
Sequential Halving for Partially Observable Games

Tom Pepels1, Tristan Cazenave2, and Mark H.M. Winands1

1 Department of Knowledge Engineering, Maastricht University
{tom.pepels,m.winands}@maastrichtuniversity.nl

2 LAMSADE - Université Paris-Dauphine
cazenave@lamsade.dauphine.fr

Abstract. This paper investigates Sequential Halving as a selection pol-
icy in the following four partially observable games: Go Fish, Lost Cities,
Phantom Domineering, and Phantom Go. Additionally, H-MCTS is stud-
ied, which uses Sequential Halving at the root of the search tree, and
UCB elsewhere. Experimental results reveal that H-MCTS performs the
best in Go Fish, whereas its performance is on par in Lost Cities and
Phantom Domineering. Sequential Halving as a �at Monte-Carlo Search
appears to be the stronger technique in Phantom Go.

1 Introduction

Partially observable games introduce the complexity of uncertainty in game-
play. In partially observable games, some element of the game is not directly
observable. The unknown element can be introduced by hiding certain parts of
the current state to the player (e.g., hiding the rank of piece in Stratego), in game
theory this is also called imperfect information. Other than in fully observable
games, we cannot directly search for sequences of actions leading to promising
moves using the partially visible state. In this paper we discuss four di�erent
partially observable games: Go Fish and Lost Cities, which are card games with
imperfect information, and the so-called phantom games: Phantom Domineering
and Phantom Go.

Di�erent approaches have been suggested for handling partial observability
in Monte-Carlo Tree Search (MCTS) in such domains. Such as Determinized
UCT [13] where a random game state is sampled before the search (i.e., deter-
minized), and multiple trees are maintained per determinization. The recently in-
troduced Information Set MCTS [13] maintains information sets of states reach-
able in the current determinization in the tree, as such re-using statistics over
multiple determinizations in the tree.

In this paper we investigate the e�ects of using Sequential Halving [16] as
a selection policy in partially observable games. We continue to study the Hy-
brid MCTS [20] algorithm, introduced as a method of minimizing simple and
cumulative regret simultaneously during search.

The paper is structured as follows: �rst, in Section 2, we give a brief overview
of MCTS. Next, in Section 3 we discuss Sequential Halving, and how it may
be applied to MCTS in partially observable games. After this we describe our

2

experimental domains in Section 4. Finally we show our experimental results
in Section 5, and discuss our conclusions and directions for future research in
Sections 6 and 7.

2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a best-�rst search method based on random
sampling by Monte-Carlo simulations of the state space of a domain [12, 17]. In
game play, this means that decisions are made based on the results of randomly
simulated play-outs. MCTS has been successfully applied to various turn-based
games such as Go [22], Lines of Action [26], and Hex [1]. Moreover, MCTS has
been used for agents playing real-time games such as the Physical Traveling
Salesman [21], real-time strategy games [4], and Ms Pac-Man [19], but also in
real-life domains such as optimization, scheduling, and security [6].

In MCTS, a tree is built incrementally over time, which maintains statis-
tics at each node corresponding to the rewards collected at those nodes and
number of times they have been visited. The root of this tree corresponds to
the current position. The basic version of MCTS consists of four steps, which
are performed iteratively until a computational threshold is reached, i.e., a set
number of simulations, an upper limit on memory usage, or a time constraint.

Each MCTS simulation consist of two main steps, 1) the selection step, where
moves are selected and played inside the tree according to the selection policy
until a leaf is expanded, and 2) the play-out, in which moves are played according
to a simulation policy, outside the tree. At the end of each play-out a terminal
state is reached and the result is back-propagated along the selected path in the
tree from the expanded leaf to the root.

