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Abstract. Monte Carlo Tree Search (MCTS) is a general search algorithm that
has improved the state of the art for multiple games and optimization problems.
Nested Rollout Policy Adaptation (NRPA) is an MCTS variant that has found
record-breaking solutions for puzzles and optimization problems. It learns a play-
out policy online that dynamically adapts the playouts to the problem at hand. We
propose to enhance NRPA using more selectivity in the playouts. The idea is ap-
plied to three different problems: Bus regulation, SameGame and Weak Schur
numbers. We improve on standard NRPA for all three problems.

1 Introduction

MCTS is a state of the art search algorithm that has greatly improved the level of play
in games such as Go [12, 13] and Hex [22]. The principle underlying MCTS is to play
random games and to use the statistics on the moves played during the games so as to
find the best moves [25].

MCTS can also be applied to problems other than games [6]. Examples of non-
games applications are Security, Mixed Integer Programming, Traveling Salesman Prob-
lem, Physics Simulations, Function Approximation, Constraint Problems, Mathemati-
cal Expressions, Planning and Scheduling.

Some MCTS algorithms have been tailored to puzzles and optimization problems.
For example Nested Monte Carlo Search (NMCS) [7] gives good results for multiple
optimization problems. NRPA is an improvement of NMCS that learns a playout policy
online [28].

In this paper we improve NRPA adding selectivity in the playouts. We propose to
modify the standard playout policy used by NRPA in order to avoid bad moves during
playouts.

The paper is organized in three remaining sections: section two presents related
works , section three details selective policies for different problems and section four
gives experimental results.

2 Related Work

NMCS is an algorithm that improves Monte Carlo search with Monte Carlo search. It
has different levels of nested playouts and an important feature of the algorithm is that
it records the best sequence of moves at each search level. The algorithm was initially
applied to puzzles such as Morpion Solitaire, SameGame and Sudoku.
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A further application of NMCS is the Snake-In-The-Box problem [23]. NMCS has
beaten world records for this problem that has application in coding theory. The goal of
the problem is to find the longest possible path in a high dimensional hypercube so that
nodes in the path never have more than two neighboring nodes also in the path.

Bruno Bouzy improved NMCS using playout policies. For example for the Pancake
problem [4] he uses domain specific playout policies so as to beat world records with
an improved NMCS.

Another variation on NMCS is Monte-Carlo Fork Search [2] that branches deep in
the playouts. It was successfully applied to complex cooperative pathfinding problems.

The Weak Schur problem [19] is a problem where informed playout policies can
give much better results than standard policies when used with NMCS [3].

Policy learning has been successfully used for the Traveling Salesman with Time
Windows (TSPTW) in combination with NMCS [27].

An effective combination of nested levels of search and of policy learning has been
proposed with the NRPA algorithm [28]. NRPA holds world records for Morpion Soli-
taire and crosswords puzzles.

NRPA is given in algorithm 3. The principle is to learn weights for the possible
actions so as to bias the playouts. The playout algorithm is given in algorithm 1. It
performs Gibbs sampling, choosing the actions with a probability proportional to the
exponential of their weights.

The weights of the actions are updated at each step of the algorithm so as to favor
moves of the best sequence found so far at each level. The principle of the adapta-
tion is to add 1.0 to the action of the best sequence and to decrease the weight of the
other possible actions by an amount proportional to the exponential of their weight. The
adaptation algorithm is given in algorithm 2.

Playout policy adaptation has also been used for games such as Go [20] or various
other games with success [8].

NRPA works by biasing the probability of an action by looking up a weight associ-
ated to the action. An alternative is to make the bias a function of the current state and
the proposed action [26].

An improvement of standard NRPA is to combine it with beam search yielding
Beam NRPA [11].

Stefan Edelkamp and co-workers have applied the NRPA algorithm to multiple
problems. They have optimized the algorithm for the TSPTW problem [10, 14].

Other applications deal with 3D packing with object orientation [16], the physical
traveling salesman problem [17], the multiple sequence alignment problem [18], logis-
tics [15] or cryptography [21].

3 Selective Policies

The principle underlying selective policies is to modify the legal moves so that moves
that are unlikely to be good are pruned during playouts.

This can be done differently for each application of the algorithm. In this section we
describe the move pruning for three problems: the bus regulation problem, SameGame
and the Weak Schur problem.



