
Metarules to Improve Tactical Go Knowledge

Tristan Cazenave

Labo IA, Université Paris 8
2 rue de la Liberté, 93526, St-Denis, France

fax: 33 1 49 40 64 10
e-mail: cazenave@ai.univ-paris8.fr

Abstract

Three main problems arise with automatically generated rules databases. They can be too
large to fit in memory, they can take a lot of time to generate, and it can take time to match
many generated rules on a board. I propose to use exceptions and metarules to reduce the
size of the databases. The reduction in size enables larger rules to be used, at the cost of
small overheads in generation and matching times. However, the reduction in search depth
provided by the new larger rules decreases the overall search time of a tsumego problem
solver.

Key words: Game of Go, Retrograde Analysis, Metaknowledge, Pattern Databases, Search

1 Introduction

I have written an automatic rule generator based on retrograde analysis of patterns
with external conditions [3,4,2]. It generates rules about eyes and life in the game
of Go. These generated rules can be used in a tsumego problem solver to find non
trivial eye making moves and to reduce the search depth.

Life and death in the game of go has been already studied, and some clever al-
gorithms have been designed. Beginning with Benson’s algorithm [1] that detects
unconditional life with the opponent moving as many times he wants to and still
being unable to kill. More heuristic approaches have followed such as in Star of
Poland [14] or Go Intellect [9,10]. The usual way to approach the problem is to
write an elaborate static life and death evaluation function [11], and to use a search
algorithm based on it such as in Gotools [16–20].

Related works on retrograde analysis and databases include D. Dyer’s shapes database
[12] that enumerates completely enclosed living shapes, and R. Gasser’s work on
finding exceptions in Nine Men’s Morris endgame databases [13].

Preprint submitted to Elsevier Science 9 May 2009



The second section describes the generations of rules for eyes and life and death.
The third section explains different metarules that can be used to reduce the number
of rules, including exceptions rules. The fourth section gives some experimental
results on the generated pattern databases. The fifth section underlines future work.

2 Automatic generation of rules

A rule is composed of a rectangular pattern, and of some associated conditions on
liberties external to the pattern. A rule can conclude on the life of strings, or on the
eye potential of strings. There are two type of rules: rules that conclude on a won
state (the goal can always be reached, whatever the opponent plays), and rules that
conclude on winning states (the goal can be reached if the friend color plays first).
By convention, the player that tries to make an eye or to live is always Black. In
this section, we start in the first subsection with giving properties of the external
conditions associated to rules. Thes properties ensure that rules are always correct
and this enables retrograde analysis to work. The second subsection deals with the
retrograde analysis algorithm itself.

2.1 Conditions on external liberties

The conditions associated to the liberties outside of the pattern (external liberties)
are restricted. The restrictions on the possible conditions ensures that the generated
rules are always correct (provided the friend player is the komaster). The algorithm
always considers that the worst things can happen to Black, and the best things to
White. This means that we assume that White will only need one move to reduce
each of Black’s external liberty, and will also only need one move to get as much
liberties as he needs to for one of its strings. On the contrary, Black can only remove
an external liberty of an opponent string if it is the last liberty of the string.

Black strings in the pattern can only be associated to conditions on the minimum
number of external liberties they have. White strings can only be associated to con-
ditions on the maximum number of liberties they have outside the pattern. Empty
intersections can be associated to either a minimum number of external liberties if
Black plays on the intersection, or a maximum number of external liberties if White
plays on the intersection.

2.2 Generation of rules by retrograde analysis

A naive and very inefficient implementation of an automatic rule generator would
generate all possible rules, and perform an alpha-beta search on each rule to verify

2



Liberties if White <= 1

Liberties <= 1

Liberties if Black >= 1

Liberties >= 1

Liberties if White = 0

Fig. 1. A generated 4x3 rule on the side.

life. We use a much more efficient algorithm, albeit more complex. Previous ver-
sions and some optimizations were already described [4]. Our current retrograde
analysis is an improvement. It uses an unmove function and directly finds all the
rules that lead in one move to the rule at hand. Therefore, once this unmove function
is written, the algorithm is quite simple and much faster: it consists of alternatively
performing two passes. The first pass unmoves White moves on winning rules to
find new won rules (verifying all the White moves on the unmoved rule lead to a
winning rule). The second pass unmoves Black moves on won rules to find new
winning rules. The algorithm stops when no new winning rule is found in a second
pass.