2.1 UCT

During the selection step, a policy is required to explore the tree to decide on
promising options. For this reason, the Upper Con�dence Bound applied to Trees
(UCT) [17] was derived from the UCB1 [3] policy. In UCT, each node is treated
as a multi-armed bandit problem whose arms are the moves that lead to di�erent
child nodes. UCT balances the exploitation of rewarding nodes whilst allowing
exploration of lesser visited nodes. Consider a node p with children I(p), then
the policy determining which child i to select is de�ned as:

i∗ = argmaxi∈I(p)

{
vi + C

√
lnnp
ni

}
, (1)

where vi is the score of the child i based on the average result of simulations
that visited it, np and ni are the visit counts of the current node and its child,
respectively. C is the exploration constant to tune. UCT is applied when the
visit count of p is above a threshold T , otherwise a child is selected at random.
UCB1 and consequently, UCT incorporate both exploitation and exploration.

3

 2

1

 3

Fig. 1. Example of three determinizations within a single tree. The selected deter-
minization is 2. All unreachable nodes in determinization 2 will not be selected.

2.2 MCTS in Partially Observable Games

To deal with games having imperfect information, determinization can be applied
in the MCTS engine. The principle behind determinization is that, at the start
of each simulation at the root, the hidden information is `�lled in', ensuring it is
consistent with the history of the current match.

Determinization has been called �averaging over clairvoyance� [23], where
players never try to hide or gain information, because in each determinization,
all information is already available. Despite these shortcomings, it has produced
strong results in the past, for instance in Monte-Carlo engines for the trick-based
card game Bridge [15], the card game Skat [8], Scrabble [24], and Phantom Go
[9].

Determinization in the MCTS framework has been applied in games such as
Scotland Yard [18] and Lord of the Rings: The Confrontation [13]. It works as
follows. For each MCTS simulation starting at the root the missing information
is �lled in a random manner. The determinization is used throughout the whole
simulation. Next, there are two approaches to build and traverse the search tree.

The �rst approach is by generating a separate tree for each determiniza-
tion [13]. After selecting a determinization at the root node, the corresponding
tree is traversed. Based on majority voting [18] the �nal move can be selected.
Each candidate move receives one vote from each tree where it is the move
that was played most often. The candidate move with the highest number of
votes is selected as the best move. If more moves are tied, the move with the
highest number of visits over all trees is selected. The concept of separate-tree
determinization is similar to root parallelization.

4

The second approach is using single-tree determinization [11, 13, 18]. When
generating the tree, all possible moves from all possible determinizations are
generated. When traversing the tree, only the moves consistent with the current
determinization are considered. An example is given in Fig. 1. The advantage of
this technique is that information is shared between di�erent determinizations,
increasing the amount of usable information. This type of determinization is also
named Single-Observer Information Set Monte-Carlo Tree Search [13].

3 Sequential Halving and MCTS in Partially Observable

Games

In this section we describe our approach to applying Hybrid MCTS [20] (H-
MCTS) to partially observable games. H-MCTS is based on the concept of min-
imizing simple regret near the root, and cumulative regret in the rest of the
tree. Simple regret is de�ned as the regret of not recommending the optimal
move. Whereas cumulative regret is the sum over the regret of having selected

suboptimal moves during sampling.
In their analysis of the links between simple and cumulative regret in multi-

armed bandits, Bubeck et al. [7] found that upper bounds on cumulative regret
lead to lower bounds on simple regret, and that the smaller the upper bound on
the cumulative regret, the higher the lower bound on simple regret, regardless of
the recommendation policy, i.e., the smaller the cumulative regret, the larger the
simple regret. As such, no policy can give an optimal guarantee on both simple
and cumulative regret at the same time. Since UCB gives an optimal upper
bound on cumulative regret, it cannot also provide optimal lower bounds on
simple regret. Therefore, a combination of di�erent regret minimizing selection
methods in the same tree is used in H-MCTS.

This section is structured as follows, �rst we discuss Sequential Halving, a
novel simple regret minimizing algorithm for multi-armed bandits, in Subsec-
tion 3.1. Next in Subsection 3.2 we discuss how a hybrid search technique may
be used in partially observable games.

3.1 Sequential Halving

Non-exploiting selection policies have been proposed to decrease simple regret
at high rates in multi-armed bandits. Given that UCB1 [3] has an optimal rate
of cumulative regret convergence, and the con�icting limits on the bounds on
the regret types shown in [7], policies that have a higher rate of exploration than
UCB1 are expected to have better bounds on simple regret. Sequential Halving
(SH) [16] is a novel, pure exploration technique developed for minimizing simple
regret in the multi-armed bandit (MAB) problem.

