Controlled Partial FEvaluation of Declarative
Logic Programs.

Synthesis of an efficient Tactical Theorem Prover for
the Game of Go.

Tristan Cazenave
LIP6, Université Pierre et Marie Curie

1. INTRODUCTION

Partial evaluation of logic programs [Lloyd and Shepherdson 1991], also known as
partial deduction, is a powerful tool for program specialization and has been suc-
cessfully applied to the derivation of very efficient specialized programs [Gallagher
1993]. Logic Programming provides a nice and convenient way to represent knowl-
edge. An important goal of Logic Programming is declarativity, which involves
stating what is to be computed, but not necessarily how it is to be computed. In
the terminology of Kowalski’s equation algorithm = logic + control, it involves stat-
ing the logic of an algorithm, but not necessarily the control. Giving only the logic
of an algorithm is very convenient and enables to give easily a lot of knowledge to
a program, however it is very inefficient and often leads to a combinatorial explo-
sion in the application of the algorithm. Introspect [Cazenave 1996] is a system
that transforms a concise but inefficient declarative logic program into an efficient
one by unfolding the goals specified by the programmer. It uses domain specific
metaprograms [Barklund 1994] [Hill and Lloyd 1994] to control unfolding and to
rewrite object programs. Metaprograms are also logic programs that use some
built-in metapredicates.

Introspect has been used to partially evaluate some goals of the game of Go, the
most complex two person complete information game. It uses the rules of the game
represented declaratively in first order predicate logic and some metaprograms to
unfold the goals. The partially evaluated program has been compiled into a 1 000
000 lines C++4 program that develops tactical proof trees. This program competed

Address: LIP6, Université Pierre et Marie Curie Case 169, 4 place Jussieu, 75252 PARIS cedex
05, France. e-mail: Tristan.Cazenave@lip6.fr

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm. org.

in the international computer Go tournament held during IJCAI97 together with
40 other participants [Fotland and Yoshikawa 1997]. It finished as the best program
based on academic research, playing better that the other programs directly writ-
ten by Artificial Intelligence researchers and Go professionals. It has outperformed
programs that have required more than 10 person*years of professional game pro-
grammers.

Introspect has also been applied in other domains and, in these domains too,
it has written C++ programs that give better results than programs written by
professional C++ programmers.

Lloyd and Shepherdson [Lloyd and Shepherdson 1991] conclude that ”the control
of partial evaluation is one of the most difficult issues that need to be resolved before
partial evaluation can realize its full potential”. We have a bottom-up approach
to this problem: we write metaprograms that enable a good control of partial
evaluation in a complex domain (i.e. the game of Go), then we generalize the
control metaprograms by applying Introspect to multiple domains (i.e. pedestrian
simulation, other games...). We do not rely on a fixed strategy for choosing clauses:
in our programs the clauses may be used in any order, the programs give the same
results. That is why we say our logic programs are declarative: the clauses in the
programs can be put in any order.

In the following, we give reasons for Go to be a valuable challenge for computer
science. We briefly explain how actual Go programs are made and the interest of
automatic program generation for the game of Go. Next, we sketch the controlled
partial evaluation process of Introspect. At the end, we describe some applications.

2. COMPLEXITY OF GO

Go was developed three to four millennia ago in China; it is the oldest and one
of the most popular board game in the world. Like chess, it is a deterministic,
perfect information, zero-sum game of strategy between two players. In spite of
the simplicity of its rules, playing the game of Go is a very complex task. Robson
[Robson 1983] proved that the time complexity of Go generalized to NxN boards is
exponential in N. More concretely, van den Herik [van den Herik et al. 1991] and
Allis [Allis 1994] define the whole game tree complexity A = B%, where L is the
average length of a game and B is the average branching factor. The state-space
complexity of a game is defined as the number of legal game positions reachable
from the initial position of the game. In Go, L ~ 150 and B & 250 hence the
game tree complexity A ~ 103%°. Go state space complexity, bounded by 33! ~
10'"2, and game tree complexity are far larger than those of any other perfect-
information game. Moreover, a position takes time to be evaluated, on the contrary
of Chess where the best programs can evaluate a position very fast. This makes
Go a challenging programming task.

