problem?

In most networks, vehicles are located through sensors
which provide real-time information. This information rep-
resents a huge amount of data (for example data arrives
every 40 seconds in the STIB network). Furthermore it
may be incomplete (a sensor may break down) or uncertain
(the quality of the data may be poor). This data is col-
lected through the Automatic Vehicle Monitoring system
(AVM). The AVM system compares the actual positions of
the vehicles (captured by the sensors) with their theoret-
ical positions given by pre-registered timetables in order
detect disturbances representing by alarms on the screen
(color code in figure 1). In this way, the regulator can see
whether the vehicles are running ahead of timetable or are
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Fig. 1. The AVM interface

running late.
Fig. 1 shows the AVM management of real-time infor-

mation coming from sensors and the output of the system.
Each line is represented two ways with its stops and its
running buses. Each bus location is represented by 1) a
number for its theoretical position coming from theoreti-
cal timetable, 2) a colored square for its real location de-
tected by the system. This real location may be erroneous
due to sensor break downs. Stops are represented by black
dots. The gap between the theoretical position and the
real position gives an information about the bus delays or
advances. Colors give the importance of the delays or ad-
vances. Some AVM systems incorporate geographical cri-
teria such as delay/advance alarms in a town-center, time
criteria such as detecting a delay on the next scheduled de-
parture. The role of the AVM system is to compute online
basic information, organizes data collecting and display-
ing and computes alarms. Its screen interface facilitates
the access to this data by allowing to click on a bus num-
ber to get more information on this bus or to click on a
given stop to get more information on this stop (see fig.
1). Given this information, the regulators have to rely on
their own experience to decide upon the regulation actions
to be taken.

B. Regulation process issues

When a disturbance occurs, the real-time regulation pro-
cess implies a planning process [2]. The aim of this plan-
ning process is to adapt the theoretical supply to the real
evolution of the demand. According to the assessment of
the disturbances, the regulators decide and apply different
regulation procedures. The theory of the domain proposes
different rules (called logic) for the regulation of a network
and they underlie the computation of the timetable. If
the description of these logics is not in the scope of this
paper, remember that each of them is related to a spe-
cific objective. For instance, the logic of regularity aims at
minimizing passengers waiting time and sharing passen-
gers between all the buses on the line. On the contrary,
the logic of taking away aims at responding to a local im-

portant demand. In this case, the timetable is computed
in order to concentrate the resources on the most criti-
cal points in the line in order to keep all the passengers.
Consequently, when there is a disturbance, the regulation
process should not be based on the theoretical state that
the timetable represents but on its objectives.

In order to support the regulator during the planning
process, several regulation procedures have been studied
by analytical models. A good review can be founded in
[9]. However, these models aim at finding optimal solu-
tions and are based on idealized hypotheses and simplis-
tic networks that do not correspond to realistic problems.
For example, they often assume that vehicle dwell times
at stops are modeled explicitly as a linear function of the
number of boarding and/or alighting passengers [11]. But
in case of disturbance, the number of passengers waiting
at a stop can exceed the vehicle capacity [10] making false
the vehicle dwell time linear hypothesis.

To tackle these problems an in order to get a more re-
alistic model, we have proposed a decision support system
called SATIR. Its original feature is that it uses the same
multi-agent model to process data and to find solutions [1],
[2] along the four phases of the regulation process: 1) net-
work monitoring is processed through dynamic timetable
management; 2) distributed diagnosis is based on an origi-
nal model of disturbance considering the disturbance con-
text and its evolution, 3) feasible solutions are computed
taking into account the context and profiles of vehicles.
In the next we detail new heuristics to be included in the
SATIR planning process.

III. Real-time Regulation Algorithms

In the following we are aiming at regulating buses us-
ing a logic of regularity based on Monte-Carlo methods.
However the use of Monte-Carlo methods enables to easily
change the objective of the algorithms and can be adapted
to handle other logics.

In this section we present the three algorithms we have
tested, the rule based approach, the Monte-Carlo and the
Nested Monte-Carlo approach.

A. Rule based regulation

The rule based approach is inspired from the observa-
tion of human managers behavior. It consists of using a
simple rule to decide when to make a bus wait at a stop.
Usually, such a decision is made on a real bus line when
the following bus is involved in an incident.

