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Abstract. Product Propagation (PP) is an algorithm to backup proba-
bilistic evaluations for abstract two-player games. It was shown that PP
could solve go problems as efficiently as Proof Number Search (PNS). In
this paper, we exhibit a few domains where, for generic non-optimized
versions, PP performs better than previously known algorithms for solv-
ing games. The compared approaches include alpha-beta search, PNS,
and Monte Carlo Tree Search. We also extend PP to deal with its mem-
ory consumption and to improve its solving time.

1 Introduction

Product Propagation (PP) is a way to backup probabilistic information in a
two-player game tree search [28]. It has been advocated as an alternative to
minimaxing that does not exhibit the minimax pathology [20, 2, 3, 11, 12].

PP was recently proposed as an algorithm to solve games, combining ideas
from Proof Number Search (PNS) and probabilistic reasoning [29]. In Stern’s pa-
per, PP was found to be about as performant as PNS for capturing go problems.

We conduct a more extensive study of PP, comparing it to various other
paradigmatic solving algorithms and improving its memory consumption and its
solving time. Doing so, we hope to establish that PP is an important algorithm
for solving games that the game search practician should know about. Indeed,
we exhibit multiple domains in which PP performs better than the other tested
game solving algorithms.

The baseline game tree search algorithms that we use to establish PP’s value
are Monte Carlo Tree Search (MCTS) Solver [34] which was recently used to
solve the game of havannah on size 4 [9]; PNS [1, 31, 14]; and αβ [21].

The next section deals with algorithms solving two-player games. The third
section is about the Product Propagation algorithm. The fourth section details
experimental results and the last section concludes.

2 Solving two-player games

We assume a deterministic zero-sum two-player game with two outcomes and
sequential moves. Game tree search algorithms have been proposed to address
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games with multiple outcomes [7, 22], multi-player games [30, 25, 19], non-deterministic
games [10], and games with simultaneous moves [24].

A generic best-first search framework is presented in Algorithm 1. To in-
stantiate this framework, one needs to specify a type of information to asso-
ciate to nodes of the explored tree as well as functions to manipulate this type:
info-term, init-leaf, select-child, update.

PNS is a best-first search algorithm which expands the explored game tree in
the direction of most proving nodes, that is, parts of the tree which seem easier
to prove or disprove.

MCTS Solver is also a best-first search algorithm which can be cast in the
mentioned framework. In MCTS [6], the information associated to nodes is in
the form of sampling statistics, and bandit-based formulas [15] are used to guide
the search. The sampling performed at a leaf node in MCTS can take the form of
games played randomly until a terminal position, but it can also be the value of
a heuristical evaluation function after a few random moves [17, 33]. We denote
the latter variant as MCTS-E.

3 Probability Search

3.1 The Product Propagation Algorithm

Product Propagation (PP) is a recently proposed algorithm to solve perfect in-
formation two-player two-outcome games based on an analogy with probabili-
ties [29].

In PP, each node n is associated to a single number PPN(n) (the probabil-
ity propagation number for n) such that PPN(n) ∈ [0, 1]. The PPN of a leaf
corresponding to a Max win is 1 and the PPN of a Max loss is 0. PPN(n) can
intuitively be understood as the likelihood of n being a Max win given the par-
tially explored game tree. With this interpretation in mind, natural update rules
can be proposed. If n is an internal Min node, then it is a win for Max if and
only if all children are win for Max themselves. Thus, the probability that n is
win is the joint probability that all children are win. If we assume all children
are independent, then we obtain that the PPN of n is the product of the PPN of
the children for Min nodes. A similar line of reasoning leads to the formula for
Max nodes. To define the PPN of a non-terminal leaf l, the simplest is to assume
no information is available and initiate PPN(l) to 1

2 . These principles allow to
induce a PPN for every explored node in the game tree and are summed up in
Table 1.

