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Abstract. breakthrough is a recent race based board game usually
played on size 8× 8. We describe a method to solve 6× 5 boards based
on race patterns and an extension of Job-Level Proof Number Search
(JLPNS).
Race patterns is a new domain speci�c technique that allows early endgame
detection. The patterns we use enable positions as far as 7 moves from
the end to be safely and statically pruned.
We also present an extension of the parallel algorithm JLPNS when a
PN search is used as the underlying job. In this extension, partial results
are regularly sent by the clients to the server.

1 Introduction

In this paper, we address the use of parallelization to solve games. We use the
game breakthrough [10] as the testbed for our experiments with parallel solv-
ing algorithms.

breakthrough, which has already been used as a testbed in other work [20,
9], is an interesting game which o�ers new challenges to the AI community. We
therefore also try to improve on domain speci�c techniques for the game of
breakthrough. To this e�ect, we present race patterns, a new kind of static
patterns that allow to detect win several moves before the actual game ends. The
use of race patterns has some links with the use of threats to solve go-moku
[1]. However the threats used in go-moku by Allis were designed to select a
small number of moves to search, whereas the race patterns are designed to stop
search early.

Research on parallel game tree search was initially mainly about the paral-
lelization of the Alpha-Beta algorithm. A survey on the parallelization of Alpha-
Beta can be found in Mark Brockington PhD thesis [4]. Other sources about
the use of transposition tables in parallel game tree search and Alpha-Beta are
Feldmann's paper [8] and Kishimoto's paper [12].

More recently the work on the parallelization of game tree search algorithms
has addressed the parallelization of Monte-Carlo Tree Search algorithms [5�7]

Other related works deal with the parallelization of PDS [14, 13] and of
Depth First Proof Number search (DF-PN) [11]. A technique to reduce the
memory usage of DF-PN is the garbage collection of solved trees [15].



Previous attempts at parallelizing the Proof Number Search (PNS) algorithm
used randomization [16] or a specialized algorithm called at the leaves of the main
search tree [21].

Proof-Number search and parallel algorithms were also already successfully
used in solving Checkers [18, 19].

In this paper we focus on the parallelization of the PN2 algorithm. The PN2

algorithm has enabled to solve complex games such as fanorona [17]. Our goal
is to solve such games faster with a similar but parallel algorithm.

The second section is about PNS, Job-Level Proof Number Search (JLPNS)
and our algorithm Parallel PN2 (PPN2). The third section deals with race pat-
terns at breakthrough and the fourth section details experimental results.

2 Job-Level Proof Number Search

In this section we start presenting PNS. Then we recall the parallelization of
PNS with Job-Level parallelization. The last section presents our Parallel PN2

algorithm.

2.1 Proof Number Search

PNS was proposed by V. Allis [2]. The goal of the algorithm is to solve sequential
perfect information games. Starting from the root position, it develops a tree in
a best �rst manner. PNS uses the concept of e�ort numbers to compare leaves.

E�ort numbers are associated to nodes in the search tree and try to quantify
the progress made towards some goal. Speci�cally in PNS, two e�ort number are
used: the proof number PN of a node n estimates the remaining e�ort to prove
that n is winning for Max. Conversely, the disproof number DN, estimates the
remaining e�ort to prove a win for Min. Originally, the PN (resp. the DN) of a
node n was a lower bound on the number of node expansions needed below n to
prove that n is a Max win (resp. loss). When the PN reaches 0 (resp. ∞), the
DN reaches ∞ (resp. 0), and the node has been proved to be a Max win (resp.
loss).

The PN and DN are recursively de�ned as shown in Table 1 whereWin (resp.
Lose) designate a terminal node corresponding to a position won by Max (resp.
Min), Frontier designate a non-expanded non-terminal leaf node. Max (resp.
Min) designate an expanded internal node with Max (resp. Min) to play.

To select which node to expand next, Allis de�ned the set of most proving

nodes [2] and showed that it is possible to select one of them by the following
descent procedure. Iterate until a Frontier node is reached: when at a Max node,
select a child minimizing PN, when at a Min node, select a child minimizing
DN.



