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Abstract

Monte Carlo Tree Search (MCTS) is the state of the art algorithm for Gen-
eral Game Playing (GGP). We propose to learn a playout policy online so
as to improve MCTS for GGP. We also propose to learn a policy not only
using the moves but also according to the features of the moves. We test
the resulting algorithms named Playout Policy Adaptation (PPA) and Play-
out Policy Adaptation with move Features (PPAF) on Atarigo, Break-
through, Misere Breakthrough, Domineering, Misere Domineer-
ing, Knightthrough, Misere Knightthrough and Nogo. The exper-
iments compare PPA and PPAF to Upper Confidence for Trees (UCT) and
to the closely related Move-Average Sampling Technique (MAST) algorithm.

Keywords: Monte Carlo Tree Search, Playout Policy, Machine Learning,
Computer Games

1. Introduction

Monte Carlo Tree Search (MCTS) has been successfully applied to many
games and problems [1]. The most popular MCTS algorithm is Upper Con-
fidence bounds for Trees (UCT) [2]. MCTS is particularly successful in the
game of Go [3]. It is also the state of the art in Hex [4] and General Game
Playing (GGP) [5, 6]. GGP can be traced back to the seminal work of Jacques
Pitrat [7]. Since 2005 an annual GGP competition is organized by Stanford
at AAAI [8]. Since 2007 all the winners of the competition use MCTS.

Offline learning of playout policies has given good results in Go [9, 10]
and Hex [4], learning fixed pattern weights so as to bias the playouts. Al-
phaGo [11] also uses a linear softmax policy based on pattern weights trained
on 8 million positions from human games and improved with hand crafted
features.
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The RAVE algorithm [12] performs online learning of moves values in
order to bias the choice of moves in the UCT tree. RAVE has been very suc-
cessful in Go and Hex. A development of RAVE is to use the RAVE values
to choose moves in the playouts using Pool RAVE [13]. Pool RAVE im-
proves slightly on random playouts in Havannah and reaches 62.7% against
random playouts in Go.

The GRAVE algorithm [14] is a simple generalization of RAVE. It uses
the RAVE value of the last node in the tree with more than a given number
of playouts instead of the RAVE values of the current node. It was successful
for many different games.

Move-Average Sampling Technique (MAST) is a technique used in the
GGP program CadiaPlayer so as to bias the playouts with statistics on moves
[5, 15]. It consists of choosing a move in the playout proportionally to the
exponential of its mean. MAST keeps the average result of each action
over all simulations. Moves found to be good on average, independent of a
game state, will get higher values. In the playout step, the action selections
are biased towards selecting such moves. This is done using the Gibbs (or
Boltzmann) distribution.

Predicate Average Sampling Technique (PAST) is another technique used
in CadiaPlayer. It consists in associating learned weights to the predi-
cates contained in a position represented in the Game Description Language
(GDL).

CadiaPlayer also uses Features to Action Sampling Technique (FAST).
FAST learns features such as piece values using TD(λ) [16]. FAST is used
to bias playouts in combination with MAST but only slightly improves on
MAST.

Playout Policy Adaptation (PPA) [17] also uses Gibbs sampling, however
the evaluation of an action for PPA is not its mean over all simulations
such as in MAST. Instead the value of an action is learned comparing it to
the other available actions for the states where it has been played. PPA is
therefore closely related to reinforcement learning whereas MAST is about
statistics on moves. Adaptive sampling techniques related to PPA have also
been tried recently for Go with success [18].

Later improvements of CadiaPlayer are N-Grams and the last good reply
policy [19]. They have been applied to GGP so as to improve playouts by
learning move sequences. A recent development in GGP is to have multiple
playout strategies and to choose the one which is the most adapted to the
problem at hand [20].
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A related domain is the learning of playout policies in single-player prob-
lems. Nested Monte Carlo Search (NMCS) [21] is an algorithm that works
well for puzzles. It biases its playouts using lower level playouts. At level
zero NMCS adopts a uniform random playout policy. Online learning of play-
out strategies combined with NMCS has given good results on optimization
problems [22].

