
Monte-Carlo Approximation of Temperature

Tristan Cazenave

LAMSADE
Universit́e Paris-Dauphine

Paris France
cazenave@lamsade.dauphine.fr

Abstract. Monte-Carlo tree search is a powerful paradigm for the game of Go.
We propose to use Monte-Carlo tree search to approximate the temperature of a
game, using the mean result of the playouts. Experimental results on the sum of
five 7x7 Go games show that it improves much on a global search algorithm.

1 Introduction

Monte-Carlo Go has recently improved to compete with the best Go programs [6–8].
We are interested in the use of Monte-Carlo methods when there are independent games.
In such cases it might be interesting to analyze the games independently instead of
considering them as a unified game.

Section 2 describes related works. Section 3 presents the Monte-Carlo algorithms
we have tested. Section 4 details experimental results. Section 5 concludes.

2 Related Works

In this section we expose related works on Monte-Carlo Go. Wefirst explain basic
Monte-Carlo Go as implemented in GOBBLE in 1993. Then we address the combination
of search and Monte-Carlo Go, followed by the UCT algorithm,and previous works on
the approximation of temperature.

2.1 Monte-Carlo Go

The first Monte-Carlo Go program is GOBBLE [3]. It uses simulated annealing on a list
of moves. The list is sorted by the mean score of the games where the move has been
played. Moves in the list are switched with their neighbor with a probability dependent
on the temperature. The moves are tried in the games in the order of the list. At the end,
the temperature is set to zero for a small number of games. After all games have been
played, the value of a move is the average score of the games ithas been played in first.
GOBBLE-like programs have a good global sense but lack of tactical knowledge. For
example, they often play useless Ataris, or try to save captured strings.



2.2 Search and Monte-Carlo Go

A very effective way to combine search with Monte-Carlo Go has been found by Ŕemi
Coulom with his program CRAZY STONE [6]. It consists in adding a leaf to the tree
for each simulation. The choice of the move to develop in the tree depends on the
comparison of the results of the previous simulations that went through this node, and
of the results of the simulations that went through its sibling nodes.

2.3 UCT

The UCT algorithm has been devised recently [9], and it has been applied with success
to Monte-Carlo Go in the program MOGO [7, 8] among others.

When choosing a move to explore, there is a balance between exploitation (ex-
ploring the best move so far), and exploration (exploring other moves to see if they can
prove better). The UCT algorithm addresses the exploration/exploitation problem. UCT
consists in exploring the move that maximizesµi +C×

√

log(t)/s. The mean result of
the games that start with theci move isµi, the number of games played in the current
node ist, and the number of games that start with moveci is s.

TheC constant can be used to adjust the level of exploration of thealgorithm. High
values favor exploration and low values favor exploitation.

2.4 Thermography

Thermography [2] can be used to play in a sum of combinatorialgames. In Go endgames,
it has already been used to find better than professional play[12], relying on a com-
puter assisted human analysis. A simple and efficient strategy based on thermography
is Hotstrat, it consists in playing in the hottest game. Hotstrat competes well with other
strategies on random games [4], but it can be improved takinginto account the subgame
type [1]. Another approach used to play in a sum of hot games isto use locally informed
global search [11, 10]. Our previous work on evaluating the temperature evaluated goals
temperature on a single board using a Monte-Carlo method [5]. In this paper, we either
use Hotstrat or Minimax to evaluate the subgames built for each separate board.

3 Search Algorithms

In this section, we present the different algorithms we havetested. They all use the score
of a playout for UCT instead of the usual probability of winning because the difference
in points is meaningful to approximate the temperature.

3.1 Global Search

The direct application of UCT to playing on several boards isto do a global search. A
move can be made on any board, the normal UCT tree is developed, and the playout are
played separately on each separate board. In our implementation of global search, the
color to play after the UCT tree descent starts the playout onthe first board, then when
the game on the first board is over, the other player starts theplayout of the second
board, and so on up to the completion of all the playouts on allboards.



3.2 Dual Search

Dual search consists in performing two UCT searches on each separate board. The
first one always starts with Black, and the second one always starts with White. In
each search, after the descent of the UCT tree, a normal playout is played on the sep-
arate board. Each search is allocated the same number of playouts. At the end of the
searches, the program knows the mean value of the playouts starting with a Black move
(µBlack), and the mean value of the playouts starting with a White move(µWhite). The
temperature of the board is approximated with(µBlack + µWhite − size × size)/2.

The player to move chooses to play the best UCT move of the board with the greatest
approximated temperature.

3.3 Threat Search

Threat search consists in performing four UCT searches on each separate board. The
first one always starts with Black, and the second one always starts with White. After
the first search is completed, Black knows the best UCT move. The third search always
starts with the best Black move and it is folowed by the descent of an UCT tree that also
starts with a Black move (so all the playouts starts with two Black moves). The fourth
search is the equivalent for White of the third search. Each search is allocated the same
number of playouts. At the end of the searches, the program knows the mean value of
the playouts starting with a Black move, the mean value of theplayouts starting with
a White move, the mean value of the playouts starting with two Black moves, and the
mean value of the playouts starting with two White moves. It either use these values
to compute the temperature with HotStrat, or to perform a Minimax search on all the
values of all the boards.