Node type PN DN

Win 0 ∞
Lose ∞ 0
Frontier 1 1
Max minc∈chil(n) PN(c)

∑
c∈chil(n) DN(c)

Min
∑

c∈chil(n) PN(c) minc∈chil(n) DN(c)

Table 1: Determination of e�ort numbers for PNS

2.2 Job-Level Parallelization

Job-Level Proof Number Search [21] has been used to solve connect6 positions.
The principle is to have a main Proof Number Search tree, but instead of having
simples leaves, a solver is called at each leaf in order to evaluate it.

In order to avoid having several clients trying to prove the same leaf, JLPNS
uses a virtual-loss mechanism.3 When a leaf is sent to a client, it is temporarily
assumed to be proved a loss until the client returns a meaningful result.

A disadvantage of the virtual-loss mechanism is that it is possible for a node
to be considered losing for some time, but then to be updated to a non-solved
state. Put another way, 0 and∞ are no longer attractor values for the proof and
disproof numbers.

An advantage of the approach taken by JLPNS, is that it allows an easy
parallelization over a distributed system with a very small communication over-
head.

2.3 Parallel PN2

The principle of the PN2 algorithm [1, 3] is to develop another PN search at
each leaf of the main PN search tree in order to have more informed proof and
disproof numbers. For PPN2 search, the PN search tree at the leaves is developed
on a remote client.

A �rst di�erence with JLPNS is that the algorithm that is called at the leaves
is also a Proof Number Search instead of a specialized solver as in JLPNS. As
a result, partial results from the un�nished remote search in one client can be
sent back to the server to update the main PNS tree in order to in�uence the
next searches of the other clients.

Another di�erence is that we do not use the virtual loss mechanism to avoid
currently computed leaves but a �ag on these leaves. First, in our technique,
a node is never considered to be losing unless it has actually been proved to
be losing, thus 0 and ∞ remain attractors. Then, note that the set of most-
proving nodes usually contains several nodes, our technique ensures that we will

3 The authors of JLPNS also try a virtual-win policy and a greedy mechanism which
are conceptually similar to virtual-loss [21].



pick tasks from the set of most-proving nodes of the current tree. Finally, the
virtual-loss mechanism does not �t well with the partial result update described
described in the preceding paragraph.

On the other hand, our algorithm also has breakthrough speci�c knowl-
edge: it uses the mobility heuristic and race patterns de�ned in Section 3.3.

Just as in PN2, the size of the remote tree can either be �xed or a function
of the size of the main search tree.

The main algorithm which is run on the server, is described in Algorithm 1.
It consists in receiving results from the clients and updating the tree according
to these results. A result can either be a partial result or a �nal result. In both
cases, we need to update the proof and disproof numbers of the concerned leaf
with the result. We also update recursively its ancesters. When the result is �nal,
however, we expand the tree and need to �nd a new not reserved leaf for the now
idle client. Finding a not reserved leaf is done using a backtracking algorithm
where the choice points are the nodes with several children minimizing the proof
or disproof number.

Algorithm 1 Main algorithm.

while root is not proved do

receive result r from any client c
if r is a partial result then
update the PN and DN with r

else

expand the tree
update the PN and DN with r
if root is proved then

break
end if

�nd the most proving and not reserved leaf l
reserve leaf l
send the position at l to client c

end if

end while

collect and discard the remaining client messages
send stop to all clients

The remote algorithm which is run on the clients is described in Algorithm 2.
It consists in developing a PNS tree until a given threshold and regularly sending
partial results to the server.

