
The separation game

Tristan Cazenave
Labo IA, Université Paris 8

2 rue de la Liberté, 93526, St-Denis, France
cazenave@ai.univ-paris8.fr

Abstract

The separation game is different from the con-
nection game, but has some similarities with it.
In the game of Go, it is often useful because it
helps enclosing groups and areas. An evalua-
tion function, moves generation functions and
a search algorithm for the separation game are
described in this paper.

1 Introduction
The game of Go is an ancient two-player complete infor-
mation game. It is yet unknown how to write strong play-
ing programs for the game of Go, despite lot of efforts [1;
2]. The usual approach that some of the best current pro-
grams use is based on a decomposition of the game into
simpler sub-games. Examples of some of these well-
known sub-games are the capture game, the connection
game, the eye game or the life and death game. A sub-
game that appears less often in the literature is the separa-
tion game [3; 4; 5]. We present a search algorithm for the
separation game, as well as optimizations that enable to
solve separation problems faster than a naive algorithm.

In section 2 the separation game is described. Section
3 deals with the empty separation game. In section 4
the evaluation function used in the search algorithm is
given. Section 5 is about the selection of the interesting
separation games. Section 6 details the search algorithm.
Section 7 gives experimental results.

2 The separation game
The separation game has already been described by B.
Bouzy and M. Müller [3; 4; 5]. The existence of the
separation game is due to the grid topology of the Go
board. In other games such as Hex, the separation game
is the same as the connection game due to a different
board topology. In Go, each intersection has four neigh-
bors two horizontal neighbors and two vertical neigh-
bors. Two intersections are connected when there is a
path of stones of the same color that are linked through
vertical and horizontal neighbors. We call 4-connections
these kinds of connections. For example, the black stone
marked B in the figure 3 is 4-connected to three other
black stones. In Go, sets of 4-connected stones of the
same color are called strings.

Figure 1: separation and unseparation.

When instead of only considering the horizontal and
vertical neighbors, we also consider the diagonal neigh-
bors, the intersections on the Go board have eight neigh-
bors instead of four. When there is a path between two
stones that goes through the eight neighbors, the two
stones are 8-connected. A property of the Go board is
that an 8-connection between two stones prevents the op-
ponent to 4-connect through the 8-connection path. It
means that 8-connecting two stones separates the board
for the 4-connection.

It is a property of the 4-connection that the separation
is the 8-connection. For example in the game of Hex
things are different. The separation of a 6-connection in
Hex is also a 6-connection: when a player prevents the
opponent to connect her two sides at Hex, he connects
his own two sides. It means that the separation and the
connection game are the same in Hex, but not in Go.

In Go, a connection is a separation but a separation
is not always a connection. Symmetrically an unsepa-
ration is a disconnection, but a disconnection is not al-
ways an unseparation. To put it another way, a connec-
tion is stronger than a separation, and an unseparation is
stronger than a disconnection.



Figure 2: an empty separation.

The black move at
�

in figure 1 unseparates the two
strings A and B. A and B are disconnected but not un-
separated, Black has to add the

�
move for unseparating

them.
The white move at

�
in figure 1 does not connect A

and B, but it separates them.

3 The empty separation game
The empty separation game consists in playing a stone,
and checking if it is separated from a string. Figure 2
gives an example where playing a black stone at A sep-
arates the newly created black string at A from the black
stone at B.

The empty separation game is useful to play desta-
bilizing moves and to enclose areas. To verify the
empty separation game, the program plays the move and
searches if the separation game is won even if the oppo-
nent plays first.

4 The evaluation function
The evaluation function uses the shortest 8-path between
the two strings to separate, and it also verifies that none
of the two strings can be captured. The Max player
tries to separate, the Min player tries to unseparate. The
smallest possible value for the evaluation function is
Lost, and the greatest one is Won. The first subsection
details the computation of the shortest 8-path. The sec-
ond subsection deals with the capture avoidance of any
of the two separating strings.