Note that this explanation is just a loose interpretation of PPN(n) and not
a formal justification. Indeed, the independence assumption does not hold in
practice, and in concrete games n is either a win or a loss for Max but it is not
a random event. Still, the independence assumption is used because it is simple
and the algorithm works well even though the assumption is usually wrong.

To be able to use the generic best first search framework, we still need to
specify which leaf of the tree is to be expanded. The most straightforward ap-



bfs(state q, player m)
r ← new node with label m
r.info ← init-leaf(r)
n ← r
while r is not solved do

while n is not a leaf do
n ← select-child(n)

extend(n)
n ← backpropagate(n)

return r

extend(node n)
switch on the label of n do

case terminal
n.info ← info-term(n)

case max
foreach q′ in {q′, q a−→ q′} do

n′ ← new node with label min
n′.info ← init-leaf(n′)
Add n′ as a child of n

case min
foreach q′ in {q′, q a−→ q′} do

n′ ← new node with label max
n′.info ← init-leaf(n′)
Add n′ as a child of n

backpropagate(node n)
new_info ← update(n)
if new_info = n.info ∨ n = r then return n
else

n.info ← new_info
return backpropagate(n.parent)
Algorithm 1: Pseudo-code for a best-first search algorithm.

Table 1. Initial values for leaf and internal nodes in PP. C denote the set of children.

Node label PPN

info-term
Max wins 1
Max loses 0

init-leaf 1
2

update
Max 1−

∏
C(1− PPN)

Min
∏

C PPN



proach is to select the child maximizing PPN when at a Max node, and to select
the child minimizing PPN when at a Min node, as shown in Table 2.

Table 2. Selection policy for PP. C denotes the set of children.

Node label Chosen child

Max argmaxC PPN
Min argminC PPN

3.2 Practical improvements

The mobility heuristic provides a better initialization for non-terminal leaves.
Instead of setting PPN to 1/2 as described in Table 1, we use an initial value
that depends on the number of legal moves and on the type of node. Let c be
the number of legal moves at a leaf, the PPN of which we want to initialize. If
the leaf is a Max -node, then we set PPN = 1 − 1/2c. If the leaf is a Min-node,
then we set PPN = 1/2c.

In the description of best first search algorithms given in Algorithm 1, we see
that new nodes are added to the memory after each iteration of the main loop in
bfs. Thus, if the init-leaf procedure is very fast then the resulting algorithm
will fill the memory very quickly. Earlier work on PNS provides inspiration to
address this problem [14]. For instance, Kishimoto proposed to turn PP into a
depth-first search algorithm with a technique similar to the used in dfpn.1

Alternatively, it is possible to adapt the PN2 ideas to develop a PP2 algo-
rithm. In PP2, instead of initializing directly a non-terminal leaf, we call the
PP algorithm on the position corresponding to that leaf with a bound on the
number of nodes. The bound on the number of nodes allowed in the sub-search
is set to the number of nodes that have been created so far in the main search.
After a sub-search is over, the children of the root of that search are added to
the tree of the main search. Thus, the PPN associated these newly added nodes
is based on information gathered in the sub-search, rather than based only on
an initialization heuristic.

4 Experimental Results

While the performance of PP as a solver has matched that of PNS in go [29],
it has proven to be disappointing in shogi.1 We now exhibit several domains
where the PP search paradigm outperforms more classical algorithms.

In the following sets of experiments, we do not use any domain specific knowl-
edge. We are aware that the use of such techniques would improve the solving

1Akihiro Kishimoto, personnal communication.



ability of all our programs. Nevertheless, we believe that showing that a generic
and non-optimized implementation of PP performs better than generic and non-
optimized implementations of PNS,MCTS, or αβ in a variety of domains provides
good reason to think that the ideas underlying PP are of importance in game
solving.

We have described a mobility heuristic for PP variants in Section 3.2. We also
use the classical mobility heuristic for PNS variants. That is, if c is the number
of legal moves at a non-terminal leaf to be initialized, then instead of setting the
proof and disproof numbers to 1 and 1 respectively, we set them to 1 and c if
the leaf is a max -node or to c and 1 if the leaf is a min-node.