The player to move chooses to play the best UCT move of the board with the greatest
approximated temperature, or the best UCT move returned by Minimax.

4 Experimental Results

The random games are played using the same policy as in MOGO [7]. We tested the
algorithm on a game composed of five 7x7 boards. The komi is setto 7.5 points. There-
fore the maximum number of points is 252.5 for White, and 245.0for Black.

In table 1 the results of games between the global search algorithm and the dual
search algorithm are given. The algorithms use the 0.3 UCT constant. For each algo-
rithm, the table gives the mean number of points against the approximation algorithm.

Table 1. Results of the global search program against the dual search program

SizePlayouts Black mean number of Black pointsWhite mean number of White points
5× 7x7 1,000 Dual 199.21Global 53.28
5× 7x7 1,000Global 47.13 Dual 205.37



In table 2 the results of games between the threat search algorithm and the dual
search algorithm are given.

Table 2. Results of the threat search program against the dual search program

SizePlayouts Black mean number of Black pointsWhite mean number of White points
5× 7x7 1,000Threat 127.03 Dual 125.45
5× 7x7 1,000 Dual 120.50Threat 131.96

The threat search algorithm is twice slower as the dual search algorithm. We played
the dual search algorithm against another dual search algorithm that is twice slower in
order to compare with the threat search algorithm. Table 3 gives the results of games
between the two dual search algorithms. Results of the dual threat algorithm with 2,000
playouts are similar to the results of the threat search algorithm with 1,000 playouts
and they take the same time.We also give in table 3 the result of the dual algorithm with
2,000 playouts against the threat algorithm with 1,000 playouts. The dual algorithm
has a clear win. Using the threat search algorithm is more complicated and gives worse
results than the more simple dual search algorithm.

Table 3. Results with different numbers of playouts

Size Black mean number of Black points White mean number of White points
5× 7x7 Dual(1,000) 118.39 Dual(2,000) 134.10
5× 7x7 Dual(2,000) 128.13 Dual(1,000) 124.34
5× 7x7 Threat(1,000) 118.58 Dual(2,000) 133.86
5× 7x7 Dual(2,000) 131.79Threat(1,000) 120.68

In the previous experiment, the threat search algorithm uses HotStrat to choose the
board to play, in order to test if HotStrat was a potential problem, we replaced it with
a Minimax on the tree composed of the first two moves for Black and for White for all
the boards. Minimax gave results very similar to HotStrat. The behavior of the threat
search algorithm is not due to HotStrat.

5 Conclusion

When a game is composed of independent games, it is better to approximate the tem-
perature using seperate Monte-Carlo tree searches on each game than using a global
Monte-Carlo search. When we tested the algorithms that evaluate threats, we obtained
results comparable to the more simple dual search algorithm.



References

1. Cherif R. S. Andraos, Manal M. Zaky, and Salma A. Ghoneim. Comparative study of approx-
imate strategies for playing sum games based on subgame types. InComputers and Games,
volume 4630 ofLecture Notes in Computer Science, pages 212–219. Springer, 2006.

2. E. Berlekamp, J. H. Conway, and R. K. Guy.Winning Ways. Academic Press, 1982.
3. B. Bruegmann. Monte-Carlo Go. Technical report, 1993.
4. T. Cazenave. Comparative evaluation of strategies based on the value of direct threats. In

Board Games in Academia V, Barcelona, Spain, 2002.
5. T. Cazenave. Goal threats, temperature and monte-carlo go. InGames of no chance 3, Banff,

Canada, 2005.
6. R. Coulom. Efficient selectivity and back-up operators in monte-carlo tree search. InCom-

puters and Games 2006, Volume 4630 of LNCS, pages 72–83, Torino, Italy, 2006. Springer.
7. S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with patterns in monte-

carlo go. Technical Report 6062, INRIA, 2006.
8. Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In ICML,

pages 273–280, 2007.
9. L. Kocsis and C. Szepesvàri. Bandit based monte-carlo planning. InECML, volume 4212 of

Lecture Notes in Computer Science, pages 282–293. Springer, 2006.
10. M. Müller, M. Enzenberger, and J. Schaeffer. Temperature discoverysearch. InAAAI 2004,

pages 658–663, San Jose, CA, 2004.
11. M. Müller and Z. Li. Locally informed global search for sums of combinatorial games. In

Computers and Games 2004, LNCS, pages 273–284, Ramat-Gan, Israel, 2004. Springer.
12. W. Spight. Go thermography - the 4/21/98 jiang-rui endgame. In R. Nowakowski, editor,

More Games of No Chance, pages 89–105. Cambridge University Press, 2002.