Algorithm 1 The playout algorithm
playout (state, policy)
sequence← []
while true do

if state is terminal then
return (score (state), sequence)

end if
z← 0.0
for m in possible moves for state do
z← z + exp (k × policy [code(m)])

end for
choose a move with probability proportional to exp(k×policy[code(move)])

z

state← play (state, move)
sequence← sequence + move

end while

Algorithm 2 The adapt algorithm
adapt (policy, sequence)
polp← policy
state← root
for move in sequence do
polp [code(move)]← polp [code(move)] + α
z← 0.0
for m in possible moves for state do
z← z + exp (policy [code(m)])

end for
for m in possible moves for state do
polp [code(m)]← polp [code(m)] - α ∗ exp(policy[code(m)])

z

end for
state← play (state, move)

end for
policy← polp

Algorithm 3 The NRPA algorithm
NRPA (level, policy)
if level == 0 then

return playout (root, policy)
end if
bestScore←−∞
for N iterations do

(result,new)← NRPA(level − 1, policy)
if result ≥ bestScore then

bestScore← result
seq← new

end if
policy← adapt (policy, seq)

end for
return (bestScore, seq)



3.1 Bus regulation

In the bus regulation problem [9] the bus regulator knows the location of all the buses
of a bus line. At each stop he can decide to make a bus wait before continuing his
route. Waiting at a stop can reduce the overall passengers waiting time. The score of
a simulation is the sum of all the passengers waiting time. Optimizing a problem is
finding a set of bus stopping times that minimizes the score of the simulation. It is
possible to use rules to decide the bus waiting time given the number of stops before
the next bus. Monte Carlo bus regulation with NMCS has been shown to improve on
rule-based regulation.

In this paper we use NRPA to choose the bus waiting times. We compare the stan-
dard policy that can choose a waiting time between 1 and 5 minutes to a selective policy
that always chooses a waiting time of 1 if there are fewer than δ stops before the next
bus.

An important detail of the NRPA algorithm is the way moves are coded. A move
code for the bus regulation problem takes into account the bus stop, the time of arrival
to the bus stop and the number of minutes to wait before leaving the stop.

Algorithm 4 gives the rule used to compute the legal moves for the bus regulation
problem.

Algorithm 4 Legal moves with a selective policy for the bus regulation problem.
legalMoves (moves)
moves← [1 minute]
if next bus is at strictly less than δ stops then

return moves
end if
for i in 2,max waiting time do

add (i minutes) to moves
end for
return moves

3.2 SameGame

SameGame is a puzzle composed of a rectangular grid containing cells of different
colors. A move removes connected cells of the same color. The cells of other colors fall
to fill the void created by a move. At least two cells have to be removed for a move to
be legal. The score of a move is the square of the number of removed cells minus two.
A bonus of one thousand is credited for completely clearing the board.

MCTS has been quite successful for SameGame. SP-MCTS [30, 29], NMCS [7]
and Nested MCTS [1] have reached great scores at SameGame. For all algorithms an
effective improvement on random playouts is to use the tabu color strategy. As it is often
beneficial to remove all the cells of the most frequent color in one move, the tabu color
strategy avoids the moves of the most frequent color until all of its cells form only one
group.



We propose to apply NRPA to SameGame and to improve on standard NRPA using
selective policies.

There are many possible different moves at SameGame. So many moves that it is
not possible to code them with a simple function without exceeding storage capacities.
The way we deal with this problem is by using Zobrist hashing [31]. Zobrist hashing is
popular in computer games such as Go and Chess [5]. It uses a 64 bits random integer
for each possible color of each cell of the board. The code for a move is the XOR of
the random numbers associated to the cells of the move. A transposition table is used to
store the codes and their associated weights. The index of a move in the transposition
table is its 16 lower bits. For each entry of the transposition table, a list of move codes
and weights is stored.

It has been previously shown that in SameGame it is possible to improve simulation
policies by allowing more randomness in the endgame [24].

What we do is that we use a modified version of the tabu color strategy. We allow
moves of size two of the tabu color when the number of moves already played is greater
than a threshold with value t. Algorithm 5 gives the function used to compute the legal
moves for SameGame.

Algorithm 5 Legal moves with a selective policy for SameGame.
legalMoves (moves, tabuColor)
if only one move of the tabu color then

tabuColor = noColor
end if
for m in possible moves do

if color (m) == tabuColor then
if nbCells (m) == 2 and nb moves played > t then

add m to moves
end if

else
add m to moves

end if
end for
if moves is empty then

for m in possible moves do
add m to moves

end for
end if

Figure 1 gives an example of a starting board at SameGame. We can see on the side
the number of cells for each color. In this example the tabu color is green since it has
54 cells.



Fig. 1. Example of the initial state of a SameGame problem

3.3 Weak Schur Numbers

The Weak Schur problem is to find a partition of consecutive numbers that contains as
many consecutive numbers as possible, where a partition must not contain a number
that is the sum of two previous numbers in the same partition.