3 breakthrough and Race Patterns

3.1 Rules of breakthrough

breakthrough is race game invented in 2001 by Dan Troyka. The game is
played on a rectangular board of size 8× 8. Each player starts with two rows of



Algorithm 2 Remote algorithm.

while the stop message is not received do

receive a position, a player and a threshold N from the server
while root is not proved and number of descents is less than N do

if the number of descent is a multiple of a parameter p then

send as partial results to the server the current PN and the DN of the root
end if

expand the tree using Proof Number Search
end while

send the de�nitive results to the server
end while

pawns situated on opposite borders as shown in Figure 1a. The pawns progress
in opposite direction and the �rst player to bring a pawn to the opposite last row
wins the game. A pawn can always move diagonally forward possibly capturing
an opponent pawn but can move forward one cell only if it is empty (Figure 1b).

(a) Starting position on size 5× 5. (b) Possible movements.

Fig. 1: Rules for the game breakthrough.

breakthrough was originally designed to be played on a 7 × 7 board but
was adapted to participate in the 8× 8 board game design competition which it
won [10].

3.2 Retrograde Analysis for Small Boards

The state space complexity of breakthrough on a board m × n with m ≥ 2
and n ≥ 4 can be upper bounded by the following formula 22m × 3(n−2)m. This
formula derives from the fact that each cell on the top row can only be empty
or Black, each cell on the bottom row can only be empty or White, and all three
possibilities are available for cells in the n − 2 central rows. This upper bound



is relatively accurate for board with small height, but it includes positions that
cannot be reached from standard starting position as does not take into account
the fact that each player has at most 2m pieces. As a result, it is rather loose
for larger boards.

Jan Haugland used retrograde analysis to solve breakthrough on small
boards.4 The largest sizes solved by his program were 5 × 5 and 3 × 7, both
turned to be a second player win.

To reduce the state space complexity and ease the retrograde analysis, Haug-
land avoided to store positions that could be won in one move. That is, positions
with a pawn on the one before last row were not stored. It allows to reduce the

state space complexity to 24m× 3(n−4)m. The reduction factor is r = 3
2

2m
which

is r = 58 when m = 5.

3.3 Race patterns

After a couple of games played, human players start to get a sense of tactics
in breakthrough. It allows the experimented player to spot a winning path
sometimes as early as 15 plies before the actual game end. A game of break-
through proceeds as follows, in the opening, the players strive to control the
center or to obtain a strong outpost on the opponent's side without exchanging
many pieces. Then, the players perform waiting moves until one of them enters
a zugzwang position and need to weaken his or her structure. The opponent will
now try to take advantage of the breach, usually the attack involves sacri�c-
ing one or two pawns to force the opponent's defense to collapse. Thus, at this
point both players could break through if the opponent passed, and the paths of
both are usually disjoint, therefore it is necessary to count the number of moves
needed by both players and the quickest to arrive wins (Figure 3a is an example
of such a situation).

As we can see, detecting an early win involves looking separately at the
possible winning paths of both players and deciding which is the shortest. For-
malizing this technique can improve the playing level of an arti�cial player or
the performance of a solver.

De�ning race patterns We de�ne race patterns that allow to spot such win-
ning paths. To be able to deal softly with the left and right sides of the board, we
will consider a generalization of breakthrough with walls.5 Walls are static
cells which cannot be traversed nor occupied by any player.

In the following, we assume that we are looking for a winning path for player
White. Formally, a pattern for player White is a two dimensional matrix in which
each element is of one of the following type {occupied, free, passive, crossable,
don't care}. The representation and the relationship between these types is pre-
sented in Figure 2. A cell of type passive should not contain a Black pawn to

4 Available on http://www.neutreeko.net/neutreeko.htm.
5 This generalization was used in the 2011 GGP competition.



begin with, but it will not be necessary for any white pawn to cross it. On the
other hand it should be allowed to bring a White pawn on a cell of type crossable,
so it cannot be a wall but it could already hold a White or a Black pawn.

Occupied Free

Passive

Crossable

Dont't care

Fig. 2: Pattern representation. An arrow from a to b indicates that any cell
satisfying a satis�es b.

To verify whether a pattern is matched on a given board, we �rst extend the
board borders with walls and then check for each possible pattern location that
every cell are compatible as de�ned by Table 2. For instance, if the attacking
player is White, then a White pawn will match any cell type in the pattern. Put
another way, if the pattern cell corresponding to a Black pawn is not Crossable
or Don't Care, then the pattern does not match.

