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Abstract. In this paper, we are interested in the minimization of the
travel cost of the traveling salesman problem with time windows. In
order to do this minimization we use a Nested Rollout Policy Adaptation
(NRPA) algorithm. NRPA has multiple levels and maintains the best
tour at each level. It consists in learning a rollout policy at each level.
We also show how to improve the original algorithm with a modified
rollout policy that helps NRPA to avoid time windows violations.

Keywords: Nested Monte-Carlo, Nested Rollout Policy Adaptation, Trav-
eling Salesman Problem with Time Windows.

1 Introduction

In this paper we are interested in the minimization of the travel cost of the
Traveling Salesman Problem with Time Windows. Recently, the use of a Nested
Monte-Carlo algorithm (combined with expert knowledge and an evolutionary
algorithm) gave good results on a set of state of the art problems [13]. However,
as it has been pointed out by the authors, the effectiveness of the Nested
Monte-Carlo algorithm decreases as the number of cities increases. When the
number of cities is too large (greater than 30 for this set of problems), the
algorithm is not able to find the state of the art solutions.

A natural extension to the work presented in [13], which consists in the
application of the Nested Monte-Carlo algorithm on a set of Traveling Salesman
Problems with Time Windows, is to study the efficiency of the Nested Rollout
Policy Adaptation algorithm on the same set of problems.

In this work we study the use of a Nested Rollout Policy Adaptation al-
gorithm on the Traveling Salesman Problem with Time Windows. The Nested
Rollout Policy Adaptation algorithm has recently been introduced in [15], and
provides good results, including records in Morpion Solitaire and crossword puz-
zles.
We improve this algorithm by replacing the standard random policy used in the



rollouts with a domain-specific one, defined as a mixture of heuristics. These
domain-specific heuristics are presented in Section 4.2.

The paper is organized as follows. Section 2 describes the Traveling Sales-
man Problem with Time Windows, Section 3 presents the Nested Monte-Carlo
algorithm (Section 3.1) and its application to the Traveling Salesman Problem
with Time Windows (Section 3.2). Section 4 presents the Nested Rollout Policy
Adaptation algorithm (Section 4.1) and its application to the Traveling Sales-
man Problem with Time Windows (Section 4.2). Section 5 presents a set of
experiments concerning the application of the Nested Rollout Policy Adaptation
algorithm on the Traveling Salesman Problem with Time Windows.

2 The Traveling Salesman Problem with Time Windows

The Traveling Salesman Problem (TSP) is a famous logistic problem. Given a
list of cities and their pairwise distances, the goal of the problem is to find the
shortest possible path that visits each city only once. The path has to start
and finish at a given depot. The TSP problem is NP-hard [8]. In this work, we
are interested in a similar problem but more difficult, the Traveling Salesman
Problem with Time Windows (TSPTW). In this version, a difficulty is added.
Each city has to be visited within a given period of time.

A survey of efficient methods for solving the TSPTW can be found in [9].
Existing methods for solving the TSPTW are numerous. First, branch and bound
methods were used [1, 3]. Later, dynamic programing based methods [5] and
heuristics based algorithms [17, 7] have been proposed. More recently, methods
based on constraint programming have been published [6, 10].

An algorithm based on the Nested Monte-Carlo Search algorithm has been
proposed [13] and is summarized in Section 3.2.

The TSPTW can be defined as follow. Let G be an undirected complete
graph. G = (N,A), where N = 0, 1, . . . , n corresponds to a set of nodes and
A = N × N corresponds to the set of edges between the nodes. The node 0
corresponds to the depot. Each city is represented by the n other nodes. A cost
function c : A → R is given and represents the distance between two cities. A
solution to this problem is a sequence of nodes P = (p0, p1, . . . , pn) where p0 = 0
and (p1, . . . , pn) is a permutation of [1, N ]. Set pn+1 = 0 (the path must finish
at the depot), then the goal is to minimize the function defined in Equation 1.

cost(P ) =

n∑

k=0

c(apk
, apk+1

) (1)

As said previously, the TSPTW version is more difficult because each city
i has to be visited in a time interval [ei, li]. This means that a city i has to
be visited before li. It is possible to visit a cite before ei, but in that case, the
new departure time becomes ei. Consequently, this case may be dangerous as
it generates a penalty. Formally, if rpk

is the real arrival time at node pk, then



the departure time dpk
from this node is dpk

= max(rpk
, epk

).

