
OVERESTIMATING THE ADMISSIBLE
HEURISTIC OF A* FOR MULTIPLE

SEQUENCE ALIGNMENT

Tristan CAZENAVE1

1LIASD, Dept Informatique,
Université Paris 8, France

E-mail: cazenave@ai.univ-paris8.fr

Abstract

Multiple sequence alignment is an important problem in computational
biology. A-star is an algorithm that can be used to find exact alignments.
We present a simple modification of the A-star algorithm that improves
much multiple sequence alignment, both in time and memory, at the
cost of a small accuracy loss. It consists in overestimating the admis-
sible heuristic. A typical speedup for random sequences of length two
hundred fifty is 47 associated to a memory gain of 13 with an error rate
of 0.09%. Concerning real sequences, the speedup can be greater than
13,000 and the memory gain greater than 150, the error rate being in the
range from 0.08% to 0.71% for the sequences we have tested. Overesti-
mation can align sequences that are not possible to align with the exact
algorithm.

Keywords: multiple sequence alignment, A* search, overestimation

1 Introduction

Multiple sequence alignment is one of the most important problem in com-
putational biology. It is used to align DNA and protein sequences. The prob-
lem of aligning more than eight sequences takes too much memory for current
exact algorithms such as A-star or dynamic programming. Biologists use pro-
grams that give an approximate answer to overcome the difficulty of finding
exact alignment.



From a search point of view, the problem has properties that are different
from other problems that are commonly solved with A-star such as the sliding-
tile puzzle, or pathfinding on game maps. It has a branching factor in O(2s),
when s is the number of sequences to align. The state space forms a lattice,
and there are many paths that go through the same node.

We propose to improve the basic A-star algorithm with overestimation. We
have found that it enables large speedups and memory gains at the cost of a low
error rate.

The second section presents the multiple sequence alignment problem, the
third section details the modifications to the basic A-star algorithm, the fourth
section presents experimental results, the last section concludes.

2 Multiple Sequence Alignment

In this section we present the multiple sequence alignment problem, then
we show how dynamic programming can be applied to it. We present the
approximate algorithms currently used to solve the problem, and we give an
overview of the exact algorithms that have been tested on it.

2.1 The problem

The multiple sequence alignment problem can be considered as a shortest
path problem in a s-dimensional lattice [2]. Let’s first consider the case of
dimension two, it consists in aligning two sequences. We can write the letter of
the first sequence on the horizontal axis, and the letters of the second sequence
on the vertical axis. The path starts at the origin point of the matrix (point
(0,0) at the upper left). For each point there are three possible moves: the
diagonal, the horizontal, and the vertical moves. A diagonal move is equivalent
to aligning two characters of the sequences, an horizontal move is equivalent
to aligning a character of the horizontal sequence with a gap in the second
sequence, a vertical move aligns a character of the vertical sequence with a
gap in the horizontal sequence. All paths stop at the bottom right of the matrix
after the last two characters of both sequences have been aligned.

The simple model to evaluate the cost of a move is: 0 for a match (aligning
the two same characters), 1 for a mismatch, and 2 for a gap (a gap is repre-
sented with a -). The cost of a path is the sum of the costs of its moves.

Much more elaborate models of the cost of a mismatch such as the PAM
matrices [3] have been developed and have been widely used, elaborate models
of gap penalties have also been studied. In order to keep things simple and



as our interest is the search behavior of the alignment algorithms, we have
restricted ourselves to the simple model.

For example, if the first sequence is ACGTGCGCT and the second se-
quence is ACAGTGCCT the best alignment is:

AC-GTGCGCT
ACAGTGC-CT

and it has a cost of four.
When aligning s sequences, the path goes through a s-dimensional lattice,

the branching factor is 2s − 1, and the cost of a move is the sum of the costs of
the moves for each pair of sequences.

2.2 Dynamic programming

Dynamic programming can be used to efficiently find solution to the prob-
lem of sequence alignment. However if the average length of the sequences
to align is length, and the number of sequences is s, dynamic programming
needs O(lengths) memory and time. A possible improvement trades off time
for space [5] but it still requires O(lengths−1) memory which is still too much
for aligning many sequences.