Occupied Free Passive Crossable Don't Care

White Pawn X X X X X
Empty cell X X X X
Black Pawn X X
Wall X X

Table 2: Checking race patterns for White.

The order of a race pattern is de�ned as the maximal number of pass moves
Black is allowed to do before White wins in the restricted position designated
by the race patterns.

We compute for each player the lowest-order matching race pattern and if
they only intersect on don't care cells, we know the outcome of the game. For
instance in Figure 3a, we can see that White has two-move second player win



pattern (Figure 3b) and that Black has a three-move �rst player win pattern
(Figure 3c). Given that player Black does not have a one-move nor a two-move
race pattern, we conclude that the position is a White win. It is thus possible to
statically solve this position four moves before the actual game end.

(a) Sample game with
Black to play. White player
can force a win.

(b) Two-move second
player win pattern.

(c) Three-move �rst
player win pattern.

Fig. 3: Early win detection using race patterns. White can match pattern (b)
and Black can match pattern (c).

In general, this technique allows to solve positions 2 × n moves before the
actual game end only if we have access to every n-move race pattern. However,
a position cannot be solved this way if its solution tree involves a zugzwang.

In our experiments, we used 26 handwritten patterns of order up to 2. The
biggest patterns we used were 4× 3 such as the one presented in Figure 3b. We
do not have yet a tool for automatic correctness checking, therefore we had to
limit the number of patterns used to keep con�dence in their correctness.

4 Experimental Results

Experiments are done on a simple network of Linux computers connected with
Gigabyte switches. The network area includes 17 computers with 3.2 GHz Intel
i5 quad core CPU with 4 GB of RAM. The master is run alone on one of these
computers. The maximum number of clients is set to 16× 4.

In the following experiments, we report the total time needed to solve the
starting position of a breakthrough game of various sizes. We also report the
number of nodes expanded and touched that were needed in Algorithm 1.

A node is expanded when all of its children have been added to the tree. In
our server-side implementation, one node is expanded per iteration. The number
of nodes expanded is proportional to the memory needed to store the PN tree on
the server side. It also corresponds to the total number of tasks that have been
sent to the clients. For a touched node, we only store the proof and disproof
numbers as given by a client search. On the other hand, an expanded node also



needs to store a pointer to every child. As a result touched nodes take much
less memory than expanded nodes. We bounded to 1k or 100k the number of
descents in one search in the clients, so memory resources in the clients were
never a problem in these experiments.

4.1 Scalability

Table 3 gives the time needed in sec., the number of expanded and touched nodes
saved on the server side to solve the 4× 5 game with the PPN2 algorithm with
1k descents in the clients. Solving 4 × 5 with 64 clients with 100k descents in
each remote search takes 577 seconds, while with 10k descents in each remote
search, it takes 216 seconds. Therefore, increasing the number of descents in the
remote search does not necessarily improve the solving time. On the other hand,
performing 100 descents in each remote search made it necessary to go over 1m
descents in the main search which is very memory consuming.

Clients Time Speed-up Expanded Touched

1 3397s 107k 915k
4 1559s 2.2 126k 1073k
8 803s 4.2 130k 1106k
16 472s 7.2 152k 1298k
32 305s 11.1 196k 1651k
64 186s 18.3 232k 1930k

Table 3: Time needed, number of expanded and touched nodes for the PPN2

with �xed search size on 4 × 5 board with 1k descents at most in the remote
search. Partial results were sent from a client every 100 descents.

We can see from Table 3, that the number of expanded nodes on the server
increases as the number of clients rises. Put another way, running many clients in
parallel makes it harder to avoid unnecessary work. This is an expected behavior
in a parallel algorithm. Nevertheless, the time needed to solve the position also
decreases steadily as the number of clients rises. The speedup factor with 8 and
64 clients compared to 1 single client are respectively 4 and 18. We can conclude
that although the algorithm is not perfectly parallelizable, the scaling factor is
satisfactory.