In the TSPTW, the function to minimize is the same as for the TSP (Equa-
tion 1), but a set of constraint is added and must be satisfied. Let us define Ω(P )
as the number of violated windows constraints by tour (P).
Two constraints are defined. The first constraint is to check that the arrival time
is lower than the fixed time. Formally,

∀pk, rpk
< lpk

.

The second constraint is the minimization of the time lost by waiting at a
city. Formally,

rpk+1
= max(rpk

, epk
) + c(apk,pk+1

).

With the algorithm used in this work, paths with violated constraints can be
generated. As presented in [13] , a new score Tcost(p) of a path p can be defined
as follow:

Tcost(p) = cost(p) + 106 ∗Ω(p),

with, as defined previously, cost(p) the cost of the path p and Ω(p) the number of
violated constraints. 106 is a constant chosen high enough so that the algorithm
first optimizes the constraints.

The TSPTW is much harder than the TSP, consequently new algorithms
have to be used for solving this problem.

In the next sections, we define two algorithms for solving the TSPTW. The
first one, in Section 3, is the Nested Monte-Carlo algorithm from [13], and the
second one, in Section 4, is the Nested Rollout Policy Adaptation algorithm,
which is used in this work to solve the TSPTW. We eventually present results
in Section 5.

3 The Nested Monte-Carlo Search algorithm

First, in Section 3.1 we present the Nested Monte-Carlo Search, and then in
Section 3.2 the application done in [13] to the Traveling Salesman Problem with
Time Windows.

3.1 Presentation of the algorithm

The basic idea of Nested Monte-Carlo Search (NMC) is to find a solution path
of cities with the particularity that each city choice is based on the results of
a lower level of the algorithm [2]. At level 1, the lower level search is simply a
playout (i.e. each city is chosen randomly).

Figure 1 illustrates a level 1 Nested Monte-Carlo search. Three selections of
cities at level 1 are shown. The leftmost tree shows that, at the root, all possible
cities are tried and that for each possible decision a playout follows it. Among



the three possible cities at the root, the rightmost city has the best result of 30,
therefore this is the first decision played at level 1. This brings us to the middle
tree. After this first city choice, playouts are performed again for each possible
city following the first choice. One of the cities has result 20 which is the best
playout result among his siblings. So the algorithm continues with this decision
as shown in the rightmost tree. This algorithm is presented in Algorithm 1.

Algorithm 1 Nested Monte-Carlo search

nested (level,node)
if level==0 then

ply ← 0
seq ← {}
while num children(node) > 0 do

CHOOSE seq[ply] ← child i with probability 1/num children(node)
node ← child(node,seq[ply])
ply ← ply+1

end while

RETURN (score(node),seq)
else

ply ← 0
seq ←{}
best score ← ∞
while num children(node) > 0 do

for children i of node do

temp ← child(node,i)
(results,new) ← nested(level-1,temp)
if results<best score then

best score ← results
seq[ply]=i
seq[ply+1. . .]=new

end if

end for

node=child(node,seq[ply])
ply←ply+1

end while

RETURN (best score,seq)
end if

At each choice of a playout of level 1 it chooses the city that gives the best
score when followed by a single random playout. Similarly for a playout of level
n it chooses the city that gives the best score when followed by a playout of level
n− 1.

3.2 Application to the TSPTW

In [13], a NMC algorithm is used in order to solve a set of TSPTW. With the
intention of having a competitive algorithm they add expert-knowledge to the
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Fig. 1. This figure explains three steps of a level 1 search. At each step of the playout
of level 1 shown here with a bold line, an NMC of level 1 performs a playout (shown
with wavy lines) for each available decision and selects the best one.

NMC algorithm. Three heuristics are added and used to bias the Monte-Carlo
simulations thanks to a Boltzmann softmax policy. The principle is to define a
new policy for the rollout phase. This policy is defined by the probability πθ(p, a)
of choosing the action a in a position p:

πθ(p, a) =
eφ(p,a)

T θ

∑
b e

φ(p,b)T θ
,

where φ(p, a) is a vector of heuristics and θ is a vector of heuristic weights.

The three heuristics used are the same as the ones defined in [17], and are
summarised as follows:

– The distance to the last city.

– The amount of wasted time because a city is visited too-early.

– The amount of time left until the end of the time window of a city.

For the tuning of the weights of each heuristic, they used an evolution strategy
[12], more precisely a Self-Adaptive Evolution Strategy [12, 16], known for its
robutsness.