Dynamic programming is very useful to compute pairwise alignments. The
memory needed to compute the pairwise alignment is manageable and it gives
precise information to the admissible heuristic of A-star.

Table 1 gives the dynamic programming table corresponding to the previ-
ous two sequences. For each pair of index in the two sequences, the table gives
the cost of the optimal alignment starting at the corresponding position. Each
entry is computed as the minimum among the entry to the left plus 2, the entry
below plus 2 and the entry to the lower left diagonal plus the cost of aligning
the two corresponding letters. The table is computed starting at the lower right
and going from the right to the left and then bottom-up. The upper left cell
contains four which is the cost of the optimal alignment.

2.3 Approximate algorithms

The programs currently used by biologist such as CLUSTAL W [14] and
DCA [13] find sub-optimal alignments. They consist in series of progressive
pairwise alignments.

Other approximate algorithms use metaheuristics or evolutionnary meth-
ods [10].



A C G T G C G C T
A 4 6 7 8 9 10 12 14 16 18
C 4 4 5 6 7 8 10 12 14 16
A 5 3 4 4 5 7 8 10 12 14
G 6 4 2 3 3 5 6 8 10 12
T 8 6 4 2 3 3 4 6 8 10
G 10 8 6 4 2 2 2 4 6 8
C 13 11 9 7 5 2 1 2 4 6
C 14 12 10 8 6 4 2 0 2 4
T 16 14 12 10 8 6 4 2 0 2

18 16 14 12 10 8 6 4 2 0

Table 1. Example of a dynamic programming table.

2.4 Exact algorithms

A-star was applied to the optimal alignment of multiple sequences by Ikeda
and Imai [7]. The admissible heuristic is computed using the dynamic pro-
gramming tables for the pairwise alignments. Because of the large branching
factor of the problem, and the large number of open nodes, A-star cannot align
more than seven sequences due to memory limits. To overcome this difficulty
and reduce the memory requirements, A-star with partial expansion was pro-
posed [16]. It consists in not memorizing in the open list child nodes that have
a f value greater than the f value of their parent plus a threshold. Experimen-
tal results show that Partial Expansion A-star can align seven sequences using
fewer stored nodes than A-star, and can align some eight sequences problems.
However the gain in memory is acquired at the cost of a greater search time.

Another refinement was proposed to reduce both the memory and the time
requirements, using an octree to represent a three-way heuristic [11]. A close
approach is the use of external memory pattern databases using strucured du-
plicate detection [18]. It reduces the memory requirements of the pattern
databases by an average factor of 83 times, and makes Sweep-A-star [17] run
16% faster than using traditional pattern databases.

Other researchers have compared A-star and dynamic programming [6].



3 A-star

This section presents modifications to the A-star algorithm. In all the pa-
per, the admissible heuristic we have used for A-star is the sum of the pairwise
alignments given by the 2-dimensional dynamic programming tables.

In A-star, the value associated to a node (the f value) is the sum of the
cost of the path from the origin to the node (the g value), and of the admissible
heuristic that gives a lower bound on the cost of the remaining path to the goal
(the h value). We have for the node n: f (n) = g(n) + h(n).

The main loop of the A-star algorithm works as follow:

void AStar() {
bool outOfMemory = false;
Node * node = nodeWithSmallestf();
while(!node->final() && !outOfMemory){
outOfMemory = develop(node);
node = nodeWithSmallestf();

}
}

The function develop(node) puts the node in the closed list and puts all the
children of the node in the open list, and nodeWithS mallest f () sends back a
node of the open list with a minimal f.

The first subsection deals with the efficient choice of the best open node.
The second subsection is about efficient duplicate node detection. The third
subsection explains how we have used overestimation.

3.1 Choosing the best open node

Naive implementations of A-star use a list to store the open and the closed
nodes. In this case, when the program has to find the best open node, it has to
go through all the list to find the node with the minimum f . The cost of using
a list is linear in the size of the list.

A more elaborate, and commonly used, implementation of A-star uses a
priority queue to represent the open list. A priority queue uses a heap to main-
tain the nodes sorted. The insertion of a new node, as well as the finding of the
best node require a logarithmic time in the size of the list.

