
Towards deadlock free Sokoban

Tristan Cazenave1 and Nicolas Jouandeau2

1 LAMSADE, Université Paris-Dauphine, Place Maréchal de Lattre de Tassigny,
75775 Paris Cedex 16, France

email: cazenave@lamsade.dauphine.fr
2 Université Paris 8, LIASD, 2 rue de la liberté, 93526, Saint-Denis, France

email: n@ai.univ-paris8.fr

Abstract. We present algorithms to compute and match maze specific
deadlock tables at Sokoban. They enable to use a greedy search that can
solve problems that are not solvable using IDA*.

1 Introduction

Sokoban is a PSPACE-complete single agent search problem [3]. The presence of
deadlocks makes Sokoban hard to solve even non optimally. Identifying deadlock
states is therefore an important step towards solving Sokoban. In this paper we
describe algorithms that find maze specific deadlocks as well as efficient algo-
rithms to match the deadlocks during search.

The second section details deadlocks, the third section explains how they
can be efficiently matched, the fourth section deals with the retrograde analysis
of deadlocks, the fifth section deals with search algorithm using deadlocks, the
sixth section gives experimental results.

2 Maze specific deadlocks

In Rolling Stone [8, 6, 7] small 5x4 deadlock patterns are used to find simple
deadlocks. Moreover a specific search algorithm is used to identifiy conflict among
limited subsets of stones and dynamically create penalty patterns.

We use a different approach since we compute maze specific deadlocks con-
taining a predefined number of stones.

Basic one stone and two stones deadlocks can be defined as:

– stones in corners,
– stones on a border between two corners,
– two adjoining stones along a wall.

More complex deadlocks are computed using retrograde analysis. Retrograde
analysis has already been successfully used in two player [13, 11, 14, 1, 2, 12]
and single agent games [9, 4, 10, 5].

3 Forest of deadlocks

A deadlock is represented as an ordered set of locations of stones followed by a
location of the man. Two deadlocks can have the same locations of stones and
a different location for the man.

We represent sets of deadlocks as a different forest for each maze. Each tree
of the forest is rooted at a location of the maze, the deadlocks in the tree all
contains a stone at that location. The children of the root contain the different
second locations of deadlock in the set of deadlocks starting at the root, and so
on.

A deadlock can be matched on a screen if a subset of all the stones in the
screen corresponds to the set of stones of the deadlock and if the man on the
screen can see the man of the deadlock inside the deadlock screen.

In order to verify all deadlocks for a screen, the tree associated to each stone
in the screen is verified. The verification consists in checking recursively for each
child that the corresponding stone is present in the screen.

The next figures explain how a tree is built for three deadlock with the same
first location.

#####
#@ # #@ # # #
#

##
#

#$## # ###### ### #$## # ###### ### #$## #
#$## ##### ..# # # ## ##### ..# # # ## ##### ..#
..# # $ $..# # $ $..#
..# ##### ### # ## ..# #####@### # ## ..#

#########
####### ####### #######

16

21 (0)

16

29

32 (0)

21 (0)

16

29

33 (44)32 (0)

21 (0)

The first screen is a two stones deadlock containing locations 16 and 21 and
the man at location 0. These two locations and the location of the man are used
to build the leftmost tree. Then the second deadlock containing locations 16, 29
and 32 and the man at location 0 is added to the tree, resulting in the tree in
the middle. The third deadlock (16, 29, 33 and man at 44) is then added and
gives the rightmost tree.

Nodes contain a stone and possibly several man locations. The pseudo-code
for verifying a tree is:

deadlock tree verification process

bool known_state (deadlock, man)
if stone in state

for deadlockMan in men
if deadlockMan can see man in deadlock
return true

push stone in deadlock
for c in children

if c->known_state (deadlock, man)
return true

pop stone from deadlock
return false

A state is a maze containing stones at different locations and a man at a
given location, the goal of the tree verification is to find if a subset of the stones
of a state, is a deadlock. At each node of the tree, the algorithm verifies that the
state contains the stone of the node. If a node contains deadlocks, it contains
men locations. If one of the men locations is visible from the man in the state,
a deadlock is found. Otherwise the verification continues for all children of the
node.

All the trees rooted to the locations of the stones of a state are verified.