Online learning of a playout policy in the context of nested searches has
been further developed for puzzles and optimization with Nested Rollout
Policy Adaptation (NRPA) [23]. NRPA has found new world records in
Morpion Solitaire and crosswords puzzles. Stefan Edelkamp and co-workers
have applied the NRPA algorithm to multiple problems. They have optimized
the algorithm for the Traveling Salesman with Time Windows (TSPTW)
problem [24, 25]. Other applications deal with 3D Packing with Object
Orientation [26], the physical traveling salesman problem [27], the Multiple
Sequence Alignment problem [28] or Logistics [29]. The principle of NRPA is
to adapt the playout policy so as to learn the best sequence of moves found
so far at each level.

PPA is inspired by NRPA since it learns a playout policy in a related
fashion and adopts a similar playout policy. However PPA is different from
NRPA in multiple ways. NRPA is not suited for two player games since it
memorizes the best playout and learns all the moves of the best playout. The
best playout is ill-defined for two player games since the result of a playout is
either won or lost. Moreover a playout which is good for one player is bad for
the other player so learning all the moves of a playout does not make much
sense. To overcome these difficulties PPA does not memorize a best playout
and does not use nested levels of search. Instead of learning the best playout
it learns the moves of every playout but only for the winner of the playout.

NMCS has been previously successfully adapted to two-player games in a
recent work [30]. PPA is a follow-up to this paper since it is the adaptation
of NRPA to two-player games. PPA is an online learning algorithm, it starts
from scratch for every position and learns a position specific playout policy
each time. The PPA algorithm was first described in [17]. In this paper we
extend it to use move features so as to have more specific statistics on moves.

The use of features to improve MCTS playouts has also been proposed
in the General Game AI settings [31]. The approach is different from the
approach in this paper since features are part of the state and are used to
evaluate states. Instead we propose to use features to evaluate moves.

As our paper deals with learning action values it is also related to the
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detection of action heuristics in GGP [32].
We now give the outline of the paper. The next section details the PPA

and the PPAF algorithms and particularly the playout strategy and the adap-
tation of the policy. The third section gives experimental results for various
games. The last section concludes.

2. Online Policy Learning

PPA is UCT with an adaptive playout policy. It means that it develops a
tree exactly as UCT does. The difference with UCT is that in the playouts it
has a weight for each possible move and chooses randomly between possible
moves proportionally to the exponential of the weight.

In the beginning PPA starts with a uniform playout policy. All the
weights are set to zero. Then, after each playout, it adapts the policy of
the winner of the playout. The way it modifies the weights according to the
playout is similar to NRPA. In NRPA the weight of the move of the best
playout is increased by a constant α and the weight of the other moves are
decreased by a value proportional to the exponential of their weight. PPA
does a similar update except that it only adapts the policy of the winner of
the playout with the moves of the winner as there is no best playout to follow
in PPA.

The NRPA adaptation algorithm is given in Algorithm 1. It reinforces all
the moves of the best sequence found so far at a level. The algorithm is given
here to highlight the differences with the PPA adaptation algorithm described
later. For the sake of completeness we also give the NRPA algorithm in
Algorithm 2. It is not suited to multi-player games since players alternate
in a game and defining a best sequence is not as simple as in single player
games.

The different algorithms we deal with are UCT, PPA, PPAF, MAST and
MASTF. The playout code used by all algorithms except UCT is given in
algorithm 3. Each move of a playout is chosen with a probability proportional
to its associated weight. The k constant has to be tuned for MAST and
MASTF and it is always set to 1.0 for PPA and PPAF.