Instead of a simple queue, we have used an array of stacks to maintain
the open list. The index in the array is the value of f for the nodes stored in
the corresponding stack. The insertion of an element is performed in constant



time, just pushing it on the top of the stack that corresponds to its f value.
Finding the best node is also performed in almost constant time. The smallest
f value (current f ) over all the nodes is maintained, and updated each time a
node is inserted in the open list. When retrieving the best open node, current f
is used to check if the stack at this index has an element. If so the first element
is popped and returned as the best node. If the stack is empty, current f is
incremented and the test is performed again for the next index in the array of
stacks.

3.2 Duplicate node detection

In the multiple sequence alignment problem, it is very important not to
expand again nodes that are already present in the open or closed lists, with a
smaller or equal g.

A possible implementation is to go through all the closed and open nodes,
to verify if the node to insert in the open list is not already present with a
smaller or equal g. When implemented this way, the duplicate node detection
takes most of the time of the algorithm.

We propose an implementation of duplicate node detection which uses a
transposition table. Transposition tables are often used in game programs so
as to memorize the results of search at nodes of the tree [1]. In order to hash
position, we have used Zobrist hashing [19]. A position in the state space is de-
fined by its coordinates. There are as many coordinates as there are sequences.
For each possible sequence, and each possible coordinate in this sequence, a
64-bit random number has been computed once for all. These static random
numbers are computed using the rand function to set each one of the 64 bits of
the random number. The Zobrist hashing of a position is the XOR of all the
random numbers that correspond to the coordinates of the position. The XOR
is used because:

• it is a very fast operation on bits,

• it is incremental: in order to undo the XOR with a number, the only
operation needed is to XOR again with this number. When a node is
expanded, it is a move to a neighboring position. The program only has
to XOR the random numbers of the old coordinates that change, and to
XOR also the random numbers of the new coordinates.

• The XOR of random values that have a uniform repartition gives a ran-
dom value that has a uniform repartition. It is important to lower the
collision probability.



Each position in the search space is associated to a 64-bit hashcode. The
lowest bits of this hashcode are use to index the position in the transposition
table. An entry of the transposition table contains a list of structures. Each
structure contains a hashcode and a g value. When the algorithm detects du-
plicate, it goes through the list and verifies if an entry with the same hashcode
as the current position, and a less or equal g is present. In that case, the node
is cut.

3.3 Consequences on the implementation of A-star

In this subsection the implementation of A-star with array of stacks and
hashtables is detailed.

The function nodeWithS mallest f () sends back a node of the open list with
a minimal f . As the open list is structured as an array of stacks, it consists in
sending back the head of the non empty array that corresponds to the minimal
f:

Node * nodeWithSmallestf () {
while (Open [currentf].next == NULL &&

currentf < MaxLength)
currentf++;

return Open [currentf].next;
}

The function develop(node) puts the node in the closed list and puts all
the children of the node in the open list. The function starts with removing
the node from the head of the open structure, then it finds the successors, anc
checks that memory is not exhausted. For all the successors, if the successors
is not already visited (i.e. the elementTable function sends back true when
the node is already in the hash table), it is inserted in the open structure using
the insert(succ) function. In the end the node is addes to the closed list. The
function is:



bool develop (Node * node) {
Open [node->f ()].next = node->next;
if (not getSuccessors (node, listSuccessors))

return false;
for all successors succ in listSuccessors

if (not elementTable (succ, succ->g ()))
insert (succ)

node->next = Closed.next;
Closed.next = node;
return true;

}

The insert(node) function inserts a node in the open list. It simply consists
in pushing the node in the array that is indexed by its f value:

bool insert (Node *node) {
int f = node->f ();
Node * tmp = & Open [f];
node->next = tmp->next;
tmp->next = node;
if (currentf > f)

currentf = f;
addToHashTable (node);