4.2 Partial Results Updates

Table 4 gives the time needed in sec., the number of expanded and touched nodes
saved in memory to solve the 4× 5 game with the PPN2 algorithm with partial
results. The �rst column gives the partial results frequency. Each solved position
turned to be a second-player win.



Partial Time Expanded Touched

None 263s 324k 2645k
500 233s 281k 2336k
250 205s 253k 2105k
100 186s 232k 1930k
50 190s 233k 1944k
25 201s 243k 2023k
12 193s 223k 1855k

Table 4: Time needed, number of expanded and touched nodes for PPN2 algo-
rithm with partial results and �xed remote search size of 1k descents on 4 × 5
board, involving 64 clients.

As we can see, sending partial results makes it possible to direct better the
search but also increases the communication overhead. It is therefore needed
to �nd a balance between spending too much time in communications and not
taking advantage of the information available. In this setting, sending partial
results every 100 descents in the client seems the best compromise. Using partial
informations, solving time is less dependent to the search size.

4.3 Patterns

Table 5 gives the time in sec. and the number of expanded nodes needed to solve
di�erent games with the PPN2 algorithm with partial results, �xed search size
and some patterns. The patterns we used allowed to statically solve a position up
to 4 moves before the game end, 26 patterns were hand-written for this purpose.
Checking whether a pattern can be matched on a given position is done in the
most naive way and implementing more e�cient pattern matching techniques is
left as future work.

Using race patterns, the solving time is divided by 5.96 for the 4 × 5 board
with 1k search, and by 9.85 for the 5 × 5 board. It takes 927 sec. to solve the
5 × 5 board with 1k search in the clients. Without patterns, 5 × 5 board with
1k search fails with 1 million nodes saved and goes beyond the server allowable
memory with 2 million nodes.

Combining PPN2 and race patterns allows us to solve the 6×5 board in 25,638
sec. (i.e. 7 hours 7 minutes 18 sec.) with 10k search and in 47,134 sec. (i.e. 13
hours 5 minutes 34 sec.) with 100k search.

As we can see, using race patterns makes it unnecessary to examine many
positions in the main search. Race patterns also allow for a time reduction of
one order of magnitude on boards of small sizes and probably more on larger
boards.



Board size Search size Patterns Time Expanded

5× 4 1k No 2s 4132
5× 4 1k Yes 1s 72

4× 5 1k No 161s 241k
4× 5 1k Yes 27s 4k

5× 5 1k Yes 927s 78k
5× 5 100k No 29,170s 208k
5× 5 100k Yes 2959s 3k

6× 5 10k Yes 25,638s 14k
6× 5 100k Yes 47,134s 21k

Table 5: Time needed and number of expanded nodes for the PPN2 algorithm
with partial results, �xed remote search size and patterns with 64 clients.

5 Discussion and Conclusion

In this paper, we have de�ned race patterns and used them to ease the solving
of breakthrough positions. Indeed, in our experiments, using race patterns
usually allows to examine about two orders of magnitude fewer positions. We
have also shown how to successfully parallelize the PN2 algorithm. The PPN2

algorithm associated to race patterns has enabled to solve 6×5 breakthrough:
the game is a second player win. We have found that on the smaller 4× 5 board
the speedup due to parallelization is important until at least 64 clients.

In future work, we will try to solve breakthrough for larger sizes. The
race patterns used in this work had been devised by hand but it is impractical
if we need many more patterns to statically solve positions earlier. We therefore
need to devise an algorithm to generate and check for correctness race patterns
automatically.

Zugzwang positions are still di�cult to solve. Indeed, no winning race pattern
will be found in a zugzwang position, so an extension of the concept of race
patterns to be compatible with zugzwang positions or an orthogonal technique
would be desirable.

We will also apply the Parallel PN2 algorithm to other games. Moreover we
will try to enhance the algorithm itself in order to have even greater speedups.
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