Algorithm 3 takes as parameters the board, the next player and the play-
out policy. The playout policy is an array of real numbers that contains a
number for each possible move. The only difference with a random play-
out is that it uses the policy to choose a move. Each move is associated to
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Algorithm 1 The NRPA adapt algorithm
adaptNRPA (policy, sequence)
polp← policy
state← root
for move in sequence do
polp [code(move)] ← polp [code(move)] + α
z ← 0.0
for m in possible moves for state do
z ← z + exp (policy [code(m)])

end for
for m in possible moves for state do
polp [code(m)] ← polp [code(m)] - α ∗ exp(policy[code(m)])

z

end for
state ← play (state, move)

end for
policy ← polp

Algorithm 2 The NRPA algorithm
NRPA (level, policy)
if level == 0 then

return playout (root, policy)
end if
bestScore ← −∞
for N iterations do

(result,new) ← NRPA(level − 1, policy)
if result ≥ bestScore then

bestScore ← result
seq ← new

end if
policy ← adaptNRPA (policy, seq)

end for
return (bestScore, seq)
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the exponential of its policy number and the move to play is chosen with a
probability proportional to this value.

An important detail of the playout algorithm is the code function. It
associates a different integer to all possible moves. In usual PPA and MAST
the code represents the move and only the move. In PPAF and MASTF the
same move can have different codes that depend on the presence of features
associated to the move. For example in Breakthrough a capture move will
not have the same code as a move implying the same starting and arriving
squares but not implying a capture.

The overall MCTS algorithm that is the same for PPA, PPAF, MAST
and MASTF is given in algorithm 6. It repeatedly calls the UCT algorithm
given in algorithm 7 and the adapt function. The adapt function differs for
PPA and PPAF and for MAST and MASTF. The PPA and PPAF adapt
function is given in algorithm 4. It is the same as the original PPA adapt
function. The difference between PPA and PPAF lies in the way moves are
coded not in the learning algorithm.

Algorithm 6 starts with initializing the policy to a uniform policy con-
taining only zeros for every move. Then it runs UCT for the given number of
playouts. UCT uses the playout algorithm for its playouts. They are biased
with the policy. The result of a call to the UCT function is one descent of the
tree plus one playout that gives the winner of this single playout. The playout
and its winner are then used to adapt the policy using the adapt function.
When all playouts have been played the algorithm returns the move that has
the most playouts at the root as in usual UCT.

The PPA adaptation algorithm is related to the adaptation algorithm of
NRPA. The main difference is that it is adapted to games and only learns the
moves of the winner of the playout. It does not use a best sequence to learn
as in NRPA but learns a different playout every time. It takes as parameter
the winner of the playout, the board as it was before the playout, the player
to move on this board, the playout to learn and the current playout policy.
It has a parameter α which is the number to add to the weight of the move in
the policy. The adapt algorithm plays the playout again and for each move
of the winner it biases the policy towards playing this move. It increases the
weight of the move of the winner of the playout and decreases the weight of
the other possible moves on the current board.

In order to be complete the MAST adaptation algorithm is given in Al-
gorithm 5. The k constant of the playout algorithm is set to one for PPA
and it has to be tuned for MAST. The MAST adapt function associates the
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statistics of the moves to the codes of the moves. It updates the number of
games and the number of wins of the moves played during the playout and
computes the weight of the code of a move as the average of the outcome of
the playouts where the move was played with the same features.

PPA and PPAF learn move weights faster than MAST and MASTF.
MAST and MASTF only update the weights of the moves that have been
played in the playout. PPA and PPAF also update the weights of the moves
that were once possible in the playout but that have not been played. This
feature of PPA and PPAF can prove better when there are a lot of possible
codes for the moves. This is the case for example when using elaborate
features associated to moves. It can increase a lot the number of codes
associated to the same move and make PPAF to the point.