RuleGeneration(PatternSize) {
FindRulesWithTwoPhysicalEyes();
while(NewRulesFound) {
For all new won rules {
Undo Black moves to find

new winning rules;
Memorize new winning rules;

}
For all new winning rules {
Undo White moves to find

new won rules;
Memorize new won rules;

}
}
}

3 Metarules to reduce the number of rules

One major problem with generated rules databases is their size. Many useful life
rules do not fit in a 4x3 pattern size, but as the number of rules grows exponen-
tially with the size of the pattern associated to the rule database, it is currently hard
to compute databases for pattern sizes greater than 5x3 in the corner. In this sec-
tion, we will give some methods to reduce the number of generated rules, without
reducing the number of situations covered by the system. The methods are called

3



metarule as they are rules on rules. The first metarule is described in the first sub-
section, it consists in removing all the rules that are special cases of another rule
with an equal or smaller pattern size. The second one is the suppression of the rules
that can be easily and cheaply found at runtime. The third one is the use of gener-
ated rules on eyes to reduce the number of generated rules on life. The fourth set
of metarules is designed to detect and eliminate redundant rules. In the next sub-
section, we deal with metarules in charge of removing useless conditions. Then we
describe some metarules used to detect illegal and irrelevant rules. Other metarules
can be designed to eliminate low utility rules, this will also be the theme of a sub-
section. In the last subsection, we address the possible restrictions on the rules to
generate.

3.1 Metarules to suppress subsumed rules

Each time the system generates a rule, it verifies that it is not a special case of
another rule. If the rule is original, it adds it to the rule database, and searches the
database for rules that are a special case of the new added rule. If such special cases
are found, the system removes the subsumed rules.

A tricky part of this mechanism is when the system verifies if a rule with a smaller
pattern subsumes a rule with a larger pattern. In this case, the system has to com-
pare conditions on strings and intersections that are not the same, and that change
according to the colors of the intersections which are present in the large pattern
and absent of the small one.

For example, if a condition in the small pattern is that Black has at least two exter-
nal liberties if he plays on an empty intersection on the border of the pattern and
if in the larger pattern, this same intersection is now neighboring a new empty in-
tersection of the enlarged pattern, the condition on the intersection has changed for
the larger pattern: Black only has now at least one external liberty if he plays on the
intersection, since the neighboring empty intersection is part of the larger pattern
but is external to the smaller.

3.2 Suppression of rules that can be found dynamically

An optimization that reduces a lot the sizes of the databases is to remove the win-
ning rules (i.e. rules where making a move makes life), only keeping the won rules
(i.e. rules where the strings live even if the other player plays frist). In the Tsume
Go solver, the winning state can be found trying all the relevant moves to see if they
lead to a state where a won rule is matched. Forced moves can be found by playing
White moves and only keeping the the moves that do not lead to the matching of a
won rule after a Black move following the first White move. This optimization has

4



Liberties if White = 0

Fig. 2. Two independent eyes in a rule.

some similarity with Abstract Proof Search [8] which also dynamically finds such
states.

The generation algorithm described in the section on rule generation can be modi-
fied to take this optimization into account:

RuleGeneration(PatternSize) {
FindRulesWithTwoPhysicalEyes();
while(NewRulesFound) {
For all new won rules {
Undo Black moves to find

new winning rules;
For these winning rules {
Undo White moves to find

new won rules;
Memorize new won rules;

}
}

}
}

In this retrograde analysis algorithm, the winning rules need not being stored even
during the generation phase. This optimization saves a lot of memory. For example,
for the 4x3 rules in the corner, there are 11404 won rules and 86938 winning rules.
The number of winning rules is usually between 7 and 10 times the number of won
rules. Moreover, the killing and living moves need no to be stored any more. This
optimization divides by ten the size of the generated databases of rules.

3.3 Suppression of some rules on life given rules on eyes

The system has generated rules for different eye sizes. A group is alive when it has
two eyes. Therefore patterns on eyes can be used to detect life. However, the two
eyes need to be independent for the string to be alive. For example when a string
has two won eyes on different locations, if they share an empty intersection, their
combination may not give life as an opponent move on the empty intersection can
threaten both eyes, and it is possible that no friend move can save both eyes in one
move.

5



Liberties if Black >= 1 Liberties >= 1

Fig. 3. Redundancy of a rule.