In many problems there are only one or two good decisions to be identi�ed,
this means that when using a pure exploration technique, a potentially large
portion of the allocated budget is spent sampling suboptimal arms. Therefore,
an e�cient policy is required to ensure that inferior arms are not selected as

5

Algorithm 1: Sequential Halving [16].

Input: total budget T , K arms
Output: recommendation JT

1 S0 ← {1, . . . ,K}, B ← dlog2Ke − 1

2 for k=0 to B do

3 sample each arm i ∈ Sk, nk =

⌊
T

|Sk|dlog2 |S|e

⌋
times

4 update the average reward of each arm based on the rewards
5 Sk+1 ← the d|Sk|/2e arms from Sk with the best average
6 return the single element of SB

often as arms with a high reward. Successive Rejects [2] was the �rst algorithm
to show a high rate of decrease in simple regret. It works by dividing the total
computational budget into distinct rounds. After each round, the single worst
arm is removed from selection, and the algorithm is continued on the reduced
subset of arms. Sequential Halving [16], was later introduced as an alternative
to Successive Rejects, o�ering better performance in large-scale MAB problems.

SH divides search time into distinct rounds, during each of which, arms are
sampled uniformly. After each round, the empirically worst half of the remaining
arms are removed until a single one remains. The rounds are equally distributed
such that each round is allocated approximately the same number of trials (bud-
get), but with smaller subset of available arms to sample. SH is detailed in
Algorithm 1.

3.2 Hybrid MCTS for Partially Observable Games

Hybrid MCTS (H-MCTS) has been proposed by Pepels et al. in [20]. The tech-
nique uses recursive Sequential Halving, or SHOT [10] to minimize simple re-
gret near the root as depicted in Figure 2. The hybrid technique has shown
to improve performance in several domains, including Amazons, AtariGo and
Breakthrough. Previous algorithms that use MCTS with simple regret minimiz-
ing selection methods showed similar improvements in recommended moves in
Markov Decision Processes [14, 25].

In this paper we apply H-MCTS to partially observable games. The problem
with these domains is that, when using multiple determinizations during search,
revisiting nodes may result in di�erent playable moves. This is not a problem
when using selection methods such as UCT, which are greedy and select moves
based on the current statistics. However, because SH is a uniform exploration
method, in order to guarantee its lower bound on simple regret it must be able to
revisit the same node a predetermined number of times. In other words, available
moves should not change in between visits of the algorithm, or its speci�cally
designed budget allocation is no longer valid.

In all partially observable games, the current player always has knowledge
over the current set of moves that he can play given a fully observable de-

6

Fig. 2. Example rounds of H-MCTS with a budget limit B = 150. Sequential Halving
is applied only at the root. On all other plies, UCT in the form of IS-MCTS is applied.

terminization. Therefore, at the root of the search tree, moves are consistent
between visits. As such, SH can be used to uniformly explore moves at the root
without problems. When using multiple determinizations in a single tree, as in
IS-MCTS, however, it is no longer possible to use SH deeper in the tree. Each
time a node is visited it may have a di�erent subset of children based on the
determinization (as depicted in Figure 1). However, when using determinized
UCT with a �nite set of individual trees per determinization, SH can be used to
select nodes deeper than the root, such an investigation is a possible direction
for future research.

The approach is detailed in Algorithm 2. At the root, budget is allocated
according to SH. For each sample, the appropriate IS-MCTS implementation
can be used [13]. For this paper, based on our experimental domains (Section 4,
we use single observer IS-MCTS.

Algorithm 2: Sequential Halving and Information Set MCTS .