Algorithm 3 The playout algorithm
playout (board, player, policy)
while true do

if board is terminal then
return winner (board)

end if
z ← 0.0
for m in possible moves on board do
z ← z + exp (k × policy [code(m)])

end for
choose a move for player with probability proportional to
exp(k×policy[code(move)])

z

play (board, move)
player ← opponent (player)

end while

3. Experimental Results

We played MAST, MASTF, PPA and PPAF against UCT with random
playouts. All algorithms use 10,000 playouts. The UCT constant is set to
0.4 for all algorithms as is usual in GGP. Each result is the outcome of a
500 games match, 250 playing first and 250 playing second. We test various
values of α so as to optimize PPA and PPAF. In the tables the number inside
parenthesis for PPA and PPAF is the α constant. We optimize MAST and
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Algorithm 4 The PPA adapt algorithm
adapt (winner, board, player, playout, policy)
polp← policy
for move in playout do

if winner = player then
polp [code(move)] ← polp [code(move)] + α
z ← 0.0
for m in possible moves on board do
z ← z + exp (policy [code(m)])

end for
for m in possible moves on board do
polp [code(m)] ← polp [code(m)] - α ∗ exp(policy[code(m)])

z

end for
end if
play (board, move)
player ← opponent (player)

end for
policy ← polp

Algorithm 5 The MAST adapt algorithm
adapt (winner, board, player, playout, policy)
for move in playout do
games [code(move)] ← games [code(move)] + 1
if winner = player then
wins [code(move)] ← wins [code(move)] + 1

end if
policy [code(move)] ← wins[code(move)]

games[code(move)]

play (board, move)
player ← opponent (player)

end for
policy ← polp
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Algorithm 6 The overall MCTS algorithm
MCTS (board, player)
for i in 0, maximum index of a move code do
policy[i] ← 0.0
games[i] ← 0.0
wins[i] ← 0.0

end for
for i in 0, number of playouts do
b ← board
winner ← UCT (b, player, policy)
b1 ← board
adapt (winner, b1, player, b.playout, policy)

end for
return the move with the most playouts

MASTF using various values for the k constant. In the tables the number
inside parenthesis for MAST and MASTF is the k constant. For each game
we test the 8× 8 board size.

The games we have experimented with are:

• Atarigo: the rule are the same as Go except that the first player to
capture a string has won. Atarigo has been solved up to size 6 × 6
[33]. The move feature we use for Atarigo is to add a code for the
pattern surrounding the move. The code takes into account the colors
of the four intersections next to the move.

• Breakthrough: The game starts with two rows of pawns on each
side of the board. Pawns can capture diagonally and go forward either
vertically or diagonally. The first player to reach the opposite row has
won. Breakthrough has been solved up to size 6×5 using Job Level
Proof Number Search [34]. The best program for Breakthrough 8×8
uses MCTS combined with an evaluation function after a short playout
[35]. The move feature we use for Breakthrough is to distinguish
between capture moves and moves that do not capture.

• Misere Breakthrough: The rules are the same as Breakthrough
except that the first player to reach the opposite row has lost. We use
the same move feature as in Breakthrough.
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Algorithm 7 The UCT algorithm
UCT (board, player, policy)
moves← possible moves on board
if board is terminal then

return winner (board)
end if
t← entry of board in the transposition table
if t exists then
bestV alue← −∞
for m in moves do
t← t.totalP layouts
w ← t.wins[m]
p← t.playouts[m]

value← w
p
+ c×

√
log(t)

p

if value > bestV alue then
bestV alue← value
bestMove← m

end if
end for
play (board, bestMove)
player ← opponent (player)
res ← UCT (board, player, policy)
update t with res

else
t← new entry of board in the transposition table
res ← playout (board, player, policy)
update t with res

end if
return res
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• Domineering: The game starts with an empty board. One player
places dominoes vertically on the board and the other player places
dominoes horizontally. The first player that cannot play has lost.
Domineering was invented by Göran Andersson [36]. Jos Uiterwijk
recently proposed a knowledge based method that can solve large rect-
angular boards without any search [37]. The move feature we use for
Domineering is to take into account the cells next to the domino
played They can be either empty or occupied. This simple feature en-
ables for example to detect moves on cells that cannot be reached by
the opponent. This is an important feature at Domineering.

• Misere Domineering: The rules are the same as Domineering
except that the first player unable to move has won. We use the same
move feature as in Domineering.