4 The Nested Rollout Policy Adaptation algorithm

First, in Section 4.1, we present the Nested Rollout Policy Adaptation algorithm.
In Section 4.2 we present some modifications done on this algorithm in order to
improve it on the Traveling Salesman Problem with Time Windows.



4.1 Presentation of the Algorithm

The Nested Rollout Policy Adaptation algorithm (NRPA) is an algorithm that
learns a playout policy. There are different levels in the algorithm. Each level
is associated to the best sequence found at that level. The playout policy is a
vector of weights that are used to calculate the probability of choosing a city. A
city is chosen proportionally to exp(pol[code(node,i)]). pol(x) is the adaptable
weight on code x. code(node,i) is a unique domain-specific integer leading
from a situation node to its ith child. This is comparable with previous known
learning of Monte-Carlo simulations [4, 14].

Learning the playout policy consists in increasing the weights associated to
the best cities and decreasing the weights associated to the other cities. The
algorithm is given in algorithm 2.

4.2 Application to the TSPTW

As for the NMC algorithm, adding expert-knowledge is possible in order to
improve this generic algorithm. Consequently, the generality of the resulting
algorithm is lower. We implement a NRPA algorithm with a specific Monte-
Carlo policy.

The idea of this algorithm is first to force to visit cities as soon as they go
after their window end. The reason is that cities that are after their window
end should have been visited earlier and that must be taken into account for
the continuation of the playout. If we force to visit them, the algorithm will try
more to visit them in time.

The second idea of the algorithm is to avoid visiting a city if it makes another
city go after its window end. It considers all the moves that do not make any
city go after its window end.

These moves that avoid some cities can never be moves that force the algo-
rithm into a suboptimal answer. These moves always imply a violation of the
time window. Therefore they only change invalid solutions of the problem. An
optimal move will not be pruned by our expert knowledge since it does not
violate a constraint.

If there are still no possible moves after these two tests, the algorithm con-
siders all the possible moves.

The resulting algorithm is labeled NRPA EK and is given in algorithm 3.

5 Experiments

First, in Section 5.1, we study the behaviour of the NRPA algorithm. Second,
in Section 5.2, we compare it with the version defined in Section 4.2 on two
problems among the set of problems from [11]. Finally, in Section 5.3, we provide
a comparison of the two algorithms studied in this work, the NMC algorithm in
[13] and the state of the art results found in [9].
In all our experiments we set α = 1 for the NRPA and the NRPA EK algorithms.



Algorithm 2 Nested Rollout Policy Adaptation

NRPA (level,pol)
if level = 0 then

node ← root
ply ← 0
seq ← {}
while there are possible moves do

CHOOSE seq[ply] ← child i the with probability proportional to
exp(pol[code(node,i)])
node ← child(node, seq [ply])
ply ←ply + 1

end while

return (score (node), seq)
else

bestScore ← ∞
for N iterations do

(result,new) ← NRPA (level − 1, pol)
if result ≤ bestScore then

bestScore ← result
seq ← new

end if

pol ← Adapt(pol,seq)
end for

end if

return (bestScore,seq)

Adapt (pol,seq)
node ← root
pol′ ← pol

for ply ← 0 to length(seq) - 1 do

pol′[code(node,seq[ply])] += Alpha
z ← SUM exp(pol[code(node,i)]) over node’s children i
for children i of node do

pol′[code(node,i)] -= Alpha × exp(pol[code(node,i)]) / z

end for

node ← child(node, seq [ply])
end for

return pol′



Algorithm 3 Playout policy for NRPA EK

possibleMoves ()
s ← {}
for all not yet visited cities c do

if going to the city c arrives after the window end of the city then

add the city c to the set s
end if

end for

if s = {} then
for all not yet visited cities c do

tooLate ← false
for all not yet visited cities d different from c do

if going to the city d arrives before the window end of the city d and going
to the city c arrives after the window end of the city d then