Input: total budget T , K moves
Output: recommendation JT

1 S0 ← {1, . . . ,K}, B ← dlog2Ke − 1

2 for k=0 to B do
3 for each move i ∈ Sk do

4 nk ←
⌊

T
|Sk|dlog2 |S|e

⌋
5 for n=0 to nk do
6 select a new determinization d at random
7 sample move i using IS-MCTS and determinization d
8 update the average of i reward based on the sample

9 Sk+1 ← the d|Sk|/2e moves from Sk with the best average
10 return the single element of SB

7

4 Experimental Domains

In this section we discuss the partially observable games which are used in the
experiments in Section 5. First, we describe the two card games: Go Fish and
Lost Cities. Next, the phantom games Phantom Domineering and Phantom Go
are explained.

4.1 Card Games

In both Go Fish and Lost Cities, cards are drawn from a randomly shu�ed deck,
limiting the possible predictions of future states. Moreover, in both games, moves
available to the opponent are either partially or completely invisible. However,
whenever a move is made, it becomes immediately known to both players. As
these games progress, more information regarding the actual game state becomes
available to both players.

Go Fish is a card game which is generally played by multiple players. The
goal is to collect as many `books' of 4 cards of equal rank. All players hide their
cards from each other, and only �nished books of four cards are placed face-up
on the table. Each turn, a player may ask a single other player for a speci�c
rank. If the questioned player has any cards of the requested rank in his hand,
he gives them to the requesting player, which may consequently make a new
request. If the questioned player does not possess a card of the requested rank,
the questioning player must `go �sh', drawing a card from the stack, and the
turn moves to the next player. The game ends when there are no more cards on
the stack, and the player with the most �nished books wins the game.

In our implementation, the game was slightly modi�ed to allow it to be
played by two players. Both players receive seven cards in hand at the start of
the game. Moreover, the �nished books are not similarly rewarded. Books of
numbered cards give a score of one, whereas books of face cards assign a score
of two, a book of aces gives a score of three. As a result, when the game ends,
the player with the highest score wins.

The game state is determinized by removing from the non-visible player's
all card drawn from the deck, shu�ing the deck and re-drawing the non-visible
player's hand. This means that whenever a card was obtained from the opponent
it is no longer treated as invisible, because it cannot be anywhere else than in
the opponent's hand or visible on the table in a �nished book.

Lost Cities is a card game, designed in 1999 by Reiner Knizia. The goal of
the game is to achieve the most pro�table set of expeditions to one or more of �ve
lost cities. Players start expeditions by placing numbered cards on them, each
player can start up to �ve expeditions regardless of the opponents' expeditions.
Each card in the game has a color and a number, the colors represent one of
the �ve expeditions, the numbers representing the score gained. Next to these
cards, colored investment cards cumulatively double the score awarded for an
expedition. The deck consists of 60 cards, nine numbered cards per color, and
three investment cards per color.

8

Placing a card on an empty expedition `initializes' it with a cost of 20. Or,
when an investment card is played, with a score of 20×Ic, where Ic is the number
of investment cards played on expedition c. These cards can only be played on an
expedition when no other cards have been played on it. For example, playing the
`red 5' card starts the red expedition with a cost of 20 and a score of 5 resulting
in a -15 score for the player. With a single investment card on this expedition,
the score will be 30. Playing more cards on the expedition leads to higher scores.
However, only increasing cards may be placed on top of others. In this example,
the card `red 3' can no longer be played, whereas the `red 8' card can be played.

Each turn, players may either play or discard a card, and draw a card from
the draw pile or one of the discard piles. Discarding a card places it on top of
one of the colored discard piles which are accessible to both players. The game
ends when no cards are left on the draw pile, the player with the highest score
wins the game.

In Lost Cities, interaction between players is limited. However, players have
to carefully choose their expeditions partly based on their opponent's choices.
Moreover, players must be careful not to discard cards which may bene�t their
opponent, but at the same time take care that they can draw cards bene�cial to
their chosen expeditions.

As in Go Fish, the game state is determinized by removing the non-visible
player's hand, shu�ing the deck and re-drawing the non-visible player's hand.