}

The hashtable essentially consists in two functions. The first one detects if
an element is in the table. It first finds the index of the node taking the lower
bits of its hashcode, then for all nodes stored at this index it verifies if the node
has a smaller or equal g and if it has the same position as the parameter node.
When it is the case it returns true as the node is present in the hashtable. The
pseudo-code is:

bool elementTable (Node *node, int g) {
Transpo * t = &table [node->hash () & SizeTable];
for all nodes n in t

if (n->g <= g)
if (n->position == node->position)
return true;

return false;
}



The other function of the hashtable consists in adding a node to the table.
It also starts finding the index of the node in the hashtable, and then simply
adds the node to the list of nodes at this index:

void addToHashTable (Node * node) {
Transpo * t = &table [node->hash () & SizeTable];
t->addNodeToList (node);

}

3.4 Overestimation

Overestimation has been used for Sokoban in the program Rolling Stones,
adding all the patterns that match instead of only selecting the ones that ensure
admissibility [8]. This use of overestimation has helped Rolling Stones solve
52 problems instead of 47 without overestimation.

Pearl has introduced ε-admissible search [12] which finds solutions with
bounded costs.

A related but different approach is to use likely-admissible heuristics [4].
It consists in relaxing the admissibility requirement in a probabilistic sense.
Instead of providing an upper bound to the cost, it guarantees to end-up with
optimal solutions with a given probability.

In order to overestimate the length of the remaining path, we have used the
following f : f (n) = g(n) + w× h(n) where w is a real number greater than one.
Overestimation speeds up A-star at the cost of making it inexact.

The main property of this overestimation is that it more easily develops
nodes that have a low h value first, i. e. nodes that are closer to the goal than in
usual A-star. Nodes that have been discarded early in the search stay discarded
longer than in usual A-star. So overestimation prefers paths where some search
has already been invested, and paths that have a low admissible heuristic at the
beginning of the path.

4 Experimental results

Experiments use machines with 1 GB of RAM. Given the available mem-
ory, we have chosen a limit of 10,000,000 nodes for A-star.

4.1 Generation of random test data

In order to test the different algorithms, we have generated random se-
quences of bases (i.e. strings composed of letters in the {A,C,G,T} alpha-



Table 2. Comparison of priority queues and array of stacks.

s algorithm Σ time Σ nodes
5 array 38.54s 3,154,269
5 queue 45.38s 3,310,618
6 array 744.42s 23,045,612
6 queue 888.92s 23,914,925

bet). The tests use sets of strings of length fifty, one hundred, two hundred or
two hundred and fifty. This methodology is similar to Korf and Zhang test-
ing methodology [9]. Generating random problems allows to generate a large
number of problems, and to easily replicate experiments. For each length,
we have generated one hundred problems. Each problem is composed of ten
strings.

4.2 Array of stacks

Table 2 gives the time and number of nodes used by A-star with a STL
priority queue, and A-star with an array of stacks. s is the number of sequences
to align. Each line describes the result of solving one hundred problems with
sequences of length fifty.

For five sequences the speed of the array of stacks is 81,844 nodes per
second while the speed of the priority queue is 72,953 nodes per second. The
array of stacks is 12% faster.

On more complex problems with more nodes, the comparison is even better
for the array of stacks: for six sequences it develops 30,957 nodes per second
versus 26,903 nodes per second for the priority queue. The array of stacks is
15% faster.

4.3 Duplicate node detection

Table 3 gives the time used to solve the one hundred problems with se-
quences of length fifty, using transposition tables, and using lists. The trans-
position table uses 65,535 entries. The index of a position is the last 16 bits of
its hashcode.

Even for problems with a small number of nodes such as the alignment of
four sequences, the transposition table algorithm clearly out performs the list



Table 3. Comparison of list and transposition table.

s algorithm Σ time
4 list 124.54s
4 transposition 2.03s

Table 4. Upper bounds for one hundred sets of sequences of length fifty.

s Σ score
5 37,341
6 56,041
7 78,561
8 104,711
9 135,545

10 168,401

implementation.
On the more complex problem of aligning five sequences, the list imple-

mentation takes 2203 seconds for solving the first six problems, when the
transposition table implementation takes 2.05 seconds. Lists become even
worse for more than five sequences since the number of nodes grows and the
list implementation takes time proportional to the square of the number of
nodes.