• Knightthrough: The rules are similar to Breakthrough except
that the pawns are replaced by knights that can only go forward. The
first player to move a knight on the last row of the opposite side has
won. The move feature we use for Knightthrough is to take into
account capture in the move code.

• Misere Knightthrough: The rules are the same as Knightthrough
except that the first player to reach the opposite row has lost. We use
the same move feature as in Knightthrough.

• Nogo: The rules are the same as Go except that it is forbidden to
capture and to suicide. The first player that cannot move has lost.
There exist computer Nogo competitions and the best players use
MCTS [38, 39, 40]. We use the same move feature as for Atarigo.

We do not give results for single-player games since PPA is tailored to
multi-player games. Also we do not compare with NMCS and NRPA since
these algorithms are tailored to single-player games.

In the context of GGP, the time used by GGP programs is dominated by
the generation of the possible moves and by the calculation of the next state.
So biasing the playout policy is relatively inexpensive compared to the time
used for the interpretation of the rules of the game.
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3.1. Atarigo 8× 8

Table 1 gives the results of the different algorithms against standard UCT
at Atarigo 8× 8. All algorithms are much better than UCT and they have
similar winning percentages.

Table 1: Different algorithms against UCT at Atarigo 8× 8 with 10,000 playouts.

MAST 51.2% (0.5) 58.4% (1.0) 67.0% (2.0)
MAST 75.6% (4.0) 88.2% (8.0) 94.4% (16.0)
MAST 92.0% (32.0)

MASTF 55.8% (0.5) 63.0% (1.0) 77.6% (2.0)
MASTF 95.2% (4.0) 97.2% (8.0) 92.8% (16.0)
MASTF 91.0% (32.0)

PPA 71.0% (0.005) 81.6% (0.01) 85.6% (0.02)
PPA 89.8% (0.04) 93.2% (0.08) 94.4% (0.16)
PPA 96.6% (0.32) 93.2% (0.64) 95.8% (1.28)
PPA 95.6% (2.56)

PPAF 71.6% (0.005) 75.2% (0.01) 83.2% (0.02)
PPAF 89.0% (0.04) 91.0% (0.08) 93.0% (0.16)
PPAF 90.6% (0.32) 94.4% (0.64) 92.0% (1.28)
PPAF 91.6% (2.56)

3.2. Breakthrough 8× 8

Table 2 gives the results of playing different algorithms against standard
UCT at Breakthrough. We can see that using move features is an im-
provement both for MAST and for PPA. PPAF is the best algorithm and it
improves much on PPA.

3.3. Misere Breakthrough 8× 8

Table 3 gives the results of playing different algorithms against standard
UCT at Misere Breakthrough. In misere games there can be a lot of
losing moves. Learning to avoid these moves lead to much more informative
playouts and can explain the great performance of adaptive playouts for this
kind of games.
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Table 2: Different algorithms against UCT at Breakthrough 8×8 with 10,000 playouts.

MAST 58.4% (0.5) 51.6% (1.0) 60.0% (2.0)
MAST 63.4% (4.0) 48.6% (8.0) 27.6% (16.0)
MAST 20.2% (32.0) 19.6% (64.0)

MASTF 51.0% (0.5) 59.0% (1.0) 63.8% (2.0)
MASTF 70.2% (4.0) 63.2% (8.0) 37.4% (16.0)
MASTF 22.6% (32.0)

PPA 50.0% (0.005) 54.2% (0.01) 53.2% (0.02)
PPA 57.2% (0.04) 56.4% (0.08) 56.2% (0.16)
PPA 59.2% (0.32) 55.8% (0.64) 49.4% (1.28)
PPA 43.0% (2.56)

PPAF 59.4% (0.005) 59.2% (0.01) 66.2% (0.02)
PPAF 70.0% (0.04) 75.8% (0.08) 78.2% (0.16)
PPAF 81.4% (0.32) 72.6% (0.64) 68.0% (1.28)
PPAF 47.6% (2.56)
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Table 3: Different algorithms against UCT at Misere Breakthrough 8× 8 with 10,000
playouts.