tooLate ← true
end if

end for

if not tooLate then

add the city c to the set s
end if

end for

end if

if s = {} then
for all not yet visited cities c do

add the city c to the set s
end for

end if

return s



5.1 The behaviour of the NRPA algorithm

It has been found for the NMC algorithm and the NRPA algorithm (both on
Morpion Solitaire) that a plateau is reached for each level of the algorithms,
and then consequently, that increasing the level improves the results of the al-
gorithms. In figure 2, similar results are shown for a TSPTW (on the problem
rc204.1 from the set of problems from [11]). We measure the score of a NRPA
algorithm as a function of the time T for different levels. The time T represents
the number of evaluations done for each level. Formally, T = N level. We recall
that N is the number of iterations done for each level (> 0) of the NRPA algo-
rithm. Each point is the average of 30 runs. Plateaus are here well represented.
For the level 1, T = N , and we can note that increasing N beyond 1000 does
not improve the algorithm. The level 2 of the NRPA algorithm is quickly better
than a level 1. It is better to use the level 3 of the algorithm than the level 2
around T = 30000, this means, approximately for N = 170 for the level 2 and
N = 30 for the level 3. The level 4 of the algorithm becomes better than the
level 3 around T = 330000, so it corresponds to N = 575 for the level 3 and
N = 70 for the level 4.

5.2 NRPA against NRPA EK

In this experiment we compare the NRPA algorithm (as defined in Algorithm 2)
and the version of NRPA with expert knowledge, presented in Section 4.2. This
last algorithm is labeled NRPA EK in all our experiments.
We test these two algorithms on two problems from the set of problems from [11],
the problem rc204.3 and the problem rc204.1. This last problem is the hardest
one among all the problems of the set, and has 46 cities. In all this experiment,
N is fixed at 50. Results are presented in Figure 3 for the problem rc204.3 and
in Figure 4 for the problem rc204.1.
Results of the rc204.3 problem (Figure 3) are close, because this problem is sim-
ple enough for both algorithms and they are able to quickly find good solutions.
However, the NRPA EK is slightly better for both the levels 3 and 4. On the
hardest problem (Figure 4), results are much more significant. The level 3 of
both the algorithms are not able to find a path with respect to all the time con-
straints. In average, the NRPA EK version is able to solve one more constraint
than the NRPA algorithm. For the level 4 comparison, the NRPA EK is by far
better than the classic version of the algorithm and is able to find a path without
any violated constraint in all the runs.

5.3 State Of The Art problems

We experiment the NRPA algorithm on all the problems from the set of [11].
Results are presented in Table 1. Problems are sorted according to n (i.e. the
number of cities). The state of the art results are found by the ant colony al-
gorithm from [9]. The fourth column represents the best score found in [13].
[13] uses an evolutionary algorithm for tuning heuristics used to bias the level



Fig. 2. Score as a function of T . Average on 30 runs. Plateaus are reached for the first
three levels, and increasing the level of the algorithm improves the results.



Fig. 3. Comparison between the NRPA algorithm and the NRPA EK algorithm of the
problem rc204.3. For both the algorithms N = 50.

Fig. 4. Comparison between the NRPA algorithm and the NRPA EK algorithm of the
problem rc204.1. For both the algorithms N = 50.



0 of a Nested Monte-Carlo algorithm. The NRPA algorithm is somehow close
to the NMC algorithm, and a comparison between these two algorithms on a
set of TSPTW is interesting. The classic version of the NRPA algorithm does
not use any expert knowledge, but is still able to achieve good results on a lot
of problems (Table 1, fifth column). We provide the Relative Percentage Devia-
tion (RPD) for both NRPA (column 6) and NRPA EK (column 8). The RPD is
100× value - record

record . Here again, we show that adding expert knowledge is useful
and improves the algorithm. The NRPA EK version is able to find most state of
the art results (76.66%), as shown in column 7. For difficult problems, the best
results were obtained after 2 to 4 runs of the algorithm.

6 Conclusion

In this paper we study the generality of a nested rollout policy adaptation algo-
rithm by applying it to traveling salesman problems with time windows. Even
with no expert knowledge at all, the NRPA algorithm is able to find state of
the art results for problems for which the number of nodes is not too large. We
also experiment the addition of expert knowledge in this algorithm. With the
good results of the algorithm NRPA EK, we show the feasability of guiding the
rollout policy using domain-specific knowledge.

We show that adding expert knowledge significantly improves the results. It
has been shown in our experiments that the NRPA EK algorithm (the expert
knowledge version of the NRPA algorithm) is able to find most state of the art
results (76.66%), and has good results on other problems.

An extension of this work is the use of a pool of policies (instead of just having
one), in order to have an algorithm more robust in front of local optima. Adapting
the parameters of the NRPA algorithm according to the problem difficulty is also
an interesting work.
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