4.4 Straight alignment

In order to find an upper bound to the cost of an alignment and better eval-
uate overestimation, we have tested the algorithm which consists of aligning
all the sequences without introducing gaps. The tests were run for one hundred
sets of sequences of length fifty and one hundred sets of sequences of length
one hundred. The same sets of sequences are used for testing overestimation.
The results are given in table 4 for sequences of length fifty, and in table 5 for
sequences of length one hundred. The Σ score field gives the sum of the scores
of the straight alignment for all the random sequences.



Table 5. Upper bounds for one hundred sets of sequences of length one hundred.

s Σ score
4 44,894
5 75,061
6 112,500
7 157,548
8 209,945

4.5 Overestimation for random sequences

We tested overestimation for different numbers of sequences, different weights,
and different lengths of sequences. Results for sequences of length fifty are
given in table 6. The first column gives the number of sequences to align, the
second column gives the weight used for overestimation (1.00 corresponds to
the exact algorithm), the third column gives the cumulated time used to solve
one hundred problems, the fourth column gives the sum of the scores (length
of the shortest path) found for each problem, the fifth column gives the sum of
the nodes used for solving each problem.

The results for the exact algorithm are not given for eight or more se-
quences, since the node limit is reached for these problems before the problem
is solved.

We can observe than the 1.05 weight is a safe weight. It significantly re-
duces the time and the number of nodes, while finding alignments that are
better than straight alignments and quite close to optimal alignments. The 1.10
and the 1.20 weights sometimes give worse results than the straight alignment,
and should be avoided.

Table 7 has been created using table 6. For each number of sequences,
and each weight, the speedup, the error and the memory gain are given. The
error is calculated dividing the sum of the lengths of the paths found with
overestimation by the sum of the lengths of the shortest paths found by the
exact algorithm. The memory gain is computed dividing the number of nodes
of the exact algorithm by the number of nodes of the approximate algorithm.

We can observe in this table that the memory gains increase fast with the
number of sequences, and that the speedups increase even faster with the num-
ber of sequences.

We tested the program on sequences of length one hundred. Results are



Table 6. Results for one hundred sets of sequences of length fifty.

s w Σ time Σ score Σ nodes
5 1.00 38.54s 36,654 3,154,269
5 1.05 2.59s 36,747 556,463
5 1.10 0.57s 37,036 212,282
5 1.20 0.30s 37,320 161,983
6 1.00 744.42s 55,362 23,045,612
6 1.05 24.97s 55,477 2,556,103
6 1.10 1.76s 55,929 496,354
6 1.20 0.85s 56,161 328,479
7 1.00 30,844.41s 77,982 168,829,955
7 1.05 268.40s 78,147 12,052,417
7 1.10 6.47s 78,592 1,247,218
7 1.20 2.17s 78,767 653,935
8 1.05 5,639.71s 104,396 58,990,176
8 1.10 26.17s 104,895 3,151,376
8 1.20 4.62s 104,914 1,305,738
9 1.10 94.02s 134,856 8,153,718
9 1.20 16.68s 134,765 2,586,087

10 1.10 572.74s 168,920 21,489,700
10 1.20 44.12s 168,592 5,193,800

Table 7. Gains over the exact algorithm for sequences of length fifty.

s w speedup error memory gain
5 1.05 14.88 0.25% 5.67
5 1.10 67.61 1.04% 14.86
5 1.20 128.47 1.82% 19.47
6 1.05 29.81 0.21% 9.02
6 1.10 422.97 1.02% 46.42
6 1.20 875.78 1.44% 70.15
7 1.05 114.92 0.21% 14.01
7 1.10 4,767.30 0.78% 135.36
7 1.20 14,214.00 1.01% 258.17



Table 8. Results for one hundred sets of sequences of length one hundred.