Nevertheless, if a life rule contains two independent eyes, it is not necessary to
keep it as it can be deduced from the rules on eyes, provided there is a method
to detect the independence of the two won eyes. A simple metarule that ensures
independence of the two won eyes most of the times is the following one: if the
intersection of the two won eye patterns contains only empty and friend stones,
and if all the empty intersections are protected intersections (i.e. if White plays on
one of them it has at most one external liberty and no internal liberty) then the
string is alive. This metarule enables to remove many rules on life, however it is
sometimes false. In order to preserve the correction of our algorithm, a good way
to overcome the difficulty is to generate all the rules for a given pattern size that
put the independence metarule above at default. Once these exception rules are
generated, the rule database is safe again as all the exceptions to the potentially
false metarule have been generated.

Out of the 11,404 4x3 rules on life in the corner, 2053 contain two different patterns
on eyes. This gives an idea of the potential savings of using this metarule. However,
it is possible that the larger the pattern the larger the savings. For example, there
are much more possible ways of combining two eye patterns in a 5x3 pattern than
in a 4x3 pattern.

3.4 Suppression of redundant rules

Some conditions can be deduced from other conditions, and some conditions cover
more cases than others. The system can take this knowledge into account to remove
rules. For example, the condition that states that the number of external liberties
is greater than one if Black plays on the pointed intersection in the left rule of
the figure 3 can be deduced from the condition that the string has more than one
external liberty in the right rule of the figure 3.

The first rule will always apply when the second rule applies. However, in some
cases, the first rule will apply and not the second. The first rule is more general
than the second, and the second rule should be discarded.

The metarule that discards redundant rules starts with adding redundant conditions
to the candidate rule to be removed. For example, when a condition on a minimum
number of liberties of a given string is present, it adds to the rule the corresponding
conditions on the minimum number of liberties when Black plays on the liberties

6



Liberties if White = 0
Liberties if Black >= 1

Liberties >= 1

Liberties if Black >= 2

Fig. 4. A useless condition in a rule.

Liberties = 0 Liberties >= 1

Fig. 5. Illegal rule.

of the string.

3.5 Removing useless conditions

Removing useless conditions is also a way to reduce the number of generated rules.
Rules with less conditions will subsume more rules as they are more general. Re-
moving useless conditions produces more general rules that enable to remove more
redundant rules.

In the figure 4, the condition that the left black string has more than one external
liberty is useless since there is also a condition that states that a Black move on an
empty intersection, which is also a liberty of the string and only a liberty of this
string, has at least two external liberties. As the empty intersection does not touch
the frontier of the pattern, the only way for a Black move there to have two external
liberties, is that the black string has at least two external liberties. Therefore the
condition that the string has at least one external liberty can be removed.

3.6 Suppression of illegal and irrelevant rules

In the figure 5, the rule is illegal because the white string has no liberties in the
pattern and is associated to the condition ’no liberties outside the pattern’. The
white string has no liberty at all, it is never possible to match the rule and therefore
the rule is removed. Rules that contain strings that do not touch the border of the
pattern and that have no internal liberties are also removed.

In the figure 6, the rule is irrelevant because when playing on the empty intersection
the resulting string has no liberties. However the white string neighbouring the

7



Liberties if White = 0

Liberties <= 1

Fig. 6. Irrelevant rule.

Liberties >= 1

Liberties if White <= 1

Fig. 7. Low utility rule.

intersection has possibly one liberty. This is not compatible with the condition that
a move on one of its liberties has no external liberties. The only possible condition
on the neighbouring string is that it has no external liberties. Irrelevant rules are not
tested.

Rules that contain a Black string with no internal liberties, and no conditions on
its minimum number of liberties are also considered irrelevant since the condition
that the Black string has at least one external liberty has always to be verified in
order for the rule to be valid. If we do not discard this rule, it may cause problems
when used by larger rules and the string is associated to a minimum of one external
liberty, when it should be associated to two so as not to be captured.

3.7 Suppression of low utility rules

Many of the generated rules have conditions of no external liberties for opponent
strings or opponent moves. When a rule has many of these conditions, it has a low
probability to apply, and usually life can be detected by other means than matching
the rule (such as capturing a white string). Another parameter related to the utility
of a rule is the depth of the rule (i.e. the minimum number of moves to make
life under best defense). We evaluate each generated rule according to an utility
function that gives large penalties for conditions that a rarely matched, and gives
bonus for the depth of the rule. Then only rules that have an utility value below
some given threshold are kept.

A better but more difficult way to find the utility of the rules is to keep statistics on
their use inside the problem solver, and then after having used it on a large number
of problems, to remove the ones with a low number of matching.