4.2 Phantom Games

Next, we describe two so-called phantom games, Phantom Domineering and
Phantom Go. Phantom games are modi�ed versions of fully observable games,
in which part of the game state is made invisible to the players. Both games
are otherwise fully deterministic, i.e., no roll of the dice, or drawing cards. Con-
sequently, whenever a player makes a move it may be rejected, the player may
move again until his move is no longer rejected. Playing a move that is rejected is
always bene�cial, since it provides the player with new information of the actual
game state.

Phantom Domineering is based on the combinatorial game Domineering,
which is generally played on a square board with two players. Each turn players
block two adjacent positions on the board, one player plays vertically, and the
other horizontally. The game ends when one of the players cannot make move.
As with most combinatorial games, the �rst player unable to make a move loses
the game, and draws are not possible.

In Phantom Domineering, players can only directly observe their own pieces
on the board. For both players, their opponent's pieces are hidden, and can
only be observed indirectly by performing rejected moves. A unique property in
Phantom Domineering is that rejected moves do not provide immediate infor-
mation about the opponent's moves. In games where moves consist of occupying
single positions, a rejected move can immediately reveal an opponent's move. In
Phantom Domineering, however, a rejected move means that either one of the
two positions is blocked, or both. Therefore, when determinizing, all opponent's

9

stones are �rst replaced such that they match the rejected moves, after this, all
remaining stones are placed randomly on the board.

Phantom Go is version of Go played in which the opponent's stones are
not revealed. When a move is illegal it is usually because there is an opponent's
stone on the chosen intersection. In this case a referee publicly announces that
the player made an illegal move and the same player may move again. The
Chinese rules are used for scoring games. Phantom Go is played by humans at
Go congresses and is enjoyed by spectators who can see both players' boards as
well as the complete referee board.

During determinization opponent stones are placed on illegal moves. The re-
maining opponent stones are place randomly on the determinized board [9]. The
principle of our engine, GoLois, is to perform one play-out per determinization.
For each possible move, a large number of determinizations followed by a play-
outs is performed. The move with the highest average is then chosen. Using this
approach, GoLois won the gold medal in 5 of the 6 Phantom Go tournaments
held during the last Computer Olympiads.

5 Experiments and Results

In this section we show the results of the experiments performed on four, par-
tially observable two-player games. H-MCTS and the games were implemented
in two di�erent engines. Go Fish, Lost Cities and Phantom Domineering are
implemented in a Java based engine. Phantom Go is implemented in the C++

based engine GoLois.
Lost Cities relies heavily on a heuristic play-out strategy which prevents

obvious bad moves such as starting an expedition without a chance of making a
pro�t. These heuristics improve play over a random play-out by up to 40%. In
Phantom Domineering, an ε-greedy play-out strategy selects moves based on the
number of available moves for the opponent and the player to move and selects
the move that maximizes their di�erence. For both Go Fish and Phantom Go,
moves are selected uniformly random during play-outs.

In the next subsection, we run experiments on our experimental domains
using a set of di�erent algorithms:

� H-MCTS selects moves according to Sequential Halving at the root and
UCT in all other parts of the tree, according to Algorithm 2. In all domains,
single observer IS-MCTS [13] is used.

� SH selects among available moves according to Sequential Halving (Algo-
rithm 1), and samples the moves by play-out immediately. As such, no search
is performed.

� MCTS selects moves using UCT from root to leaf. As in H-MCTS, single
observer IS-MCTS is used.

� UCB selects among available moves according to the UCT selection method
(Equation 1) and samples the move immediately by play-out. As such, no
search is performed. The method is similar to using the UCB1 algorithm for
MABs.

10

In all experiments, and for all algorithms, a new determinization is uniformly
selected for each simulation. For each individual game, the C constant, used by
UCT (Equation 1) was tuned. MCTS, UCB and H-MCTS use the same value
for the C constant in all experiments.

5.1 Results

For each table, the results are shown with respect to the row algorithm, along
with a 95% con�dence interval. For each experiment, the players' seats were
swapped such that 50% of the games are played as the �rst player, and 50%
as the second, to ensure no �rst-player or second-player bias. Because H-MCTS
cannot be terminated any-time we present only results for a �xed number of
simulations. In each experiment, both players are allocated a budget of either
10,000, or 25,000 play-outs. In all tables, signi�cantly positive results are bold-
faced.