s w Σ time Σ score Σ nodes
4 1.00 65.31s 42,605 5,403,857
4 1.05 3.18s 42,696 732,666
4 1.10 0.58s 43,069 243,311
4 1.20 0.36s 43,587 162,110
5 1.00 4547.52s 72,152 88,548,072
5 1.05 109.81s 72,246 8,045,147
5 1.10 2.90s 72,986 788,188
5 1.20 0.84s 74,167 340,647
6 1.05 6250,38s 109,398 93,687,353
6 1.10 17.59s 110,401 2,865,184
6 1.20 1.91s 112,185 700,769
7 1.10 216.68s 155,251 14,090,458
7 1.20 4,47s 157,674 1,415,208
8 1.10 7,288.41s 207,858 89,290,030
8 1.20 10.43s 210,554 2,839,425



Table 9. Gains over the exact algorithm for sequences of length one hundred.

s w speedup error memory gain
4 1.05 20.54 0.21% 7.38
4 1.10 112.60 1.09% 22.21
4 1.20 181.42 2.30% 33.34
5 1.05 41.41 0.13% 11.01
5 1.10 1568.11 1.15% 112.34
5 1.20 5413.71 2.79% 259.94

given in table 8. We can observe that the 1.10 weight is always better than the
straight alignment, while the 1.20 weight becomes worse for seven and eight
sequences. The 1.05 weight gives interesting speedups and memory gains for
alignments that are close to optimal.

Table 9 gives the gains and the error calculated with table 8. If we compare
table 7 with table 9, we can observe that the gains for four sequences in table
9 are similar to the gain for five sequences in table 7. The branching factor is
fifteen for four sequences, and thirty one for five sequences, the average length
of the shortest path is four hundred twenty six for four sequences of length one
hundred, and three hundred sixty seven for five sequences of length fifty. The
gains are slightly greater for four sequences of length one hundred than for
five sequences of length fifty, with length of the shortest paths which are also
slightly greater.

Concerning five sequences of length one hundred, and seven sequences
of length fifty, the average length of the shortest paths are respectively seven
hundred twenty two and seven hundred eighty, when the gains in memory are
equivalent, and the speedups are three times greater for the seven sequences.

The error rates are more important for five sequences of length one hun-
dred than for seven sequences of length fifty, even if the speedup are lower.
It is interesting as it shows that speedup and error rates are not always cor-
related, and that there are portions of the space of problems (denoted by the
length of the sequences and the number of sequences) that are more favorable
to overestimation than others.

As the overestimation has a better behavior for sequences of length one
hundred than for sequences of length fifty, we have tested the algorithm on
sequences of length two hundred (tables 10 and 11), and on sequences of length
two hundred and fifty (tables 12 and 13).



Table 10. Results for one hundred sets of sequences of length two hundred.

s w Σ time Σ score Σ nodes
4 1.00 3,664.79s 84,102 91,691,701
4 1.05 97.87s 84,197 7,638,509
4 1.10 2.28s 85,190 611,965
4 1.20 0.99s 86,631 336,527
4 straight 0.06s 90,104 0

Table 11. Gains over the exact algorithm for sequences of length two hundred.

s w speedup error memory gain
4 1.05 37.44 0.11% 12.00
4 1.10 1607.36 1.29% 149.83
4 1.20 3701.81 3.00% 272.46

For sequences of length two hundred, all weights give much better results
than the straight alignment. Moreover, the speedups and the memory gains are
also better than for four sequences of length one hundred.

Concerning sequences of length two hundred fifty, the speedups and mem-
ory gains are even better, and all the weights give alignments much better than
the straight one. For five sequences, the overestimation finds alignments that
are much better than the straight one when the exact algorithm exhausts mem-
ory. When we have tested the first alignment of five sequences with a weight
of 1.05, the node limit was reached and A-star stopped with no solution after
2,818 seconds. Comparatively, a weight of 1.10 found a path of length 1807
in 0.39 seconds and 57,044 nodes (a straight alignment gave 1865). For this
problem the speedup was therefore of much more than 7,225 and the memory
gain of much more than 175.

In conclusion, in our experiments on random sequences, overestimation
gives better results for sequences that are difficult to align.