All variants of PNS, PP, and MCTS were implemented with the best-first
scheme described in Section 2. For PN2 and PP2, only the number of nodes in
the main search is displayed.

4.1 The game of y

The game of y was discovered independently by Claude Shannon in the 50s, and
in 1970 by Schensted and Titus [26]. It is played on a triangular board with a
hexagonal paving. Players take turns adding one stone of their color on empty
cells of the board. A player wins when they succeed in connecting all three edges
with a single connected group of stones of their color. Just as hex, y enjoys the
no-draw property.

The current best evaluation function for y is the reduction evaluation func-
tion [32]. This evaluation function naturally takes values in [0, 1] with 0 (resp. 1)
corresponding to a Min (resp. Max ) win.

PNS with the mobility initialization could not solve any position in less than 3
minutes in a preliminary set of about 50 positions. As a result we did not include
this solver in our experiment with a larger set of positions. The experiments on
y was carried out as follows. We generated 77,012 opening positions on a board
of size 6. We then ran PP using the reduction evaluation function, MCTS using
playouts with a random policy, and a variant of MCTS using the same reduction
evaluation instead of random playouts (MCTS-E). For each solver, we recorded
the total number of positions solved within 60 seconds. Then, for each solving
algorithm, we computed the number of positions among those 77,012 which were
solved faster by this solver than by the two other solver, as well as the number
of positions which needed fewer iterations of the algorithm to be solved. The
results are presented in Table 3.

We see that the PP algorithms was able to solve the highest number of
positions, 77,010 positions out of 77,012 could be solved within 60 seconds. We
also note that for a very large proportion of positions (68,477), PP is the fastest
algorithm. However, MCTS needs fewer iterations than the other two algorithms
on 35,444 positions. A possible interpretation of these results is that although
iterations of MCTS are a bit more informative than iterations of PP, they take
much longer. As a result, PP is better suited to situations where time is the most
important constraint, while MCTS is more appropriate when memory efficiency
is a bottleneck. Note that if we discard MCTS-E results, then 72,830 positions are



Table 3. Number of positions solved by each algorithm and number of positions on
which each algorithm was performing best.

PP MCTS MCTS-E

Positions solved 77,010 76,434 69,298
Solved fastest 68,477 3,645 4,878
Fewest iterations 22,621 35,444 18,942

solved fastest by PP, 4180 positions are solved fastest by MCTS, 30,719 positions
need fewest iterations to be solved by PP, and 46,291 need fewest iterations by
MCTS.

Figure 1 displays some of these results graphically. We sampled about 150
positions of various difficulty from the set of 77,012 y positions, and plotted the
time needed to solve such positions by each algorithm against the time needed
by PP. We see that positions that are easy for PP are likely to be easy for both
MCTS solvers, while positions hard for PP are likely to be hard for both other
solvers as well.
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Fig. 1. Time needed to solve various opening positions in the game of y.

4.2 domineering

domineering is played on a rectangular board. The first player places a vertical
2 × 1 rectangle anywhere on the board. The second player places an horizontal
2 × 1 rectangle, and the games continues like that until a player has no legal
moves. The first player that has no legal moves has lost.



domineering has already been studied in previous work by game search
specialists as well as combinatorial game theorists [4, 16].2 While these papers
focusing on domineering obtain solution for relatively large boards, we have
kept ourselves to a naive implementation of both the game rules and the algo-
rithms. In particular, we do not perform any symmetry detection nor make use
of combinatorial game theory techniques such as decomposition into subgames.

We presents results for the following algorithms: αβ, PNS with Transposi-
tions (PNT) [27], PN2 [5], PP, PP with Transpositions (PPT) and PP2. The
PNS algorithm could not find a single solution within 107 node expansion when
transpositions where not detected and it is thus left out.

For PNS variants the standard mobility heuristic is used to compute the proof
numbers and the disproof numbers at non solved leaves. For PP variants, we used
the mobility heuristic as described in Section 3.2.