4 Retrograde analysis of deadlocks

Retrograde analysis starts with finding all the possible combinations of three
stones. In a first pass, for each combination, it verifies that a subset is not
already a deadlock. Then it tries all possible moves and verifies that they all
lead to a known deadlock. When it is the case the combination is added to
the set of deadlocks. In the subsequent passes, it goes through all the found
deadlocks, finds all possible previous states. For each previous state, it checks if
all moves lead to a known deadlock, and when it is the case the previous state
is added to the set of deadlocks.

The pseudo code for the first pass is:

Combinations deadlock search process

list combinationsDeadlocksSearch (nbStones)
list = empty list
state = first_combination (nbStones)
while true

if state is not a known deadlock
isDeadlock = 1
for child in nextStates (state)

if child is not a known deadlock
isDeadlock = 0
break

if isDeadlock equals 1
add state to deadlocksTree
push state in list

if state equals last_combination (nbStones)
break

state = next_combination (state)
return list

The pseudo code for subsequent passes is:

Subsequent passes deadlock search process

list subsequentDeadlocksSearch (nbStones, states)
list = empty_list
for state in states

for move in possiblePreviousMoves (state)
parent = apply (state, move)
if parent is not a known deadlock

isDeadlock = 1
for child in nextStates (parent)

if child is not a known deadlock
isDeadlock = 0
break

if isDeadlock equals 1
add parent to deadlocksTree
add parent to list

return list

Finding all possible combinations in the first pass can be time consuming
when the number of stones grows. Many possible combinations do not lead to a
deadlock, moreover a first pass deadlock is often a state where a move leads to
a smaller deadlock. In order to rapidly compute the first pass, we only consider
states where a move leads to a smaller deadlock. These states can be efficiently
found by taking a smaller deadlock, finding all previous states, and adding the
missing stones in every possible location.

The pseudo code for the first pass using the smaller deadlocks is:

Smaller deadlock search process

list smallerDeadlocksSearch (nbStones)
list = empty list
for P = 1; P < nbStones && P <= Pmax; P++

previous_states = empty list
for deadlock in deadlocksTree with nbStones-P stones
push deadlock in previous_states

for state in previous_states
for move in possiblePreviousMoves (state)
parent = apply (state, move)
freeStates = free_states (parent)
subState = first_combination (P, freeStates)
while true

newState = parent + subState
if newState is not a known deadlock

isDeadlock = 1
for child in nextStates (newState)

if child is not a known deadlock
isDeadlock = 0
break

if isDeadlock equals 1
add newState to deadlocksTree
push newState in list

if subState equals last_combination (P, freeStates)
break

subState = next_combination (subState, freeStates)
return list

However the first pass using the smaller deadlock does not find all possible
deadlocks. For example a few deadlocks do not have any possible moves and are
not found by the smaller deadlock search.

Here are some examples of deadlocks that are not found:

############ ######## ########
#..@ # ### #@ # #@ #
#.. # # # # ## # # ##
#.. # #### # # # # #
#.. ## # ##$ # ##$ #
#.. # # $$## ######### $$#$### ######### $$# ###
######$##$ $ # #.... ## $ $ # #.... ## $ $ #

$ $ # ##... # ##... $
#.... ########## #....
############ ######## ########

Only very few deadlocks have no possible moves. However the algorithm also
misses other deadlocks that are based on even smaller deadlocks that the one
used.

The retrograde analysis algorithm we have used starts its first passes with
all possible combinations of stones until a predefined number of stones (maxS-
tonesCombination), and then continues with first passes based on smaller dead-
locks:

Global deadlock search process

nbStones = 1
while not end of deadlock search

if nbStones < maxStonesCombination
newStates = combinationsDeadlocksSearch (nbStones)

else
newStates = smallerDeadlocksSearch (nbStones)

while size of newStates is not 0
otherStates = subsequentDeadlocksSearch (nbStones, newStates)
newStates = otherStates

nbStones++

Another way of looking at Sokoban problems is to start from the goal position
and going backward to the start position pulling stones. In this case, the usual
deadlocks never appear since the goal position is always reachable by pushing
back stones. However other kinds of deadlocks appears which stop the backward
search: the pull deadlocks.

Here are example of one stone, two stones and 6 stones pull deadlocks for
screens 1 and 13:

#########
#@ # # # ## ## #####
###@$$ # #

$ # # # ...
#@ $ # # # #$$## # #.#.

. .
..# # $# ## ##### ..# # $ # # #.#.
..# # ..# # ## ## . .
###$# ## ..# ##### ### # ## ..# # # # # #.#.