The table 1 gives the repartition of the conditions for maximum numbers of liberties

8



Table 1
Repartition of max conditions for won 4x3 rules.

C0 C1 I0 I1 S0 S1

C0 1918 4421 2643 1121 375 282

C1 4421 5065 4389 2255 1286 776

I0 2643 4389 2223 1646 1102 490

I1 1121 2255 1646 417 371 319

S0 375 1286 1102 371 96 66

S1 282 776 490 319 66 60

for White in the 4x3 set of rules for won life in the corner. The different acronyms
represent the number of max conditions (C0=no max conditions, C1=at least one
max condition), and more specifically we also use I0: at least one condition that
the number of liberties if White plays on an empty intersection is zero, I1: at least
one condition that the number of liberties if White plays on an empty intersection
is one, S0: at least one condition that a White string has no external liberties, S1: at
least one condition that a White string has one or no external liberties.

A location in the table gives the number of rules that verify the property correspond-
ing to an acronym, when the other property is also verified and that the condition
associated to the verification of the property is removed. For example, the top left
location corresponds to the couple (C0,C0) which is the number of rules that have
no max conditions: 1918 rules. Another example is the (I0,C1) couple which means
that a condition with no external liberties if White plays is in the counted rule, and
that at least another max condition is also present. There are 4389 such rules.

Rules that have a low probability of being matched are for example rules that have
two or more conditions on no external liberties. An approximation of the number of
such rules is the sum of (S0,S0), (S0,I0) and (I0,I0), which is 96+1102+2223=4421
rules out of 11404 4x3 rules on won life in the corner.

3.8 Restrictions on the rules to generate

It is possible to have constraints on the conditions associated to a rule. We will
consider two special cases: the generation of pessimistic rules and the generation
of optimistic rules. In order to differentiate them from the rules generated by the
usual algorithm, we will call the usual rules realistic rules.

Pessimistic rules have no associated conditions. Therefore a pessimistic rule takes
less memory than a realistic rule. The conditions associated to the rule are pes-

9



Fig. 8. Many pessimistic rules for one realistic one.

simistic for Black. All the black strings are supposed to have no external liberty, all
the white strings are supposed to have an infinite number of liberties, every empty
intersection on the border of the pattern is supposed to have no external liberties if
Black plays on it, and an infinite number of external liberties if White plays on it.
These limitations imply that the generated rules are correct without having to check
any condition on the external liberties because all the restrictions are imposed on
the player that tries to live or to make an eye. If he is alive given these extreme re-
strictions, he is alive independently of the environment exterior to the pattern. The
pessimistic rules correspond to the realistic rules with no associated conditions.

Pessimistic rules are interesting because there are less pessimistic rules than real-
istic rules for a given pattern size, and because each rule takes much less memory.
However there is an important drawback of pessimistic rules: if all the pattern sizes
are generated using pessimistic rules, there are much more pessimistic rules than
realistic rules and they cover less cases on a real board because of the restrictions
on the external conditions. This is a priori contradictory to the observation that pes-
simistic rules correspond to the realistic rules with no associated conditions. In fact,
this assertion is true only when the rules used for the smaller patterns are realistic
rules. If the rules used for the smaller pattern sizes are also pessimistic rules, many
pessimistic rules can be generated to replace only one realistic rule with a smaller
pattern size. An example of this phenomena is given in the figure 8. It gives three
pessimistic rules generated for the 4x4 pattern in the corner of the board. These
rules can be compared with the first rule of the figure 9. They are all special cases
of the first rule of the figure 9. Moreover the first rule of the figure 9 has only one
external condition and is only one pattern size down of the pessimistic rules. There
are already 24 corresponding pessimistic rules. This is even worse when there are
more external conditions involved and a greater difference in pattern size.

On the contrary of pessimistic rules, optimistic rules are associated to conditions
optimistic for Black. This means that all the black strings have an infinite number
of external liberties if they touch the border of the pattern, that white strings have
no external liberties, that Black moves touching the border have an infinite number
of liberties, and White moves no external liberties. The interest of optimistic rules
is that they take less memory than realistic rules, that one optimistic rule can cover
multiple realistic rules as shown in the figure 9 where the same pattern is associated
to four different realistic rules. The same pattern corresponds to only one optimistic
rule.