4.1 The shortest 8-path

The evaluation function is based on the shortest 8-path
between two strings. The length of the path is defined by
the minimum number of moves of the same color that are
required to 8-connect the two strings. The basic function
verifies if the strings are 8-connected:

eightConnected (string1, string2) {
if (string1 == string2)
return 1;

for each stone in string1
for each diagonal of each stone
if diagonal is part of string2

return 1;
return 0;

}

A more advanced function finds a length one 8-path
between the two strings:

lengthOne (string1, string2) {
for each liberty of string1 {
if liberty is liberty of string2
return 1;
for each diagonal of liberty
if diagonal is part of string2
return 1;

for all neighbors of liberty
if neighbor is a friend string
for each stone of friend string
for each diagonal of stone
if diagonal is part of string2
return 1;

}
for each liberty of string2 {
for each diagonal of liberty
if diagonal is part of string1
return 1;

for all neighbors of liberty
if neighbor is a friend string
for each stone of friend string
for each diagonal of stone
if diagonal is part of string1
return 1;

}
return 0;

}

Similar and more advanced functions are used to find
paths of length two and three. When the shortest 8-path
between the two separating strings is strictly greater than
three, the evaluation function returns Lost.

4.2 Avoid capture
The evaluation checks that none of the two separating
strings can be captured. For example, in figure 3, the
strings A and B are 8-connected, but White can capture
the A string. A general threat capture search [6] is called
for each of the two separating strings, with the (6,5,0)
threat. The search with a (6,5,0) threat detects that the
string A in the figure 3 can be captured. The search is
only called when evaluating a position and it is the Min
player’s turn.

Another concern related to capture is when strings
cannot be captured alone, but when one of the two sepa-
rating string can be captured if the other is defended. An
example of such a problem is shown in figure 4. A White
move at C can capture either A or B, but a capture search
finds that B alone is not captured, and that A alone is not



Figure 3: avoid capture.

captured. To deal with this problem, the evaluation func-
tion avoids returning Won when either string A or B has
two liberties or less and it is the Min player’s turn.

4.3 Potential unseparating moves
The evaluation function always records the shortest 8-
path. When it is Min’s turn, it tries Min moves on the
shortest path, and checks after each min move if the
shortest 8-path becomes greater than 4. In which case,
it returns Lost.

5 Selection of the meaningful separations
In a given position, there are many possible separation
games. It is useful to compute only some of them. For
example in figure 5 a possible separation game is the
separation between A and C. But A is connected to B
and B is separated from C. In order to avoid unnecessary
search, group are built using won connection games be-
fore selecting separation games. Once groups are built,
the only separations between two groups that are selected
are the ones with the shortest 8-paths. This avoids trying
to solve unnecessary complex games, such as the separa-
tion between A and C. It prevents the program from find-
ing unsettled complex separation due to a lack of search
when the separation is won, and therefore it avoids un-
necessary and bad moves.

In order to select empty separations, the program starts
with computing the empty connections of groups (i.e.
empty intersections that become connected to the group
when a stone of the color of the group is played at the
intersection). The empty intersections that are at a 8-
length less than three from existing strings are selected.
The program selects the shortest empty separations be-
tween these empty intersections and the group, provided
the intersections are not already empty connected to the
group (when the same empty intersection can separate to
two strings of the same group, it only selects the shortest
empty separation).

Figure 4: avoid double capture.

Figure 5: selection of the simplest separation.



6 Search algorithm
We have used the generalized threats search (gts) algo-
rithm [6] to solve separation problems. The first sub-
section gives a naive approach to max moves generation.
The seconds subsection explains how to be more selec-
tive in max moves generation. The third subsection tells
how min moves are selected.

6.1 Naive max moves
Naive max moves of order one are the liberties of the two
separating strings. For the separating strings that have
less than three liberties, the liberties of adjacent strings
that have only one liberty are also tried.