...
####### ####### # ###### ## #

##########
####

In the first one stone pull deadlock, the stone cannot be pulled. In the second
two stones pull deadlock pulling the stones reaches a position where no more
pulling moves are possible. In the last six stone pull deadlock a more complex
retrograde analysis finds that all moves lead to position where no more moves
are available, and the man is trapped in a local area.

5 Searching with deadlocks

In this section, we present the algorithms we use to solve problems. The first
algorithm is a greedy search. It consists in developping the state that has the
minimal associated heuristic. A greedy search is pointless in Sokoban without

deadlock verification since it is trapped in promising deadlock states for a very
long time. When deadlocks can be detected a greedy search avoids such states
and can find solutions.

The pseudo code for the greedy algorithm with deadlock verification is:

Greedy algorithm

void greedy (initialState)
currentGreedy = manhattan (initialState)
push initialState in sortedStates [currentGreedy]
while not end of search

while size of sortedStates [currentGreedy] is 0
currentGreedy ++

state = front of sortedStates [currentGreedy]
pop front of sortedStates [currentGreedy]
for child in nextStates (state)

if child is without remaining stones
return

if child is known as deadlock
continue

h = manhattan (child)
push child in front of sortedStates [h]
if h < currentGreedy
currentGreedy = h

The other algorithm we have tested is IDA*. We used a very simple admissible
heuristic which consists in summing for all stones the distance to the closest goal
location. Moreover we do not place stones inside the goal area and assume they
are at their goal location as soon as they enter the area.

The greedy algorithm is very similar for pull deadlocks, except that the
heuristic used is a greedy one, the closest pair of stone and start location is
chosen, their distance is added to the heuristic, then the start location is re-
moved from the possible locations and the process is repeated until all pairs
have been chosen.

6 Results

In order to compute the deadlock tables, all combinations are tried until 4 stones,
then for more stones, a smaller search first pass with Pmax = 2 is performed,
followed by usual passes. Table 1 gives the time used to build deadlock tables
and the number of deadlocks found for screen 13. A distinction is made between
the first pass and subsequent passes. For 5 stones, the combination search takes
40 minutes and the smaller search takes 10 seconds, the number of deadlock
found in the first pass of the smaller search is higher than in the combination
search since it the order in which it considers deadlocks is not the same and as
it checks a deadlock as soon as it is found. For 10 stones, the smaller search uses
2h14m for the first pass and 1 minute for subsequent passes.

Table 1. Time needed and number of deadlocks found with deadlock search.

screen 13 with combination with smaller Pmax = 2

time nb passes 1st next time nb passes 1st next
1 <1s 2 40 0
2 <1s 4 49 6
3 1s 5 59 20
4 40s 6 160 117
5 40m 7 417 345 10s 6 440 244
6 43s 8 1576 1057
7 2m16s 7 4075 3042
8 9m47s 8 12970 10534
9 33m31s 10 38775 36838
10 2h15m 11 154480 132908
11 8h33m 11 411582 300621
12 33h20m 17 603892 403528

Table 2. Time needed and number of deadlocks found with deadlock search.

screen 14 with combination with smaller Pmax = 2

time nb passes 1st next time nb passes 1st next
1 <1s 2 36 0
2 <1s 8 64 38
3 1s 8 68 38
4 41s 8 167 49
5 43m 10 436 248 14s 9 431 113
6 25s 15 1084 1036
7 1m31s 18 2999 4548
8 8m23s 16 14518 14944
9 32m11s 18 65739 64714
10 2h44m 17 342553 375699
11 17h07m 16 1413054 1690141

Table 2 gives similar information for the deadlocks of screen 14.
Table 3 gives the number of nodes required to solve screen 13 and screen 16

with a greedy search and different deadlock tables. Using deadlock tables with
only three stones it does not solve the problem 16 in one million nodes. Using
four stones deadlock tables, it solves screen 16 in 56941 nodes. The number of
nodes decreases with the number of deadlock stones until 8 where it reaches its
minimum at 623 nodes. Concerning screen 13, the problem can be solved with
the 8 stones deadlock tables, computing more deadlock tables is of little practical
interest given the computing times of the deadlock tables greater than 8 stones
given in table 1.