Any pattern of a realistic rule is also a pattern of an optimistic rule. Therefore, it is

10



Liberties if White = 0 Liberties if White <= 1
Liberties if White <= 1

Liberties if White <= 1
Liberties if White <= 1

Liberties if White <= 1

Liberties if White <= 1

Fig. 9. Multiple rules with the same pattern.

useful to generate the optimistic rules in a first pass as they are faster to compute and
need much less memory than the realistic rules. They can later be used to speed-
up the computation of the realistic rules by focusing the search on the possible
patterns, and preventing to search useless patterns that are not in any optimistic
rule.

When the number of realistic rules is too high to fit in memory, computing the
optimistic rules can be useful for the tsumego problem solver. They can of course be
useful to stop search when they are verified (optimistic rules can be generated with a
high value like 2 or 3 for the number of external liberties instead of infinity, making
them more realistic and not changing the set of generated optimistic rules). But they
can also be useful when the pattern is verified but not the optimistic conditions. In
this case it is an indication for the solver that the matching of a won rule might not
be too far, and that it can be worth searching the position.

4 Experimental results

The table 2 gives the number of won rules on life generated for different pattern
sizes in the corner of the board. The metarules used are the metarule that re-
moves rules that are special cases of smaller rules, the metarules on redundancy,
the metarules on useless conditions and the metarules that remove illegal and irrel-
evant rules. Some generated rules can replace some quite deep search at a low cost
of matching. The table 3 gives the number of won rules generated for different pat-
tern sizes on the border of the board. The table 4 gives the number of won eye rules
for the 3x3 and 4x3 patterns in the center, and for the 3x2, 4x2 and 3x3 patterns on
the side of the board. The table 5 gives results for eyes in the corner.

11



Table 2
Repartition of won life rules in the corner.

Pattern size in the corner

Depth 4x2 3x3 5x2 4x3 6x2

0 1 10 2 71 4

2 4 18 12 411 36

4 6 29 37 1262 120

6 2 8 78 2737 359

8 1 10 54 3041 682

10 0 3 27 2601 680

12 0 0 13 1050 520

14 0 0 2 203 272

16 0 0 0 22 98

18 0 0 0 6 35

20 0 0 0 0 12

22 0 0 0 0 3

Total 14 78 225 11404 2835

Liberties >= 1 Liberties if White <= 1

Liberties if White = 0

Fig. 10. A depth 16 6x2 won rule.

Liberties if White = 0

Liberties if Black >= 1
Liberties if White = 0

Fig. 11. Example of a generated depth 12 won rule.

5 Future Work

One promising improvement is the association of rules to gradual games as defined
in [6] and [7]. The gradual game is a good indicator of the complexity of finding

12



Table 3
Repartition of won life rules on the side.

Pattern size on the side

Depth 5x2 3x4 6x2 4x3

0 1 5 1 42

2 5 22 8 156

4 11 48 35 310

6 6 55 124 243

8 5 47 122 200

10 2 16 102 75

12 1 4 77 40

14 0 2 28 8

16 0 0 14 0

18 0 0 18 0

20 0 0 2 0

Total 31 197 531 1074

Table 4
Repartition of won eye rules center and side.

Center Side

Depth 3x3 4x3 3x2 4x2 3x3

0 9 0 1 0 9

2 34 25 3 1 37

4 76 333 4 12 120

6 52 2561 0 59 257

8 60 2831 1 38 154

10 26 4430 0 36 89

12 16 1492 0 6 36

14 6 1486 0 0 23

16 0 283 0 0 0

Total 279 13441 9 152 725

13



Table 5
Repartition of won eye rules in the corner.

Pattern size in the corner

Depth 2x2 3x2 4x2 3x3

0 1 1 0 7

2 2 4 11 31

4 1 13 26 111

6 0 34 93 342

8 0 7 133 387

10 0 0 93 247

12 0 0 25 74

14 0 0 0 1

Total 4 59 381 1200

the rule using search only. Therefore, it is a good indicator of how much we are
willing to keep the rule. The rules that are the most difficult to find again should
be preserved, whereas the simple rules that can be found by search easily can be
dropped without too much concern.

Improvements due to the use of generated rules can be mixed with improvements
due to other new search algorithms such as Abstract Proof Search [8], algorithms
that learn to order moves [15], and search heuristics such as the killer move heuris-
tic used in Gotools [20]. It is interesting to test some combinations of these im-
provements on a life and death test suite [20,5].

Potential reductions in the number of rules can come from the use of the static life
and death heuristics of top programs [11]. The system could automatically find all
the exceptions of the heuristic rules. Also, many rules could be removed as some
special cases of the heuristics.

