
Ary: A Program for General Game Playing
Jean Ḿehat, Tristan Cazenave

Universit́e de Paris 8, Saint Denis, 93536 Cedex, France
email:{jm,cazenave}@ai.univ-paris8.fr

General Game Playing
General Game Playing consists in building programs to
play the games they have never met before. A Game Master
sends the rules to the participants and after a delay devoted
to game analysis, the programs start playing. It can be ap-
plied to games with any number of players, with alterna-
tive or simultaneous moves, for zero-sum or collaborative
games types.
General Game Playing avoids the shortcomings of current
specialized game playing programs that cannot adapt to
other domains than the game they were programmed for.
At the very least it induces a broad exploration of the char-
acteristics of decision situation to identify automatically the
heuristics that may give good results in this situation.

The Game Description Language
The Game Description Language (GDL) is used to de-
scribe a game. It is based on first order logic, hence
missing arithmetic. The following figure contains a rep-
resentation in GDL of a binary version of the simulta-
neous play gameMy father has more money than yours
[Berlekamp, Conway, & Guy1982]. Keywords of GDL are
written in upper case.
(ROLE left) (ROLE right)
(LEGAL (DOES ?player (tell 0))
(LEGAL (DOES ?player (tell 1)))
(<= (NEXT (value ?p ?x))

(DOES ?p (tell ?x)))
(<= TERMINAL (TRUE (value ?p ?x)))
(<= (other ?x ?y) (role ?x) (role ?y)

(DISTINCT ?x ?y))
(<= (GOAL ?p 0) (TRUE (value ?p 0))

(other ?p ?op) (TRUE (value ?op 1)))
(<= (GOAL ?p 50) (TRUE (value ?p ?x))

(other ?p ?op) (TRUE (value ?op ?x)))
(<= (GOAL ?p 100) (TRUE (value ?p 1))

(other ?p ?op) (TRUE (value ?op 0)))
The rules indicate that there are two players (left andright),
enumerates the legal moves (telling a figure), identify the
terminal nodes (after the first and only move) and the reward
for each player: 0 for the smaller figure, 100 for the greatest
and 50 in case of tie. The description of this game does not
need the INIT keyword, used to describe the initial state of
the board.
In the following, we designate the current situation of the
game as theboard status, even for games that are not played
on a board.

Ary uses Prolog for rule interpretation
We made the choice to use a Prolog Interpreter as an infer-
ence engine for the interpretation of the rules of the game.

PrologAryGame
Master

in Prolog

list of legal moves

game description

in KIF

game description

setof([P, M], legal(P, M), L)

Figure 1: Ary translates the game description into
Prolog and loads it into the interpreter. The

characteristics of a position are then obtained through
the Prolog interpret.

The translation process is relatively straightforward, with
slight modifications to accomodate Prolog and GDL differ-
ences, and reordonnancement of the clauses to try to attain
better performances.
The game theorems are loaded into the interpreter once or
all. Board status are then loaded via calls toassert and
retract to modify the view of the current situation in the
interpret. The transition from one status to another is done
incrementally, asserting and retracting only the changed
properties.

Monte-Carlo explorations
The Monte-Carlo implementation is straightforward: until
the expiration of the thinking time, the current board status
is loaded into the interpreter, legal moves are generated, and
a random game is played until arriving in a terminal board
status. The score is asked to the interpreter and accumulated
in a counter associated with each of the first legal moves.

value

update

playout

move

value

value

update

playout

move

value

value

update

playout

move

value

value

update

playout

move

value

value

update

playout

move

value

initial
board
status

first legal moves

Figure 2: Initial moves are evaluated by random
playouts.

When the thinking time expires, the current game is stopped
and the move with the best mean for Ary is chosen. Ig-
noring the scores of the other players has a clear advan-
tage in simplicity: it is not necessary to distinguish be-
tween games that have one, two or more players; zero-sum
games and cooperative games are treated identically. More-
over, we expected it to provide more interesting play, and it
was in agreement with our goal to have Ary plays its best
moves. Finally, the round-robin nature of the qualifying
phase made it uninteresting to try to limit the score of the
opponent.