B. Monte-Carlo regulation

The Monte-Carlo algorithm adresses the problem of de-
ciding the bus waiting times when the future is unknown.

The principle of the Monte-Carlo method applied to
planning problems is to simulate planning decisions ran-
domly. After a number of simulation steps the resulting
plan is scored. A possibly large number of random simu-
lations are performed. The mean of the simulations scores
is computed for each possible planning decision, a simula-
tion counts for a decision if the decision has been taken
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during the simulation. The decision that has the best
mean is then chosen. This kind of Monte-Carlo method
has been recently very succesful in games [12], for combi-
natorial problems [3] and closely related methods have also
been used for transportation problems [13].

Monte-Carlo bus regulation uses the bus line simulator
to simulate the line after each regulation decision. When
a bus arrives at a stop, the system has to decide the time
it has to wait before going to the next stop. For each
possible time, the system runs a number of randomized
simulations. The score associated to a possible waiting
time is the average of the scores of the simulations that
are run with this waiting time.

In our system the goal we have used is to minimize the
waiting time of the passengers at a bus stop. We could have
used another goal, such as the global waiting time including
on board waiting times. The modification of the system to
reach another goal would be minimal and straightforward.
The score of a simulation is the sum of all the waiting times
of all the passengers. Simulations are randomized so as to
take into account the possible variations of the traffic, of
the incidents and of the passengers flux.

The basis of the algorithm is the randomizedSample
function that simulates the bus line, updating waiting pas-
sengers and travel times randomly, and also choosing bus
waiting times at stops randomly:

int randomizedSample (line)
1 while not end of simulation
2 for all buses arriving at a stop
3 decide a random waiting time for the bus
4 randomly update the number of

waiting passengers
5 randomly update the travel times
6 advance one step in the simulation
7 return sum of passengers waiting times

The upper level function that decides the waiting times
at a stop simulates nbSimulations randomized samples for
each possible waiting times and sends back the best, there
is only one line being simulated, the tmpLine variable is a
copy of the line that simulates a possible evolution of the
line:

int chooseWaitingTime (line, bus)
1 for waitingTime in 1..n
2 score [waitingTime] = 0
3 for i = 1 to nbSimulations
4 tmpLine = line
5 make the bus wait waitingTime in tmpLine
6 score [waitingTime] +=

randomizedSample (tmpLine)
7 if score [waitingTime] < best score
8 best score = score [waitingTime]
9 return best waitingTime

C. Nested Monte-Carlo regulation

The nested Monte-Carlo regulation algorithm adresses
the problem of optimizing the waiting times when the fu-

ture is known. The future can be approximated taking
the most probable values for each step. Another use of
Nested Monte-Carlo search could be to replace the ran-
domizedSample function for each random temporary line
in Monte-Carlo regulation.

The idea of Nested Monte-Carlo Search is to use sim-
ulations at the lower level in order to decide the wait-
ing times of the simulation at the current level. It has
proven very successful in games such as Morpion Solitaire
[5], SameGame, Sudoku [7] and Kakuro [6]. Moreover it
parallelizes very well, for example at Morpion Solitaire,
speedups of 56 have been obtained using 64 cores [8]. The
speedups that can be obtained depend on the number of
possible moves in a position, the equivalent for bus reg-
ulation is the number of possible waiting times. There
are approximately 20 possible moves at Morpion Solitaire,
and we have used only 4 different waiting times, so the
speedups for bus regulation will probably be less than for
Morpion Solitaire. However, it also mean we can increase
the number of possible waiting times at no computational
cost assuming a parallel implementation.

The lowest level function just simulates the bus line,
randomly choosing the waiting times:

int sample (line)
1 while not end of simulation
2 for all buses arriving at a stop
3 wait a random time for the bus
4 advance one step in the simulation
5 return sum of passengers waiting times