The shapes databases of D. Dyer [12] are a special case of our retrograde analysis
algorithm. However, he uses isomers of shapes to reduce the number of shapes and
we do not. We could use this heuristic to reduce the number of rules, detecting
equivalent ones.

From a more general point of view, our methods can be used to help assessing
the independence of subgames. For example, connections are often transitive, but
sometimes a string A can be connected to a string B, the string B can be connected
to a string C, but A is not connected to C. Non-transitivity occurs when the two

14



connections are dependent [6]. Our rule generating system with exceptions could
find all the non-transitivity cases automatically.

6 Conclusion

Many rules about life and eyes have been automatically generated, and are used to
speed-up Tsume Go problem solving. The main limitation of automatically gen-
erating rules is the size of the databases. We have given metarules to reduce the
number of generated rules, therefore enabling rules with larger pattern size to be
generated. We also gave some experimental results concerning the depth and the
number of generated rules.

References

[1] D.B. Benson. Life in the game of go. Information Sciences, 10:17–29, 1976.

[2] B. Bouzy and T. Cazenave. Computer go: An ai-oriented survey. Artificial Intelligence,
132(1):39–103, October 2001.

[3] T. Cazenave. Système d’apprentissage par auto-observation. application au jeu de go.
Phd thesis, Université Paris 6, December 1996.

[4] T. Cazenave. Generation of patterns with external conditions for the game of go. In
H.J. van den Herik and B. Monien, editors, Advance in Computer Games 9, pages
275–293. Universiteit Maastricht, Maastricht, 2001. ISBN 90 6216 566 4.

[5] T. Cazenave. A problem library for computer go. In Holger H. Hoos and Thomas
Stuetzle, editors, IJCAI-01 Workshop on Empirical Methods in Artificial Intelligence,
Seattle, USA, 2001.

[6] T. Cazenave. Theorem proving in the game of go. In Proceedings of the first
International Conference on Baduk, pages 275–292, Yong-In, Korea, 2001.

[7] T. Cazenave. La recherche abstraite graduelle de preuves. In Proceedings of RFIA-02,
pages 615–623, Angers, France, 2002.

[8] Tristan Cazenave. Abstract proof search. In T. Anthony Marsland and Ian Frank,
editors, Computers and Games, volume 2063 of Lecture Notes in Computer Science,
pages 39–54. Springer, 2001.

[9] K. Chen. Group identification in computer go. In D. Levy and D. Beal, editors,
Heuristic Programming in Artificial Intelligence: The First Computer Olympiad, pages
195–210. Ellis Horwood, Chichester, 1989.

[10] K. Chen. The move decision process of go intellect. Computer Go, 14:9–17, 1990.

15



[11] K. Chen and Z. Chen. Static analysis of life and death in the game of go. Information
Sciences, 121:113–134, 1999.

[12] D. Dyer. An eye shape library for computer go. Technical report, 1987.

[13] R. Gasser. Endgame database compression for humans and machines. In H.J. van den
Herik and L.V. Allis, editors, Heuristic Programming in Artificial Intelligence 3: the
third computer olympiad, pages 180–191. Ellis Horwood, Chichester, England, 1991.

[14] J. Kraszek. Heuristics in the life and death algorithm of a go-playing program.
Computer Go, 9:13–24, 1988.

[15] J. Ramon, T. Francis, and H. Blockeel. Learning a tsume-go heuristic with tilde. In
T. Anthony Marsland and Ian Frank, editors, Computers and Games, volume 2063 of
Lecture Notes in Computer Science, pages 151–169. Springer, 2001.

[16] T. Wolf. Investigating tsumego problems with risiko. In D.N.L. Levy and D.F. Beal,
editors, Heuristic Programming in Artificial Intelligence 2. Ellis Horwood, 1991.

[17] T. Wolf. The program gotools and its computer-generated tsume go database. In
H. Matsubara, editor, Game Programming Workshop in Japan ’94, pages 84–96,
Tokyo, Japan, 1994. Computer Shogi Association.

[18] T. Wolf. About problems in generalizing a tsumego program to open positions.
In H. Matsubara, editor, Game Programming Workshop in Japan ’96, pages 20–26,
Tokyo, Japan, 1996. Computer Shogi Association.

[19] T. Wolf. The diamond. British Go Journal, 108:34–36, 1997.

[20] T. Wolf. Forward pruning and other heuristic search techniques in tsume go.
Information Sciences, 122:59–76, 2000.

16