Table 3. Greedy search with different numbers of deadlock tables.

screen 13

stones 5 6 7 8 9 10 11 12
nodes >1M >1M >1M 1414 1407 1372 1371 1371

screen 16

stones 3 4 5 6 7 8 9 10
nodes >1M 56941 7278 1986 1496 623 623 623

Table 4 compares the different search algorithms on different screens. The
greedy algorithm with deadlock tables solves most of the problems we have
tested. It solves problems 13, 15, 16, 18, 20, 22, 24, 28, 29, 31, 32 and 44 which
are not solved by Rolling Stone. The first column of the table is the number of the
screen, the second column is the number of stones of the screen, the third column
gives the number of deadlock stones in the tables (– if equals to the number of
stones), the fourth column gives the number of nodes used by a greedy search
without deadlock tables (search is stopped after 1M nodes, so 1M means the
search has failed), the fifth column gives the number of remaining stones for
the position in the greedy search that has the minimum such number, the sixth
colmun give the number of nodes used by a greedy search with deadlock tables,
the seventh column the related number of remaining stones, the seventh column
the number of nodes of IDA* without deadlock tables, the eight column the
related number of remaining stones, the ninth column the number of nodes of
IDA* with deadlock tables and the last column the related number of remaining
stones.

Our current greedy search does not manage the placement of the stones in
the goal area, as soon as a stone is in the goal area it is removed and considered
as placed in the right location of the goal area. For many problems this simpli-
fication does not change the solution of the problem, however in some screens
there can be interactions between the goal area and the solution or there can be
multiple goal areas (for example in screen 18 there are three goal areas so our
solution is not valid, in screen 15 there are two stones in the goal areas in the
start position and they interact with the solution so our greedy solution is also
not valid). Our simplification poses no problem in screens with a simple goal
area such as screens 13, 20, 24, 28 and 31 which are solved by greedy search with
deadlock tables and not by Rolling Stone.

Deadlock tables were added to Rolling Stone. The IDA* search was stopped
as soon as a deadlock was encountered. The results are given in table 5. The first
column gives the screen number, the second column gives the number of nodes
used by the original Rolling Stone, the third column gives the number of nodes
used by Rolling Stone equipped with deadlock tables. Deadlock tables reduce
the number of nodes for almost all problems, problem 8 being an exception. A

possible explanation is that in this problem some penalty patterns could not be
found by Rolling Stone due to deadlock tables cuts and could not be reused in
other parts of the search.

Table 6 gives the number of pull deadlocks and their computation times for
screen 13.

A greedy search with pull deadlocks can be trapped in position that are close
to the goal position but that are not solvable. Here is an example for screen 1
where the search is one move away from the start but is in a hopeless position,
moreover the man cannot move to its start position:

#####
#@
#$ # # $ #

$## ### $##
$ $ # # $ $

######
..# # # ## ##### ..#
$ $..# # $ $..#
#@## ..# ##### ### # ## ..#

#########
####### #######

after 495112 nodes

7 Conclusion

We have presented how to use retrograde analysis to compute maze specific
deadlock tables at Sokoban, we have also presented how to use deadlock trees to
match the computed deadlocks efficiently as well as a greedy search algorithm.
Moreover we have presented a new way to solve Sokoban problems pulling stones
out from the goal area towards their start positions as well as the related pull
deadlocks.

These algorithms have been tested on many Sokoban screens including diffi-
cult ones. Computing maze specific deadlock tables has enabled to successfully
use a greedy search at Sokoban and to solve problems that are not solved by
IDA*.

In future works, we will improve greedy search so as to cope with the place-
ment of stones in the goal area. We will also try to improve the retrograde
analysis efficiency and completeness.

References

1. T. Cazenave. Automatic Acquisition of Tactical Go Rules. In Game Programming
Workshop in Japan ’96, pages 10–19, Kanagawa, Japan, 1996.

Table 4. Number of nodes evaluated and resulting top level node needed to solve
problems.