Table 12. Results for one hundred sets of sequences of length two hundred fifty.

s w Σ time Σ score Σ nodes
4 1.00 12,998.15s 104,565 217,402,086
4 1.05 274.72s 104,660 16,514,033
4 1.10 4.17s 106,002 1,019,825
4 1.20 1.27s 107,831 426,185
4 straight 0.08s 112,060 0
5 1.10 64.88s 179,024 7,012,805
5 1.20 3.44s 183,058 933,319
5 straight 0.15s 187,103 0

Table 13. Gains over the exact algorithm for sequences of length two hundred fifty.

s w speedup error memory gain
4 1.05 47.31 0.09% 13.16
4 1.10 3,117.06 1.37% 213.18
4 1.20 10,234.76 3.12% 510.11



4.6 Overestimation for real sequences

We have tested overestimation on real sequences with another machine, a
Pentium 2.8 GHz with 1 GB of RAM. The sequences are taken from BaliBase
[15]. The results are given in table 14. The name of the sequences are the
names in BaliBase. Some of the test sequences have been created by merg-
ing the five sequences of 1aho-ref1 and the five sequences of 1csp-ref1, which
gives ten sequences. The test4-ref1 file contains all the ten sequences, test3-
ref1 contains the first nine sequences (the five sequences of 1aho-ref1 followed
by the first four sequences of 1csp-ref1), test2-ref1 contains the first eight se-
quences, and test-ref1 the first seven.

The score field gives the length of the shortest path found for the alignment
of the sequences, the time field gives the time in seconds, and the nodes field
the number of nodes used by A-star.

The memory gains and speedups are given in table 15. An impressive
result is the alignment in test2-ref1 that cannot be found by A-star, when over-
estimation finds it in less than 13,000 times less time and less than 150 times
less memory.

Another excellent result is the alignment of ten sequences for test4-ref1.
We do not have error rates for these two results since the optimal alignment is
too hard to find, however it has been calculated for test-ref1 and in this case it
is very small (0.08%).

The experiments with real sequences show that overestimation works very
well for difficult to align sequences, and is associated with a small error rate.

5 Conclusion and Future Work

Overestimation of the admissible heuristic of A-star applied to the multiple
sequence alignment problem gives large speedups and memory gain for small
error rates. In our tests, it works better with difficult sequences than with easy
ones.

Future works include combining our improvement with other heuristics
used for exact algorithms such as pattern databases [18], partial expansion [16]
and dynamic programming [6].

Another interesting future work is to use neural networks or genetic pro-
gramming to learn an overestimation function more complex than a simple
multiplication by a constant.

Moreover overestimation of an admissible heuristic could certainly be use-
ful in other domains. We will investigate its use in other applications of A*
search.



Table 14. Results for real sequences.

name s w score time nodes
test4-ref1 10 1.00 unknown >2,664.1382 >10,000,000
test4-ref1 10 1.05 2,634 15.1980 1,326,779
test3-ref1 9 1.00 unknown >2,536.0442 >10,000,000
test3-ref1 9 1.05 2,081 0.8571 210,605
test2-ref1 8 1.00 unknown >2,096.7981 >10,000,000
test2-ref1 8 1.05 1,624 0.1540 63,843
test-ref1 7 1.00 1,220 210.5230 3,373,102
test-ref1 7 1.05 1,221 0.0686 34,972

1bbt3-ref1 5 1.00 unknown >903.0281 >10,000,000
1bbt3-ref1 5 1.05 1,847 5.4853 721,808

1aboA-ref1 5 1.00 701 3.9505 475,654
1aboA-ref1 5 1.05 706 0.0173 4,808

1ad2-ref1 4 1.00 985 0.1180 45,011
1ad2-ref1 4 1.05 985 0.0060 4,723
1aab-ref1 4 1.00 403 0.0550 25,017
1aab-ref1 4 1.05 405 0.0039 3,422
1aho-ref1 5 1.00 488 0.0403 14,410
1aho-ref1 5 1.05 489 0.0047 2,449

1ar5A-ref1 4 1.00 748 0.0185 5,107
1ar5A-ref1 4 1.05 749 0.0234 3,052

1csp-ref1 5 1.00 412 0.0144 3,127
1csp-ref1 5 1.05 413 0.0120 2,246



Table 15. Gains over the exact algorithm for real sequences.