3. METHODS FOR PROGRAMMING GO

As it is impossible to search the entire tree for the game of Go, the best Go playing
programs rely on a knowledge intensive approach. They are generally divided in
two modules:

- A tactical module that develops narrow and deep search trees. Each tree is
related to the achievement of a goal of the game of Go.

- A strategic module which chooses the move to play according to the results of
the tactical module.

A Go expert uses a large number of rules. Go programmers usually try to enter
these rules by hand in a Go program. Creating this large number of rules requires a
high level of expertise, a lot of time and a long process of trial and error. Moreover,
even the people who are expert in Go and in programming find it difficult to design
these rules. This phenomenon can be explained by the high level of specialization
of these rules: once the expert has acquired them, they become subconscious and it
is hard and painful for the expert to explain why he has chosen to consider a move
rather than another one. Moreover, even when the work of extracting some rules
has been done, it results in thousands of specific expert rules. Thus, it is difficult
to describe them in a systematic way.

4. COMPUTER GO CAN BENEFIT FROM PARTIAL EVALUATION

The difficulty of encoding Go knowledge is the consequence of a well known difficulty
of expert system development: the knowledge engineering bottleneck. Automatic
program generation by Partial Evaluation [Jones et al. 1993] [Consel and Danvy
1993] is a nice way to avoid this bottleneck by replacing the knowledge extraction
process with an automated construction of programs. Partial Evaluation enables
Go programmers to get rid of the painful expert knowledge acquisition: they only
have to define a goal and the rules of the game in predicate logic, partial evaluation
automatically writes all the rules that enable to develop search trees to prove the
defined goals. Using partial evaluation, programmers only have to define about
70 simple and intuitive rules in first order predicate logic. Without using it, they
have to hand-code thousands of complex expert rules (which is currently what all
but one Go programmers do). Thus, computer Go is an ideal domain to test the
efficacy of Partial Evaluation.

5. CONTROLLED PARTIAL EVALUATION

Partial Evaluation in Introspect is controlled by four metaprograms:

- A metaprogram that detects in a clause the variables that are always equal,
and replaces them by a unique variable. For example, two different variables that
both contain the number of neighbors of a given intersection are always equal, so
they can be merged in a single variable. Introspect always merges variables when it
is possible. However when it has created two clauses and when one clause implies
the other one, it deletes the more specific one. This metaprogram also performs
constant propagation and expression simplification. It contains approximately 50
clauses.

- A metaprogram that removes clauses that can never apply. When partially
evaluating a declarative logic program, a large part of the object program is use-
less because of some properties of the domain. For example in the game of Go,
intersections never have more than four neighbors, so the metaprogram removes
all the clauses that contain conditions in which one intersection has more than
four different neighbors because they will never apply. This metaprogram contains
approximately 40 clauses.

- A metaprogram that indicates when to stop unfolding. The definition of a goal
N moves ahead is given using information on the goal N-1 moves ahead, therefore

it is recursive. Blindly unfolding a goal defined recursively does not terminate.
Therefore a simple metaprogram is used to stop unfolding, the criteria for stopping
are based on the complexity and on the number of unfolded clauses. The evaluation
of the complexity of a clause is based on its length and on the number of moves
the clause advises (clauses that advise more than five moves at an AND node are
discarded).

- A metaprogram that reorders the atoms inside the clauses so as to unify clauses
faster. This metaprogram uses statistical information on the presence of facts in
the working memory. It orders the clauses with heuristics that combine information
on the number of values a variable can take and on the number of other variables
a variable is linked to, so as to make the most informative choices first.

When the controlled Partial Evaluation ends, the resulting set of clauses is put
into a tree of atoms and compiled to a C4++ program by another metaprogram.