Screen MZ DL greedy ida*
basicDL DL basicDL DL

1 6 – 643 (0) 400 (0) 1M (1) 1M (1)
2 10 – 1M (10) 4291 (0) 1M (6) 1M (4)
3 11 – 1M (10) 490 (0) 1M (3) 723410 (0)
4 20 – 1M (20) 1981 (0) 1M (20) 1M (5)
5 12 – 1M (11) 899 (0) 1M (4) 1M (2)
6 10 – 1M (9) 535 (0) 1M (1) 150 (0)
7 11 – 1M (8) 378 (0) 1M (2) 40888 (0)
8 18 11 1M (14) 1489 (0) 1M (12) 1M (10)
9 14 – 1M (14) 10819 (0) 1M (4) 1M (2)
11 14 11 1M (14) 62345 (0) 1M (13) 1M (13)
12 15 13 1M (14) 1440 (0) 1M (10) 1M (10)
13 16 12 1M (16) 1371 (0) 1M (7) 1M (6)
14 18 11 1M (13) 1M (14) 1M (14) 1M (9)
15 15 11 1M (9) 769 (0) 1M (7) 1M (7)
16 15 14 1M (11) 623 (0) 1M (10) 1M (7)
18 11 10 1M (7) 443 (0) 1M (4) 1M (4)
20 18 10 1M (16) 102784 (0) 1M (15) 1M (15)
22 27 11 1M (25) 2251 (0) 1M (25) 1M (21)
24 22 10 1M (21) 6967 (0) 1M (17) 1M (17)
27 20 10 1M (20) 1M (15) 1M (18) 1M (15)
28 20 12 1M (20) 9691 (0) 1M (15) 1M (8)
29 16 11 1M (9) 396 (0) 1M (4) 1M (2)
31 20 10 1M (19) 1800 (0) 1M (20) 1M (11)
32 15 13 1M (11) 646 (0) 1M (5) 1M (5)
44 9 – 1M (7) 908532 (0) 1M (6) 1M (5)

2. T. Cazenave. Generation of Patterns With External Conditions for the Game of
Go. In H.J. van den Herik and B. Monien, editors, Advances in Computer Games
9, pages 275–293. Universiteit Maastricht, Maastricht, 2001.

3. J. C. Culberson. Sokoban is PSPACE-complete. In L. Pagli E. Lodi and
N. Santoro, editors, Conference on Fun With Algorithms, pages 65–76, Waterloo,
1999. Carleton Scientific.

4. J. C. Culberson and J. Schaeffer. Pattern Databases. Computational Intelligence,
4(14):318–334, 1998.

5. A. Felner, R. E. Korf, R. Meshulam, and R. C. Holte. Compressed pattern
databases. J. Artif. Intell. Res. (JAIR), 30:213–247, 2007.

6. A. Junghanns. Pushing the limits: New developments in single-agent search. Phd
thesis, University of Alberta, 1999.

7. A. Junghanns and J. Schaeffer. Sokoban: Enhancing general single-agent search
methods using domain knowledge. Artif. Intell., 129(1-2):219–251, 2001.

8. A. Junghanns and J. Schaeffer. Sokoban: improving the search with relevance cuts.

Table 5. Total nodes searched with Rolling Stone.

screen without deadlock tables with deadlock tables

1 1042 384
2 7530 6366
3 12902 7181
4 50369 50369
5 43294 20483
6 5118 4028
7 28460 25954
8 336495 408123
9 436801 343591
11 3091658 2323731
12 559216 556353
13 >20M >20M
44 >20M >20M

Table 6. Time needed and number of pull deadlocks found with pull deadlock search.

screen 13 with combination with smaller Pmax = 2

time nb passes 1st next time nb passes 1st next
1 <1s 1 0 –
2 <1s 3 35 2
3 8s 2 78 0
4 10m51s 2 234 0
5 16s 10 195 400
6 76s 10 714 1023

Theor. Comput. Sci., 252(1-2):151–175, 2001.
9. R. E. Korf. Finding optimal solutions to rubik’s cube using pattern databases. In

AAAI-97, pages 700–705, 1997.
10. R. E. Korf and A. Felner. Disjoint pattern database heuristics. Artificial Intelli-

gence, 134(1-2):9–22, 2002.
11. R. Lake, J. Schaeffer, and P. Lu. Solving large retrograde-analysis problems using

a network of workstations. In H.J. van den Herik, I.S. Herschberg, and J.W.H.M.
Uiterwijk, editors, Advances in Computer Chess 7, pages 135–162. University of
Limburg, Maastricht, The Netherlands, 1994.

12. J. W. Romein and H. E. Bal. Solving awari with parallel retrograde analysis. IEEE
Computer, 36(10):26–33, October 2003.

13. K. Thompson. Retrograde analysis of certain endgames. ICCA Journal, 9(3):131–
139, 1986.

14. K. Thompson. 6-piece endgames. ICCA Journal, 19(4):215–226, 1996.