name s w error speedup memory gain
test4-ref1 10 1.05 unknown >175.29 >7.54
test3-ref1 9 1.05 unknown >2,958.81 >47.48
test2-ref1 8 1.05 unknown >13,610.39 >156.63
test-ref1 7 1.05 0.08% 3,068.84 96.45

1bbt3-ref1 5 1.05 unknown >164.62 >13.85
1aboA-ref1 5 1.05 0.71% 228.35 98.93

1ad2-ref1 4 1.05 0% 19.67 9.53
1aab-ref1 4 1.05 0.50% 14.10 7.31
1aho-ref1 5 1.05 0.20% 8.57 5.88

1ar5A-ref1 4 1.05 0.13% 1.26 1.67
1csp-ref1 5 1.05 0.24% 1.20 1.39

References

[1] D. Breuker, “Memory versus search in games,” University of Maas-
tricht,” PhD thesis, October 1998.

[2] H. Carrillo, D. Lipman, “The multiple sequence alignment problem in
biology,” SIAM Journal Applied Mathematics, vol. 48, pp. 1073–1082,
1988.

[3] M. O. Dayhoff, R. Schwartz, B. C. Orcutt, “A model of Evolutionary
Change in Proteins,” Atlas of protein sequence and structure, vol. 5, pp.
345–358, 1978.

[4] M. Ernandes, M. Gori, “Likely-admissible and sub-symbolic heuristics,”
in ECAI 2004. Valencia, Spain: IOS Press, 2004, pp. 613–617.

[5] D. S. Hirschberg, “A linear space algorithm for computing maximal
common subsequences,” Communications of the ACM, vol. 18, no. 6,
pp. 341–343, 1975.

[6] H. Hohwald, I. Thayer, R. Korf, “Comparing best-first search and dy-
namic programming for optimal multiple sequence alignment,” in IJCAI-
03, 2003, pp. 1239–1245.



[7] T. Ikeda, T. Imai, “Fast A* algorithms for multiple sequence alignment,”
in Genome Informatics Workshop 94, 1994, pp. 90–99.

[8] A. Junghanns, J. Schaeffer, “Domain-dependent single-agent search en-
hancements,” in IJCAI-99, 1999, pp. 570–575.

[9] R. E. Korf, W. Zhang, “Divide-and-conquer frontier search applied to
optimal sequence alignment,” in AAAI-00, 2000, pp. 910–916.

[10] Pawel Kupis, Jacek Mandziuk, “Multiple Sequence Alignment with
Evolutionary-Progressive Method,” in ICANNGA (1), 2007, pp. 23–30.

[11] M. McNaughton, P. Lu, J. Schaeffer, D. Szafron, “Memory-efficient A*
heuristics for multiple sequence alignment,” in AAAI-02, 2002, pp. 737–
743.

[12] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, Reading, MA, 1984.

[13] K. Reinert, J. Stoye, T. Will, “An iterative method for faster sum-of-
pairs multiple sequence alignment,” Bioinformatics, vol. 16, no. 9, pp.
808–814, 2000.

[14] J. Thompson, D. Higgins, T. Gibson, “CLUSTAL W: Improving the sen-
sitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice,”
Nucleic Acids Research, vol. 22, pp. 4673–4680, 1994.

[15] J. Thompson, F. Plewniak, and O. Poch, “BaliBase: a benchmark align-
ment database for the evaluation of multiple sequence alignment pro-
grams,” Bioinformatics, vol. 15, pp. 87–88, 1999.

[16] T. Yoshizumi, T. Miura, T. Ishida, “A* with partial expansion for large
branching factor problems,” in AAAI-00, 2000, pp. 923–929.

[17] R. Zhou, E. Hansen, “Sweep A*: Space-efficient heuristic search in par-
tially ordered graphs,” in Proceedings of 15th IEEE International Con-
ference on Tools with Artificial Intelligence, 2003, pp. 427–434.

[18] R. Zhou, E. Hansen, “External-memory pattern databases using struc-
tured duplicate detection,” in AAAI-05, Pittsburgh, PA, July 2005, pp.
1398–1405.

[19] A. Zobrist, “A new hashing method with applications for game playing,”
ICCA Journal, vol. 13, no. 2, pp. 69–73, 1990.