Naive max moves of order 2 are the liberties and the
second order liberties of the two separating strings. For
the separating strings that have less than three liberties,
the liberties of adjacent strings that have two or less lib-
erties are also tried.

6.2 Advanced max moves
Gts uses the max move generator for generating max
moves in the threats and in the main search. An impor-
tant information that can be used to optimize the max
moves generation is the order of the position. The or-
der of a position is the minimum number of moves of
the same color that have to be played to win the game.
The order of the generated moves is available both in the
threat and in the main search. The order of the moves in
the main search is the order of the threat verified at min
nodes plus one.

The length of the shortest path between the two strings
is the minimal order of the position. When computing the
shortest path, the program records all the intersections on
the shortest path. If the order of the moves to generate is
lower than the length of the shortest path, then no moves
are generated. If the order of the moves to generate is
equal to the length of the shortest path, then the only
moves to generate are the moves on the shortest paths.
If the order is greater than the length of the shortest path,
then the moves to generate are the moves on the shortest
paths, and the naive max moves.

The program also looks for threats to capture the
strings to separate. When a threat is verified, it only gen-
erates the moves that prevent the threat to capture.

Similar knowledge can be used when generating
moves for the connection game using the shortest 4-
paths.

6.3 Min moves
The set of min moves is selected using the trace of the
threat verified at min nodes. If no threat is verified, the
node is cut.

7 Experimental results
The generalized threats search algorithm has been tested
for the separation game. Experiments include different
move generators, different threats and different maxi-
mum number of moves per problem. They were per-
formed on a Celeron 1.7 GHz, with 1 Gb of RAM. The

Table 1: comparing algorithms.
����������	�
��� ����� ��� 
�	���� ��������� �

! ��	����"��
��#%$�& 10,000 12 15.99 693,591! ��	����"��
��#%$�& 100,000 14 48.06 2,103,193
! ��	����"��
��#('�& 10,000 12 16.85 668,465! ��	����"��
��#('�& 100,000 13 60.53 2,682,075��
��#%$�&

10,000 16 3.35 150,116��
��#%$�&
100,000 16 4.94 241,267��
��#('�&
10,000 17 5.48 260,224��
��#('�&

100,000 17 14.56 687,923

test suite consists of 33 separation problems taken from
games between Golois and Gnugo.

Table 1 gives the time and the total number of moves
for different algorithms. For example the first line is the
search algorithm that uses the naive move generator for
max moves, the threat number 0 (the (1,0) threat), and
that stops search at 10,000 nodes. It solves 12 problems
in 15.99 seconds and 693,591 moves. A better algorithm
is gts (1) with 10,000 nodes: it uses the (2,1,0) threat and
the advanced max moves generator, it solves 17 problems
in 5.48 seconds.

8 Conclusion
The separation game and the empty separation game
have been defined. The shortest 8-path between the two
strings to separate is useful both for the evaluation func-
tion and for moves generation. A threat based algorithm
that uses the shortest 8-paths in order to select the moves
of a given order has better results than an algorithm that
does not use this information. Selection of the meaning-
ful separation games is also a concern that has been ad-
dressed, as well as the links between the separation and
the capture game.

References
[1] Bouzy, B., Cazenave, T.: Computer Go: An AI-

Oriented Survey. Artificial Intelligence 132 (2001)
39–103

[2] Müller, M.: Computer go. Artificial Intelligence 134
(2002) 145–179

[3] Bouzy, B.: Mod élisation cognitive du joueur de go.
Phd thesis, Universit é Paris 6 (1995)

[4] Bouzy, B.: Le role des concepts spatiaux dans la
programmation du jeu de go. Revue d’Intelligence
Artificielle 15 (2001) 143–172

[5] Müller, M.: Position evaluation in computer go.
ICGA Journal 25 (2002) 219–228

[6] Cazenave, T.: A Generalized Threats Search Al-
gorithm. In: Computers and Games 2002. Volume
2883 of Lecture Notes in Computer Science., Ed-
monton, Canada, Springer (2002) 75–87