MAST 53.2% (0.5) 65.2% (1.0) 75.8% (2.0)
MAST 54.4% (4.0) 47.8% (8.0) 84.0% (16.0)
MAST 91.4% (32.0) 94.0% (64.0) 96.4% (128.0)
MAST 97.6% (256.0) 94.8% (512.0)

MASTF 54.8% (0.5) 64.0% (1.0) 77.6% (2.0)
MASTF 52.8% (4.0) 61.4% (8.0) 95.2% (16.0)
MASTF 98.8% (32.0) 99.6% (64.0) 98.2% (128.0)
MASTF 99.2% (256.0) 98.0% (512.0)

PPA 64.0% (0.005) 68.4% (0.01) 54.4% (0.02)
PPA 49.2% (0.04) 54.8% (0.08) 65.6% (0.16)
PPA 84.4% (0.32) 95.2% (0.64) 98.8% (1.28)
PPA 99.6% (2.56) 98.6% (5.12) 97.8% (10.24)

PPAF 60.0% (0.005) 68.2% (0.01) 63.4% (0.02)
PPAF 60.6% (0.04) 74.2% (0.08) 89.6% (0.16)
PPAF 99.0% (0.32) 99.8% (0.64) 100.0% (1.28)
PPAF 100.0% (2.56)
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Table 4: Different algorithms against PPAF(1.28) at Misere Breakthrough 8× 8 with
10,000 playouts.

MAST 0.0% (8.0) 6.6% (16.0) 17.4% (32.0)
MAST 24.2% (64.0) 28.2% (128.0) 28.2% (256.0)
MAST 25.8% (512.0) 25.8% (1024.0) 5.0% (2048.0)

MASTF 0.0% (8.0) 12.2% (16.0) 36.2% (32.0)
MASTF 37.2% (64.0) 33.4% (128.0) 37.4% (256.0)
MASTF 32.4% (512.0) 37.0% (1024.0) 12.2% (2048.0)

As the results for adaptive algorithms are extremely good at Misere
Breakthrough, we ran another experiment to better distinguish between
the different algorithms. We played the algorithms against PPAF(1.28). The
results are given in table 4. PPAF is much better than MAST and MASTF.

3.4. Domineering 8× 8

Table 5 gives the results of the different algorithms against standard UCT
at Domineering 8× 8. PPAF is clearly the best algorithm and it is much
better than MAST and MASTF. PPA is better than MAST at Domineer-
ing and PPAF is an improvement over PPA.

3.5. Misere Domineering 8× 8

Table 6 gives the results of the different algorithms against standard UCT
at Misere Domineering 8× 8. All algorithms are much better than UCT.
MAST and PPAF are ahead.

3.6. Knightthrough 8× 8

Table 7 gives the results of playing different algorithms against standard
UCT at Knightthrough. We can observe that all algorithms improve
much on standard UCT and that PPAF is slightly better.

3.7. Misere Knightthrough 8× 8

Table 8 gives the results of the different algorithms against standard UCT.
As in Misere Breakthrough there are a lot of losing moves in Misere
Knightthrough. Learning to avoid them in the playouts is much better
than random playouts.
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Table 5: Different algorithms against UCT at Domineering 8× 8 with 10,000 playouts.

MAST 52.4% (0.5) 54.4% (1.0) 53.8% (2.0)
MAST 58.0% (4.0) 58.2% (8.0) 47.0% (16.0)
MAST 35.6% (32.0) 25.8% (64.0) 20.4% (128.0)

MASTF 47.4% (0.5) 47.6% (1.0) 49.6% (2.0)
MASTF 52.4% (4.0) 35.8% (8.0) 16.2% (16.0)
MASTF 6.4% (32.0) 4.0% (64.0) 4.2% (128.0)

PPA 61.8% (0.005) 63.0% (0.01) 73.8% (0.02)
PPA 74.2% (0.04) 72.8% (0.08) 67.0% (0.16)
PPA 67.8% (0.32) 63.0% (0.64) 59.8% (1.28)
PPA 47.2% (2.56)

PPAF 56.0% (0.005) 63.4% (0.01) 68.8% (0.02)
PPAF 75.8% (0.04) 78.4% (0.08) 80.4% (0.16)
PPAF 76.6% (0.32) 72.0% (0.64) 60.6% (1.28)
PPAF 52.0% (2.56)
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Table 6: Different algorithms against UCT at Misere Domineering 8 × 8 with 10,000
playouts.