Go Fish

H-MCTS SH MCTS UCB

H-MCTS - 60.9%±2.9 54.3%±1.9 62.3%±2.9
SH 39.1%±2.9 - 44.0%±3.0 51.3%±2.0
MCTS 45.7%±1.9 56.0%±3.0 - 55.0%±3.1
UCB 37.7%±2.9 48.7%±2.0 45.0%±3.1 -

Lost Cities

H-MCTS SH MCTS UCB

H-MCTS - 46.1%±3.1 54.1%±3.1 47.1%±3.1
SH 53.9%±3.1 - 55.6%±1.9 50.1%±1.9
MCTS 45.9%±3.1 44.4%±1.9 - 45.3%±3.1
UCB 52.9%±3.1 49.9%±1.9 54.7%±3.1 -

8×8 Phantom Domineering

H-MCTS SH MCTS UCB

H-MCTS - 45.1%±3.1 59.9%±3.0 59.5%±3.0
SH 54.9%±3.1 - 55.1%±3.1 58.6%±3.1
MCTS 41.1%±3.0 44.9%±3.1 - 49.4%±3.1
UCB 40.5%±3.0 41.4%±3.1 51.6%±3.1 -

Table 1. Win rates with respect to the row player. Minimum of 1,000 games per
experiment, 10,000 simulations per move.

11

Go Fish

H-MCTS SH MCTS UCB

H-MCTS - 62.2%±2.9 55.2%±3.0 61.8%±2.9
SH 42.2%±3.0 - 42.2%±3.0 51.7%±3.1
MCTS 44.9%±3.0 57.9%±3.0 - 59.0%±3.0
UCB 38.2%±2.9 48.3%±3.1 41.0%±3.1 -

Lost Cities

H-MCTS SH MCTS UCB

H-MCTS - 48.6%±1.9 52.7%±1.9 44.9%±3.0
SH 51.4%±1.9 - 57.6%±3.1 52.8%±3.1
MCTS 47.4%±1.9 42.4%±3.0 - 43.7%±1.9
UCB 55.1%±3.1 47.3%±3.1 56.3%±1.9 -

8×8 Phantom Domineering

H-MCTS SH MCTS UCB

H-MCTS - 48.9%±3.1 53.0%±3.1 54.5%±3.1
SH 51.1%±3.1 - 56.1%±3.1 51.8%±3.1
MCTS 47.0%±3.1 43.9%±3.1 - 51.3%±3.1
UCB 45.6%±3.1 48.7%±3.1 51.3%±3.1 -

Table 2. Win rates with respect to the row player. Minimum of 1,000 games per
experiment, 25,000 simulations per move.

Tables 1 and 2 show the comparative results for search performed with 10,000
and 25,000 simulations per move, respectively. For most experiments in these
tables, 1,000 matches were played. However, in some cases where results were
close to con�dence bounds, 1,500 extra matches were played. First, results show
that only in Go Fish did performing search improve performance over �at Monte-
Carlo sampling, in both Lost Cities and Phantom Domineering performing search
did not improve performance. This coincides with previous results for Phantom
Go, for which it was determined that search could did not perform better than
UCB sampling.

In all games, using H-MCTS improves performance over MCTS when sam-
pling 10,000 simulations per move. In the 25,000 case, MCTS and UCB's perfor-
mances appear to recover in Lost Cities and Phantom Go. In Go Fish, perfor-
mance is stable with respect to the number of simulations. For the games where
performing search does not improve performance over single-ply sampling, SH
is either on par or outperforms UCB.

In all cases, in both experimental setups, SH or H-MCTS either outperforms
MCTS and UCB signi�cantly, or does not negatively impact performance. In

12

Phantom Domineering, sampling using SH improves performance over UCB by
up to 8.6%. A signi�cant improvement when considering that no knowledge or
heuristics were introduced in the search. Moreover, SH improves the performance
of the award-winning engine GoLois by up to 7.1% over UCB, as shown in
Table 3. In this table we detail the results over di�erent C constants for UCB,
showing that without tuning any parameter, SH is able to outperform UCB
in all cases. UCB's performance similarly somewhat recovers when given more
simulations. However, in all but two cases (when C = 0.4 or C = 0.6), SH still
signi�cantly outperforms UCB with 25,000 simulations per move.