UCT tree construction
Ary usesUpper Confidence bounds applied to Trees, usu-
ally called UCT. UCT adds to Monte-Carlo explorations
of the games move tree an informed way to choose the
branches that will be explored. A subset of the move tree
is constructed incrementally, with a new node added for
each Monte-Carlo exploration. On the next exploration, a
path is chosen in the already built move tree by choosing
the branch whose gain is maximum, as estimated by the
Monte-Carlo algorithm plus confidence in the estimation,
calculated by a function of the number of explorations of
the nodet and of the number of exploration of the branchs
as

√

log(t)/s.
When arriving at a leaf node of the move tree, if it is not a
terminal situation (i.e. it is not a leaf of the abstract move
tree), then a new node is added to the tree and a Monte-
Carlo simulation is started to obtain an evaluation of this
node, also used to update the evaluation of the parent nodes
[Kocsis & Szepesv̀ari2006].

value

update

playout

move

value

value

update

playout

move

value

value

update

playout

move

value

value

update

playout

move

value

value

update

playout

move

value

initial
board
status

first legal moves

Figure 3: UCT combines the construction of a tree of
moves with Montecarlo exploration to approximate a

value of a node.

We had to adapt UCT to games with simultaneous play.
A sound adaptation would have been to compute for each
node a gain matrix from the mean of the previous explo-
rations of that branch, to adjust the values of this gain ma-
trix with the upper confidence bound and use it to select the
branch to explore. We use a simpler solution, reminiscent of
what worked well in the qualifications of 2007: the moves
are chosen independently for each player and these inde-
pendent moves are combined to choose the next branch.

UCT, Montecarlo and Minimax
A clear advantage of UCT over a Pure Monte Carlo explo-
ration is that it is garanteed to converge to the same value
as a Minimax exploration. For example in the game whose
move tree is represented on figure 4, Montecarlo will eval-
uate moveb as an average of the value of the leavesd, e and
f , and will choose to move atc.

a

b
c

d e
0 0

f
100

50

Figure 4: A simple move tree for a single player game
that Pure Montecarlo won’t solve.

UCT on the other hand will favor the exploration of the
branchd overe andf and the value of nodeb will converge
to 100, while these ofc will stay at50.

Exploration, Exploitation and Refutation
UCT can be tuned to explore, by multiplying the confidence
bound by a large factor. In limited time explorations of
move trees, this lead to poor performances it is unable to
find easy refutations of winning sequences of moves found
by a random playout.
On the other hand, when UCT is tuned to keep searching
in the promising moves sub-trees, it explores only superfi-
cially branch that may contain winning moves.
The current version of Ary tries to adapt the confidence
bound to the characteristics of a node.

Implementation of Ary
Ary is mainly written in C. It amounts to approximately
10K lines of code. The current version use either SWI-
Prolog or YAP; debugging is usually easier with SWI,
but YAP gives better performances [Wielemaker2003],
[Costaet al.2000].
It uses transposition tables. A version uses parallel comput-
ing based on MPI for the playouts, but it is not sufficiently
tested for use in the competition.

Ary results in the GGP AAAI Tournaments
In the qualifying phase of the 2007 competition, a prelimi-
nary version of Ary using only Montecarlo went out at the
third place.
Due to a combination of a crash of its usual machine and of
our inability to properly read a schedule, Ary did not show
up on the field for the first match of the 2007 final phase
and thus was eliminated from the competition.
The current version described here rated third in the 2008
qualifying phase.

References

[Berlekamp, Conway, & Guy1982] Berlekamp, E.; Con-
way, J. H.; and Guy, R. K. 1982.Winning Ways. Aca-
demic Press.

[Costaet al.2000] Costa, V. S.; Damas, L.; Reis, R.; and
Azevedo, R. 2000. The Yap prolog users manual, 2000.
Technical report.

[Kocsis & Szepesv̀ari2006] Kocsis, L., and Szepesvàri, C.
2006. Bandit based monte-carlo planning. InECML,
volume 4212 ofLecture Notes in Computer Science, 282–
293. Springer.

[Wielemaker2003] Wielemaker, J. 2003. An overview of
the SWI-Prolog programming environment. In Mesnard,
F., and Serebenik, A., eds.,Proceedings of the 13th Inter-
national Workshop on Logic Programming Environments,
1–16. Heverlee, Belgium: Katholieke Universiteit Leu-
ven. CW 371.