The last number that was added to the partition before the next number could not be
placed is the score of a partition. The goal is to find partitions with high scores.

The current records for the Weak Schur problem are given in table 1. The records
for 7 and 8 are held by Bruno Bouzy using NMCS [3].

One of the best partitions of size three is for example:

1 2 4 8 11 22
3 5 6 7 19 21 23
9 10 12 13 14 15 16 17 18 20

When possible, it is often a good move to put the next number in the same partition
as the previous number. The selective policy for SameGame follows this heuristic. The
algorithm for the legal moves is given in algorithm 6. If it is legal to put the next number
n in the same partition as the previous number then it is the only legal move considered.
Otherwise all legal moves are considered.

The code of a move for the Weak Schur problem takes as input the partition of the
move, the integer to assign and the previous number in the partition.

Table 1. Current records for the Weak Schur problem

K 1 2 3 4
WS(K) =2 =8 =23 =66
K 5 6 7 8
WS(K) ≥ 196 ≥ 582 ≥ 1736 ≥ 5105



Algorithm 6 Legal moves with a selective policy for the Weak Schur problem.
legalMoves (moves, n)
moves← []
for i in 0,nbPartitions do

if previous number in partition i == n - 1 then
if playing n in partition i is legal then

add (i, n) to moves
end if

end if
end for
if moves == [] then

for i in 0,nbPartitions do
if playing n in partition i is legal then

add (i, n) to moves
end if

end for
end if

4 Experimental Results

In order to evaluate a policy we run 200 times the NRPA algorithm with this policy.
The scores are recorded starting at 0.01 seconds and for every power of two multiplied
by 0.01. The algorithm is stopped after 163.84 seconds. We chose to record the scores
this way in order to see the average improvement in score each time the search time is
doubled. It has no influence on the NRPA algorithm.

4.1 Bus regulation

Table 2 gives the evolution with time of the best score of the standard NRPA algorithm
in the No δ column and compares it to the evolution of the best score using rules with
different δ for the legal moves. We can see that using δ = 3 always gives better results
than the No δ policy. For small times the δ = 4 policy is much better than the other
policies. For the longest search time (163.84 seconds), the playout rule that uses δ = 3
has a score of 1,610 which is better than the playout policy without rules that has a
score of 1,632.

4.2 SameGame

We performed two experiments for SameGame. The first experiment tests different
playout strategies for the first problem of the test set. NRPA is run 200 times for each
strategy and the evolution of the mean score with time is recorded.

The second experiment runs a level 4 search on the standard test set and the results
are compared to the state of the art.



Table 2. Evaluation of selective policies for the bus regulation problem

time No δ δ = 1 δ = 2 δ = 3 δ = 4
0.01 2,620 2,441 2,344 2,147 1,929
0.02 2,441 2,292 2,173 2,049 1,866
0.04 2,329 2,224 2,098 2,000 1,828
0.08 2,242 2,178 2,045 1,959 1,791
0.16 2,157 2,135 2,011 1,925 1,764
0.32 2,107 2,108 1,986 1,903 1,736
0.64 2,046 2,074 1,959 1,868 1,713
1.28 1,974 2,013 1,917 1,811 1,694
2.56 1,892 1,926 1,869 1,754 1,679
5.12 1,802 1,832 1,822 1,703 1,667

10.24 1,737 1,757 1,769 1,660 1,658
20.48 1,698 1,712 1,729 1,640 1,651
40.96 1,682 1,695 1,699 1,629 1,644
81.92 1,660 1,674 1,661 1,617 1,637

163.84 1,632 1,642 1,629 1,610 1,635

Table 3 gives the evolution of the mean score for problem one of the standard test
set. We can observe that the tabu strategy is a large improvement over the standard
policy (2,484.18 instead of 2,011.25). Allowing moves of the tabu color of size two
when the playout length is greater than 10 gives even better results for long time settings
even if it is worse for short time settings. The tabu policy is equivalent to the selective
policy with t = ∞. For short time settings the tabu policy is the best one. However when
more time is given to the algorithm it discovers ways of using the increased freedom
of moves contained in the selective policy with t > 10 and eventually reaches a better
score of 2,636.22 instead of 2,484.18 for the tabu policy.