MAST 47.4% (0.5) 51.8% (1.0) 50.4% (2.0)
MAST 50.8% (4.0) 54.6% (8.0) 64.0% (16.0)
MAST 79.2% (32.0) 84.6% (64.0) 91.4% (128.0)
MAST 92.2% (256.0) 93.8% (512.0) 92.2% (1024.0)

MASTF 48.0% (0.5) 49.4% (1.0) 53.4% (2.0)
MASTF 46.6% (4.0) 56.4% (8.0) 62.2% (16.0)
MASTF 72.4% (32.0) 81.8% (64.0) 88.8% (128.0)
MASTF 89.6% (256.0) 92.4% (512.0) 91.2% (1024.0)

PPA 57.8% (0.005) 63.2% (0.01) 64.0% (0.02)
PPA 63.8% (0.04) 68.2% (0.08) 73.4% (0.16)
PPA 79.2% (0.32) 79.8% (0.64) 81.4% (1.28)
PPA 82.2% (2.56) 78.0% (5.12) 72.2% (10.24)

PPAF 59.6% (0.005) 59.2% (0.01) 71.6% (0.02)
PPAF 78.6% (0.04) 83.6% (0.08) 88.6% (0.16)
PPAF 93.0% (0.32) 91.6% (0.64) 90.8% (1.28)
PPAF 90.0% (2.56)
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Table 7: Different algorithms against UCT at Knightthrough 8×8 with 10,000 playouts.

MAST 56.2% (0.5) 56.2% (1.0) 64.4% (2.0)
MAST 78.2% (4.0) 69.4% (8.0) 64.4% (16.0)
MAST 57.2% (32.0)

MASTF 56.8% (0.5) 58.8% (1.0) 71.0% (2.0)
MASTF 75.0% (4.0) 74.8% (8.0) 61.6% (16.0)
MASTF 52.6% (32.0)

PPA 66.8% (0.005) 70.2% (0.01) 74.6% (0.02)
PPA 76.8% (0.04) 74.4% (0.08) 72.0% (0.16)
PPA 70.4% (0.32) 64.8% (0.64) 63.2% (1.28)
PPA 59.6% (2.56)

PPAF 60.8% (0.005) 68.6% (0.01) 77.2% (0.02)
PPAF 77.6% (0.04) 83.2% (0.08) 80.0% (0.16)
PPAF 81.0% (0.32) 84.0% (0.64) 79.0% (1.28)
PPAF 71.2% (2.56)
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Table 8: Different algorithms against UCT at Misere Knightthrough 8×8 with 10,000
playouts.

MAST 56.0% (0.5) 61.0% (1.0) 77.6% (2.0)
MAST 56.6% (4.0) 59.2% (8.0) 88.4% (16.0)
MAST 98.0% (32.0) 98.4% (64.0) 100.0% (128.0)
MAST 99.8% (256.0)

MASTF 57.0% (0.5) 61.6% (1.0) 72.0% (2.0)
MASTF 62.0% (4.0) 68.8% (8.0) 96.0% (16.0)
MASTF 99.8% (32.0) 100.0% (64.0) 100.0% (128.0)
MASTF 100.0% (256.0)

PPA 63.8% (0.005) 70.4% (0.01) 90.6% (0.02)
PPA 93.0% (0.04) 95.6% (0.08) 97.2% (0.16)
PPA 98.8% (0.32) 99.8% (0.64) 100.0% (1.28)
PPA 100.0% (2.56)

PPAF 57.4% (0.005) 67.6% (0.01) 79.4% (0.02)
PPAF 88.8% (0.04) 93.8% (0.08) 98.4% (0.16)
PPAF 100.0% (0.32) 100.0% (0.64) 100.0% (1.28)
PPAF 100.0% (2.56)
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Table 9: Different algorithms against PPAF at Misere Knightthrough 8 × 8 with
10,000 playouts.