Tables 4 and 5 give the number of nodes and times for different algorithms
solving domineering. αβ is enhanced with transposition tables, killer moves,
the history heuristic and an evaluation function. We can see that on the smallest
5×6 board that PPT gives the best results. On the larger 6×6 board PPT is the
best algorithm by far. On the largest 7× 6 board, several algorithms run out of
memory, and the best algorithm remains PPT which outperforms both αβ and
PN2.

Table 4. Number of node expansions needed to solve various sizes of domineering.

5× 6 6× 6 7× 6

αβ 701,559 38,907,049 6,387,283,988
PNT 1,002,277 >107 >107

PN2 17,236 >154,107 >511,568
PP 101,244 5,525,608 >107

PPT 27,766 528,032 4,294,785
PP2 3,634 24,190 145,757

In their paper, Breuker et al, have shown that the use of transposition tables
and symmetries increased significantly the performance of their αβ implemen-
tation [4]. While, our proof-of-concept implementation does not take advantage
of symmetries, our results show that transpositions are of great importance in
the PP paradigm as well.

2Some results can also be found on http://www.personeel.unimaas.nl/
uiterwijk/Domineering_results.html.



Table 5. Time (s) needed to solve various sizes of domineering.

5× 6 6× 6 7× 6

αβ 0.87 40.68 5,656
PNT 5.92
PN2 78.7 >10,660 >153,000
PP 0.24 20.1 >35.84
PPT 0.17 5.33 55.13
PP2 0.22 15.5 320.3

4.3 nogo

nogo is the misere version of the game of go. It was presented in the BIRS
2011 workshop on combinatorial game theory [8].3 The first player to capture
has lost.

We present results for the following algorithms: αβ, PNT [27], PN2 [5], PP,
PPT and PP2. Again, the PNS algorithm could not find a single solution within
107 node expansion and is left out.

For standard board sizes such as 4 × 4 or 5 × 4, αβ gives the best results
among the algorithms we study in this paper. We have noticed that for N × 1
boards for N ≥ 18, PPT becomes competitive. Results for a few board sizes are
given in Table 6 for the number of nodes and in Table 7 for the times.

Table 6. Number of node expansions needed to solve various sizes of nogo.

4× 4 18× 1 20× 1 22× 1

αβ 17,194,590 4,444,384 154,006,001 3,133,818,285
PNT 3,575,076 2,015,179 >107 >107

PN2 77,010 > 22, 679 > 29, 098
PP >107 864,951 6,173,393 >107

PPT 2,319,816 98,991 389,119 2,814,553
PP2 14,246

5 Conclusion

In this paper, we have presented how to use Product Propagation (PP) in order
to solve abstract two-player games. We extended PP so as to handle transposi-
tions and to reduce memory consumption with the PP2 algorithm. For two of
the games that have been tested (i.e., y, domineering), we found that our ex-
tensions of PP are able to better solve games than the other solving algorithms.

3http://www.birs.ca/events/2011/5-day-workshops/11w5073



Table 7. Time (s) needed to solve various sizes of nogo.

4× 4 18× 1 20× 1 22× 1

αβ 33.05 10.43 361.0 7,564
PNT 436.6 144.2 > 809
PN2 27,519 > 3, 607 > 4, 583
PP > 338.84 21.39 156.3 > 307.55
PPT 396.36 9.46 46.3 446.58
PP2 109.7

For nogo, PP variants outperform PNS variants on all tested sizes, and PP does
better than αβ on some sizes but αβ is better on standard sizes.

Being a best-first search algorithm, PP is quite related to PNS and MCTS, as
such, it seems natural to try and adapt ideas that proved successful for these al-
gorithms to the Product Propagation paradigm. For instance, while PNS and PP
are originally designed for two-outcome games, future work could adapt the ideas
underlying Multiple-Outcome PNS [22] to turn PP into an algorithm addressing
more general games. Adapting more elaborate schemes for transpositions could
also prove interesting [18, 13, 23].
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