At higher levels, for each possible waiting time, a lower
level simulation is performed. The waiting time that re-
sults in the lowest score is then chosen. Moreover the best
sequence of waiting times is memorized in order to replay
it if no better sequence is found. For each level a com-
plete simulation is performed. The bus waiting times of
a simulation of a given level are decided using simulations
at the underlying level. When an underlying simulation
finds a sequence of waiting times that gives better results
than the current best sequence of the current level, the best
sequence is updated with the waiting times found by the
underlying simulation. When all simulations of the under-
lying level have been performed, the bus waits during the
time memorized in the best sequence. The nested function
is:

int nested (line, level)
1 while not end of simulation
2 for all buses arriving at a stop
3 for waitingTime in 1..n
4 make the bus wait during waitingTime
5 if level = 1
6 score = sample (line)
7 else
8 score = nested (line, level - 1)
9 if score < best score
10 best score = score
11 best sequence = lower level sequence
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12 wait time of best sequence
13 advance one step in the simulation
14 return sum of passengers waiting times

The algorithm can be made anytime with iterative calls:

int iterativeNested (line, level)
1 while time left
2 score = nested (line, level)
3 bestScore = min (bestScore, score)
4 return bestScore

IV. Experimental Results

In our experiments, we have modeled a bus line with 70
stops (including 2 terminals) and 20 buses. Every twenty
time steps, a bus leaves each terminal. Zero to five pas-
sengers arrive at each stop every time step. Going from
one stop to the next takes between two and six time steps.
From one step to the next, the time between two stop can
stay the same, increase by one time step or decrease by one
time step. There is a one percent chance that an incident
happens between two stops, and in this case the bus takes
five more time steps to reach the next stop.

We try to minimize the waiting time of all passengers at
the bus stops. The simulation runs during 100 steps.

The score of a simulation is normalized so as to be easily
compared and to fit in figures (it is divided by 1,000 and
shifted 200 towards zero).

If we use a fixed waiting time of one time step at every
stop, the normalized score equals 171. It corresponds to
the score without regulation.

A. Rule based regulation

In order to improve the one time step waiting time,
which corresponds to no regulation at all, we have tested a
rule based approach. Human regulators use rules of thumb
to regulate the bus network in case of an incident, and this
can be modeled with rules.

In our experiments, the regulation rules takes two val-
ues into account. The first value is δ, a threshold on the
number of stops between the current bus and the following
bus. The second value is w and contains the number of
time steps the bus will wait at the current stop when the
next bus is more than δ stops behind. If the next bus is
less than δ stops behind, the current bus only stays one
time step at the current stop.

Table I gives the scores resulting from the application
of a rule. Each entry of the table represents the result of
a simulation where a bus waits during w time steps when
the following bus is more than δ stops behind. We can
conclude that the best rule is to wait four time steps when
the next bus is more than seven stops behind. With this
rule the score of the simulation is 164 which is better than
171, the score without regulation. A conclusion is that rule
based regulation is better than no regulation.

B. Monte-Carlo regulation

Monte-Carlo regulation performs random simulations
without knowing the future. Each time a bus stops, a

TABLE I

Scores for different rules

w=1 w=2 w=3 w=4
δ = 4 171 192 193 199
δ = 5 171 191 192 195
δ = 6 171 175 176 198
δ = 7 171 169 166 164
δ = 8 171 169 167 165
δ = 9 171 169 167 166
δ = 10 171 170 170 170

number of randomized samples are performed for all pos-
sible waiting times ranging from one time step to four
time steps. The algorithm computes the sum of the scores
resulting from the randomized samples for each possible
waiting time. The system chooses the waiting time that
has the minimal sum of scores.

Figure 2 gives the distributions of the scores obtained
using Monte-Carlo regulation with 100 samples, with 1,000
samples and with 10,000 samples. It is clear from the figure
that using more samples is beneficial since the peak of the
distribution is at 165 for 100 samples and at 154 for 1,000
samples. For 10,000 samples the peak is at 147.

On a 2.83 GHz Intel core, 100 samples take 0.03 seconds.
If we compare the score of 154 with 1,000 samples it

is better than the score of 171 without regulation and it
is better than the best score of 164 with regulation rules.
We may conclude that Monte-Carlo regulation gives better
results than rule based regulation.

Fig. 2. Distributions of the scores for different numbers of samples.

C. Nested Monte-Carlo regulation

Nested Monte-Carlo regulation optimizes bus waiting
times when the future distribution of passengers arrival
and of travel times are known.

Figure 3 give the distributions of the scores for different
levels of nesting. Each distribution is the result of 10,000
calls to the nested algorithm. A level 0 search corresponds
to a sample. The peak of the distribution for a level 0
search is 210 which is much worse than all previous algo-
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rithms. We can see that a level 1 search gives better results
than a level 0 search, however the peak of the distribution
is at 178 which is still worse than other algorithms. A level
2 search improves a little on the level 1 search, peaking at
173 which is still a bad score.