MAST 0.0% (0.5) 0.0% (1.0) 0.0% (2.0)
MAST 0.0% (4.0) 0.2% (8.0) 10.4% (16.0)
MAST 24.6% (32.0) 28.2% (64.0) 25.6% (128.0)
MAST 27.0% (256.0) 25.2% (512.0) 37.0% (1024.0)
MAST 3.4% (2048.0) 1.8% (4096.0)

MASTF 0.0% (0.5) 0.0% (1.0) 0.0% (2.0)
MASTF 0.0% (4.0) 0.0% (8.0) 19.4% (16.0)
MASTF 31.0% (32.0) 31.8% (64.0) 30.2% (128.0)
MASTF 26.6% (256.0) 29.2% (512.0) 34.4% (1024.0)
MASTF 9.4% (2048.0) 5.0% (4096.0)

As adaptive algorithms win 100% at Misere Knightthrough, we ran
another experiment to better distinguish between the different algorithms.
We played MAST and MASTF against PPAF. The results are given in table
9. PPAF is much better than MAST and MASTF at Misere Knight-
through.

3.8. Nogo 8× 8

Table 10 gives the results of the different algorithms against standard
UCT. We can see that PPA gives better results than MAST and that PPA
with move features is a large improvement over other algorithms.

4. Conclusion

In the context of GGP we presented PPA and PPAF, algorithms that
learn a playout policy online. They were tested on eight different games. For
all games they are better than UCT. They are particularly good at misere
games, scoring as high as 100% against UCT at Misere Knightthrough
8× 8 with 10,000 playouts.

We have also presented an improvement on PPA and MAST. It modifies
the way moves are coded so as to take into account features associated to
the moves. The improved algorithms are called PPAF and MASTF. Tuning
the k and the α constants is important for MASTF and PPAF. The two
algorithms are much better than UCT for all the games we tried.
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Table 10: Different algorithms against UCT at Nogo 8× 8 with 10,000 playouts.

MAST 52.8% (0.5) 56.0% (1.0) 58.2% (2.0)
MAST 61.6% (4.0) 62.4% (8.0) 58.6% (16.0)
MAST 31.0% (32.0)

MASTF 52.4% (0.5) 58.2% (1.0) 58.4% (2.0)
MASTF 50.0% (4.0) 36.0% (8.0) 19.4% (16.0)
MASTF 11.2% (32.0)

PPA 63.8% (0.005) 73.0% (0.01) 77.6% (0.02)
PPA 75.8% (0.04) 76.2% (0.08) 77.4% (0.16)
PPA 66.2% (0.32) 55.6% (0.64) 35.2% (1.28)
PPA 27.8% (2.56)

PPAF 60.2% (0.005) 74.4% (0.01) 87.8% (0.02)
PPAF 92.2% (0.04) 95.2% (0.08) 95.4% (0.16)
PPAF 94.4% (0.32) 88.2% (0.64) 79.0% (1.28)
PPAF 69.2% (2.56)

In Breakthrough, Knightthrough, Nogo, Domineering, and Mis-
ere Domineering, PPAF is an improvement over PPA.

In Breakthrough, Misere Breakthrough, Knightthrough, Mis-
ere Knightthrough, Nogo, and Domineering, PPAF is an improve-
ment over MAST and MASTF.

PPA is tightly connected to the NRPA algorithm for single-player games.
The main differences with NRPA are that it does not use nested levels nor
a best sequence to learn. Instead it learns the moves of each playout for the
winner of the playout.

Future work include combining PPA with the numerous enhancements
of UCT. Some of them may be redundant but others will probably be cu-
mulative. For example combining PPA with GRAVE could yield substantial
benefits in some games.
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