6. APPLICATIONS

In the application to the game of Go, 70 simple clauses define the goals and the rules
of the game. The controlled Partial Evaluation and the compilation to C4++ of these
clauses give the Go program. The clauses unfolded by Introspect and compiled to
C++ are theorems about the moves to try when developing a proof tree. Out of
the 250 possible moves on a Go board, the clauses select between 1 and 5 moves
that are proven to be the only ones that are useful to look at. This exponentially
decreases the complexity of the search tree. Comparing the unspecialized program
to the specialized program is difficult for the game of Go because the unspecialized
program often does not terminate (when there is no solution) and is very slow (it
tries all the possible moves), whereas the specialized program always terminates
(due to the control metaprogram that stops unfolding) and is quite fast. The
compilation to C++ enables the specialized program to run 60 times faster than
the specialized logic program. The module that compiles logic programs to C++
has to know the range of values of each variable in each predicate. The Go program
plays a move in 10 seconds on a Pentium 133 MHz. Before playing a move, it proves
about 450 tactical theorems, each theorem requires between 4 and 600 nodes in a
search tree to be proved. At each node of each tree, the C4++ program written
by Introspect is called to find the useful moves to try. The theorems proved are
represented using an extension of combinatorial game theory [Conway 1976] to
unknown values [Cazenave 1996].

Introspect has also been used to rewrite the decision part of a pedestrian in a
commercial urban simulation. Using controlled Partial Evaluation, it has written a
C++ program that is 5 to 10 times faster than the original C++ program written
by the authors of the simulation. Other successful applications have been designed
for the game of Abalone, and for the optimization of the decision making in the
management of a firm.

7. CONCLUSION

Controlled Partial Evaluation of declarative logic programs has proved to be useful
for rapidly writing efficient and better than professional programs in two different
complex domains: pedestrian simulation and the game of Go. A limitation of our
current technique is that our control metaprograms work well in games and simula-

tions but are not guaranteed to work in any other domain: an important remaining
problem is to characterize domains in which they work well. Another limitation
is that the efficiency of partial evaluation is strongly related to the representation
used to describe the domain: two semantically equivalent representations can lead
to very different specialized programs. Further research is required to identify gen-
eral principles for finding good representations of domains in the programs to be
specialized.

REFERENCES

Avris, L. V. 1994. Searching for Solutions in Games and Artificial Intelligence. Ph. D.
thesis, Vrije Universitat Amsterdam, Maastricht.

BARKLUND, J. 1994. Metaprogramming in logic. Technical Report 80, UPMAIL, University
of Uppsala, Sweden.

CAZENAVE, T. 1996. Systéme d’Apprentissage par Auto-Observation. Application au Jeu
de Go. Ph. D. thesis, Université Pierre et Marie Curie, Paris 6.

ConseL, C. AND Danvy, O. 1993. Tutorial notes on partial evaluation. In 20th Annual
ACM SIGPLAN-SIGACT Symposium on Principles Of Programming Languages (1993).

Conway, J. 1976. On Numbers and Games. Academic Press, London/New-York.

ForLanD, D. AND YOsHIKAWA, A. 1997. The 3rd fost-cup world-open computer-go cham-
pionship. ICCA Journal 20, 4 (December), 276-278.

GALLAGHER, J. 1993. Specialization of logic programs. In D. SCHMIDT Ed., Proceedings of
the ACM SIGPLAN Symposium on PEPM93 (1993). ACM Press.

HiL, P. M. anD Lroyp, J. W. 1994. The Gdédel Programming Language. MIT Press,
Cambridge, Mass.

JonEgs, N. D., GoMARD, C. K., AND SESTOFT, P. 1993. Partial Evaluation and Automatic
Program Generation. Prentice-Hall International.

LrLoyp, J. W. AND SHEPHERDSON, J. C. 1991. Partial evaluation in logic programming.
Journal of Logic Programming 11, 217-242.

RoBson, J. M. 1983. The complexity of go. In Proceedings IFIP (1983), pp. 413-417.

VAN DEN HERIK, H. J., ArrLis, L. V., AND HERSCHBERG, I. S. 1991. Which games will
survive? In D. N. L. Levy anD D. F. BeEAL Eds., Heuristic Programming in Artificial
Intelligence 2, the Second Computer Olympiad, pp. 232—-243. Ellis Horwood. ISBN 0-13-
382615-5.