However a level 1 search takes much more time than a
level 0 search, and a level 2 search takes much more time
than a level 1 search. In order to evaluate the benefits
of nested calls, we computed the real time properties of
the different levels using the iterativeNested algorithm with
different levels and different time limits. The principle of
the experiment is to memorize the best score found by the
iterativeNested algorithm after each predefined computa-
tion time. The algorithm is called during the maximum
allocated time, and for each predefined computation time,
the best score so far is retained. The predefined compu-
tation times start at 0.01 seconds and double until 81.92
seconds. The results are given in figure 5. Each point in
the figure corresponds to the mean of 1,000 calls to the
iterativeNested algorithm. The horizontal axis is in loga-
rithmic scale.

We can observe that for short time settings the level 0
search gives the best results, but for longer time settings it
is outperformed by the level 1 search. The level 2 search is
always worse than level 0 and level 1 search for search time
lower than 81.92 seconds. The best mean score obtained
after 81.92 seconds is 164 for the level 1 search which is
better than previous results but still bad as the future is
known.

In other domains where nested Monte-Carlo search was
applied, it was found that memorizing the best sequence
improves a lot the results of a search. We repeated the ex-
periments for the bus regulation domain. The distributions
obtained for different levels of nesting and memorization
of the best sequence are given in the figure 4. Each distri-
bution is the result of 10,000 calls to the algorithm.

The level 0 search gives the same results as without
memorization, peaking at 210. The level 1 search with
memorization peaks at 170 which is better than without
memorization but still not a very good result compared to
previous methods. The interesting results comes for the
level 2 search that peaks at 65 which is much better than
all previous algorithms. If we compare the distribution of
level 2 with and without memorization, we can see how well
memorizing the best sequence improves the nested Monte-
Carlo search algorithm for bus regulation.

In order to see if a level 2 search is also good in a real-
time setting, we computed the mean score of 1,000 searches
of the iterativeNested algorithm with memorization of the
best sequence at level 0, 1 and 2. The mean score found
by the algorithm was computed for each predefined com-
putation time. The results are given in the figure 6. We
see in that figure that a level 1 search slightly outperforms
a level 0 search and that a level 2 search gives much better
results than the level 0 and level 1 searches. After 81.92
seconds of computation the mean result of a level 2 search
with memorization is 52.5.

We may conclude that when the future distribution of

passengers arrivals and travel time is known or when es-
tablishing a benchmark for a regulation problem, nested
Monte-Carlo search with memorization is indicated.

Fig. 3. Distributions of the scores for different search levels.

Fig. 4. Distributions of the scores for different search levels with
memorization of the best sequence.

V. Conclusion and Future Work

We have presented the bus regulation problem. We have
compared the simple rules approach to the Monte-Carlo
method to decide bus waiting times for this problem. The
Monte-Carlo method gives better results when given suf-
ficient time. When the passengers arrivals and the bus
travel times can be forecasted, the best algorithm is Nested
Monte-Carlo search with memorization which clearly out-
performs Nested Monte-Carlo search without memoriza-
tion as well as Monte-Carlo and rule based regulation.

Future work includes improving the simulation, taking
into account the number of passengers that go in and out of
the bus to have a more refined minimal waiting time at each
stop. We will also have to make the time taken to travel
between two stops depend on the number of passengers of
the bus. When there are many passengers, the traffic is
supposed to be heavier.

Concerning the Monte-Carlo part, we will study the
use of Nested Monte-Carlo search as a sampling strat-
egy for randomized Monte-Carlo regulation, replacing the
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Fig. 5. Mean scores of the searches without memorization of the
best sequence in a real-time setting.

Fig. 6. Mean scores of the searches with memorization of the best
sequence in a real-time setting.

call to the randomizedSample function with a call to the
nested function at level 2 for example. We will also exper-
iment with the use of nested calls for randomized Monte-
Carlo regulation. Moreover possible improvements may
also come from using rules in the base level simulations
[4]. The computational behavior of the algorithms in a
parallel architecture is also of interest since Monte-Carlo
search parallelizes well.
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