Phantom Go

10,000 25,000

C Simulations Simulations

SH vs. UCB 0.1 69.6%±2.9 70.6%±2.9
0.2 58.8%±3.1 58.6%±3.1
0.3 58.1%±3.1 54.3%±3.1
0.4 58.0%±3.1 53.0%±3.1
0.5 57.1%±3.1 55.3%±3.1
0.6 59.1%±3.1 51.9%±3.1
0.7 60.3%±3.1 56.7%±3.1
0.8 61.5%±3.1 58.6%±3.1
0.9 64.5%±3.0 57.8%±3.1

Table 3. Experimental results for Phantom Go. SH vs. UCB with varying C constant.
1,000 games, win rates with respect to SH.

6 Conclusions

This paper has investigated Sequential Halving as a selection policy in partially
observable games. In the MCTS framework, Sequential Halving was applied at
the root of the search tree, and UCB1 elsewhere, leading to a hybrid algorithm
called H-MCTS. Experimental results revealed that H-MCTS performed the best
in Go Fish, whereas its performance is on par in Lost Cities and Phantom Dom-
ineering. In Phantom Go, Sequential Halving as a �at Monte-Carlo Search was
the best algorithm for 10,000 play-outs. For 25,000 play-outs, it was still compet-
itive but the di�erence with the alternative approach UCB was not statistically
signi�cant. Even in cases where Sequential Halving was not better it still has
the advantage that it is parameter free.

13

A possible cause for concern when using UCT in partially observable domains
is that the statistics in the tree may become conditioned on a set of determiniza-
tions. When a new determinization is used for each sample, the current statistics
of each node are biased towards previous determinizations and may not neces-
sarily hold for other determinizations in the future. A uniform selection method
such as Sequential Halving may circumvent this possible problem, since selection
is not based on the current statistics of each node. Rather, nodes are explored
uniformly regardless of their statistics and are only removed from selection after
being sampled equally often as their siblings.

7 Future Research

Based on the results in this paper and previous work [20], H-MCTS and Sequen-
tial Halving have shown promising result in both fully and partially observable
games. This leads to several directions for future research. We propose an in-
vestigation into SHOT and H-MCTS in partially observable games by using a
limited set of determinizations, and a single tree per determinization. Because
in these cases it is possible to use Sequential Halving at internal nodes other
than the root. For future work in H-MCTS in general, the All-Moves-As-First
(AMAF) [5] heuristic is considered, a popular method used in MCTS to improve
early estimation of nodes. For partially observable domains in speci�c, we intend
to investigate non-uniform selection of determinizations.

References

1. Arneson, B., Hayward, R., Henderson, P.: Monte-Carlo tree search in Hex. IEEE
Trans. Comput. Intell. AI in Games 2(4), 251�258 (2010)

2. Audibert, J., Bubeck, S., Munos, R.: Best arm identi�cation in multi-armed ban-
dits. In: Proc. 23rd Conf. on Learn. Theory. pp. 41�53 (2010)

3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2-3), 235�256 (2002)

4. Balla, R.K., Fern, A.: UCT for tactical assault planning in real-time strategy games.
In: Boutilier, C. (ed.) Proc. of the 21st Int. Joint Conf. on Artif. Intel (IJCAI). pp.
40�45 (2009)

5. Bouzy, B., Helmstetter, B.: Monte-Carlo Go developments. In: Advances in com-
puter games, pp. 159�174. Springer (2004)

6. Browne, C., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte-Carlo tree
search methods. IEEE Trans. on Comput. Intell. AI in Games 4(1), 1�43 (2012)

7. Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in �nitely-armed and
continuous-armed bandits. Theoretical Comput. Sci. 412(19), 1832�1852 (2010)