Table 3. Evaluation of selective policies for SameGame

time No tabu tabu t > 0 t > 10
0.01 155.83 352.19 260.37 257.59
0.02 251.28 707.56 487.27 505.05
0.04 340.18 927.63 666.91 677.57
0.08 404.27 1,080.64 810.29 822.44
0.16 466.15 1,252.14 924.41 939.30
0.32 545.78 1,375.78 1,043.97 1,058.54
0.64 647.63 1,524.37 1,185.77 1,203.91
1.28 807.20 1,648.16 1,354.69 1,356.81
2.56 1,012.42 1,746.74 1,508.10 1,497.90
5.12 1,184.77 1,819.43 1,616.44 1,605.86

10.24 1,286.25 1,886.48 1,737.35 1,712.17
20.48 1,425.55 1,983.42 1,859.12 1,879.10
40.96 1,579.67 2,115.80 2,078.30 2,100.47
81.92 1,781.40 2,319.44 2,329.73 2,384.24

163.84 2,011.25 2,484.18 2,539.75 2,636.22



Table 4 gives the best scores obtained with different algorithms for SameGame. The
website js-games.de maintains the best scores obtained by its internet users. We can see
that these scores are higher than the one obtained with Monte Carlo search. Little is
known about the holders of these records. However we could exchange emails with
a record holder who told us he is using beam search with a complex domain specific
evaluation function to play SameGame.

We can also observe that NRPA with a selective policy has better scores than NMCS
and SP-MCTS since the total of its scores is 80,030 for a level 4 search. It is approxi-
mately 2,000 points better than previous MCTS algorithms.

Table 4. Best scores for SameGame

position NMCS SP-MCTS Selective NRPA js-games.de
1 3,121 2,919 3,179 3,413
2 3,813 3,797 3,985 4,023
3 3,085 3,243 3,635 4,019
4 3,697 3,687 3,913 4,215
5 4,055 4,067 4,309 4,379
6 4,459 4,269 4,809 4,869
7 2,949 2,949 2,651 3,435
8 3,999 4,043 3,879 4,771
9 4,695 4,769 4,807 5,041

10 3,223 3,245 2,831 3,937
11 3,147 3,259 3,317 3,783
12 3,201 3,245 3,315 3,921
13 3,197 3,211 3,399 3,821
14 2,799 2,937 3,097 3,263
15 3,677 3,343 3,559 4,161
16 4,979 5,117 5,025 5,517
17 4,919 4,959 5,043 5,227
18 5,201 5,151 5,407 5,503
19 4,883 4,803 5,065 5,343
20 4,835 4,999 4,805 5,217

Total 77,934 78,012 80,030 87,858

4.3 Weak Schur Numbers

Table 5 and table 6 give the evolution with time of the best score of the standard NRPA
algorithm and of the rule-based selective NRPA algorithm. The most striking example
of the usefulness of a selective policy is for 9 partitions in table 6. The standard policy
reaches 473 in 163.84 seconds when the selective policy reaches 7,538 for the same
running time.



Table 5. Evaluation of selective policies for the Weak Schur problem

time ws(6) ws-rule(6) ws(7) ws-rule(7)
0.01 81 300 111 652
0.02 110 376 150 825
0.04 117 398 160 901
0.08 123 419 168 950
0.16 129 435 177 1,001
0.32 137 448 186 1,050
0.64 147 460 197 1,100
1.28 154 465 216 1,150
2.56 164 468 236 1,184
5.12 174 479 252 1,203

10.24 186 489 267 1,220
20.48 197 498 284 1,258
40.96 215 503 303 1,297
81.92 232 505 337 1,332

163.84 239 506 384 1,356

Table 6. Evaluation of selective policies for the Weak Schur problem

time ws(8) ws-rule(8) ws(9) ws-rule(9)
0.01 151 1,382 199 2,847
0.02 193 1,707 246 3,342
0.04 207 1,898 263 3,717
0.08 218 2,055 273 4,125
0.16 227 2,162 286 4,465
0.32 236 2,297 293 4,757
0.64 245 2,423 303 5,044
1.28 263 2,574 314 5,357
2.56 288 2,717 331 5,679
5.12 316 2,852 362 6,065

10.24 335 2,958 384 6,458
20.48 351 3,010 403 6,805
40.96 371 3,096 422 7,117
81.92 394 3,213 444 7,311

163.84 440 3,318 473 7,538



5 Conclusion

We have applied selective policies to three quite different problems. For each of these
problems selective policies improve NRPA. We only used simple policy improvements,
better performance could be obtained refining the proposed policies.

For all three problems, simple and effective rules could be found that avoid bad
moves in playouts. In some other problems such as Morpion Solitaire [7, 28] for ex-
ample such rules could be more difficult to find. Also, even if rules generally improve
playouts they can make NRPA blind to some moves that are good in specific cases and
prevent it from finding the best sequence.

For future work we intend to improve the selective policies and to apply the princi-
ple to other difficult problems.
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