8. Buro, M., Long, J., Furtak, T., Sturtevant, N.: Improving state evaluation, infer-
ence, and search in trick-based card games. In: Boutilier, C. (ed.) IJCAI 2009,
Proceedings of the 21st International Joint Conference on Arti�cial Intelligence.
pp. 1407�1413. Pasadena, CA, USA (2009)

14

9. Cazenave, T.: A Phantom Go program. In: van den Herik, H.J., Hsu, S.C., Hsu,
T.S., Donkers, H.H.L.M. (eds.) Advances in Computer Games (ACG 11). Lecture
Notes in Computer Science, vol. 4250, pp. 120�125. Springer-Verlag, Berlin, Ger-
many (2006)

10. Cazenave, T.: Sequential halving applied to trees. IEEE Trans. on Comput. Intell.
AI in Games 7(1), 102�105 (2015)

11. Ciancarini, P., Favini, G.: Monte Carlo tree search in Kriegspiel. AI Journal
174(11), 670��684 (2010)

12. Coulom, R.: E�cient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M. (eds.) Proc. 5th Int.
Conf. Comput. and Games. LNCS, vol. 4630, pp. 72�83 (2007)

13. Cowling, P., Powley, E., Whitehouse, D.: Information set monte carlo tree search.
IEEE Transactions on Computational Intelligence and AI in Games 4(2), 120�143
(2012)

14. Feldman, Z., Domshlak, C.: Simple regret optimization in online planning for
markov decision processes. J. Artif. Intell. Res. (JAIR) 51, 165�205 (2014)

15. Ginsberg, M.: Gib: Steps toward an expert-level bridge-playing program. In: Dean,
T. (ed.) Proceedings of the Sixteenth International Joint Conference on Arti�cial
Intelligence (IJCAI-99). vol. 1, pp. 584�589. Morgan Kaufmann (1999)

16. Karnin, Z., Koren, T., Somekh, O.: Almost optimal exploration in multi-armed
bandits. In: Proc. of the Int. Conf. on Mach. Learn. pp. 1238�1246 (2013)

17. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Sche�er, T., Spiliopoulou, M. (eds.) Euro. Conf. Mach. Learn., LNAI, vol. 4212,
pp. 282�293. Springer-Verlag (2006)

18. Nijssen, J.A.M., Winands, M.H.M.: Monte-Carlo tree search for the hide-and-seek
game Scotland Yard. Transactions on Computational Intelligence and AI in Games
4(4), 282�294 (2012)

19. Pepels, T., Winands, M.H.M., Lanctot, M.: Real-time Monte-Carlo tree search in
Ms Pac-Man. IEEE Trans. Comp. Intell. AI Games 6(3), 245�257 (2014)

20. Pepels, T., Cazenave, T., Winands, M.H.M., Lanctot, M.: Minimizing simple and
cumulative regret in Monte-Carlo tree search. In: Computer Games, Communica-
tions in Computer and Information Science, vol. 504, pp. 1�15. Springer (2014)

21. Powley, E.J., Whitehouse, D., Cowling, P.I.: Monte Carlo tree search with macro-
actions and heuristic route planning for the physical travelling salesman problem.
In: IEEE Conf. Comput. Intell. Games. pp. 234�241. IEEE (2012)

22. Rimmel, A., Teytaud, O., Lee, C., Yen, S., Wang, M., Tsai, S.: Current frontiers
in computer Go. IEEE Trans. Comput. Intell. AI in Games 2(4), 229�238 (2010)

23. Russell, S., Norvig, P.: Arti�cial Intelligence: A Modern Approach. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, third edn. (2010)

24. Sheppard, B.: World-championship-caliber Scrabble. Arti�cial Intelligence 134(1�
2), 241�275 (2002)

25. Tolpin, D., Shimony, S.: MCTS based on simple regret. In: Proc. Assoc. Adv. Artif.
Intell. pp. 570�576 (2012)

26. Winands, M.H.M., Björnsson, Y., Saito, J.T.: Monte Carlo Tree Search in Lines of
Action. IEEE Trans. Comp. Intell. AI Games 2(4), 239�250 (2010)

