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Abstract. Retrograde analysis enables to solve games, starting from the end and
moving toward the beginning. For games with repetition of positions and the ko
rule, the standard retrograde analysis algorithm has to be adapted.eéénpr

an algorithm to solve games with the ko rule by retrograde analysis. The gam
Woodpush has the ko rule and its limited state space enables its completésanalys
with a modified retrograde analysis algorithm. The resulting Woodpugjrsmo

plays perfect moves instantly.

1 Introduction

The game of Woodpush is a recent game that involves ko. Ingtmse, moves that
repeat the previous position are forbidden. It is a game rsomngle than Go but it
retains the complexity of managing ko situations.

An example of a starting position for a game of width 9 is:

[t L IR IR

Left is represented with L, and Right with R. A Left move catsiin sliding one of
his pieces to the right as in the following example:
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If some pieces are on the way of the sliding piece, they arp@thover. For example
the Right move in the following position jumps over the Lefge contiguous to it:

IlLl P IL R IR = L | IRL || IR

When a piece has an opponent piece behind it, it can move batlamd push all
the pieces behind, provided it does not repeat the previositign (i.e. creates a ko):

It IRILE T IR = L [RL [ || IR



For example, after this last Left move that moves backwaightRcannot move
backward because it is a direct ko that repeats the previasitign.

The game is won when the opponent has no more pieces on thet lbtee is an
example of a winning move by Right:

N O O I - A N O O B

The Left piece falls of the board and Right has won.

Retrograde analysis has been applied to many problemsahlento generate
databases of positions or databases of patterns. For easiblgoposition or pattern
it enables to find the status of the position and other inféionasuch as the minimal
number of moves required to win in the position. Once geerdradatabases enable to
control, reduce or even replace search.

Retrograde analysis was first used to solve chess endgad$[15, 17] contain-
ing up to six pieces. Chess endgame databases enable tangiggnees perfectly and
even discovered new chess knowledge about endgames [11].

Another successful application of retrograde analysisescomputation of Check-
ers endgames by Chinook [10, 13] which is an important patteprogram that solved
Checkers [14]. Retrograde analysis has also been usedgie gilayer games such as
the 16 puzzle. It consisted in computing an admissible k#&asi involving only some
of the pieces [6]. Pattern database can also be combinedhgrdve on single pat-
tern databases [9]. Another application of pattern datgb@sRubik’'s cube [8] where
separate databases for corner and side cubes can be corapdteédprove much the
admissible heuristic. Pattern databases can also be us#tefgame of Go, comput-
ing for example databases on eyes or on life [1, 3, 2]. Imprevgs include associating
patterns to abstract conditions such as external libetieand reducing memory re-
quirements using metarules [5].

Some complex games such as Awele have been completely seitrecetrograde
analysis [12].

In his thesis [7], Bill Fraser describes the BruteForce paogthat searches an
endgame region in Go to calculate thermographs for everyigoslt enables his pro-
gram to find means, temperatures, and orthodox lines of Playwork is related since
we use a brute force approach that takes ko into account,Meowe= simply compute
the values of positions and not the associated thermogkégteover we deal with long
loops in the game graph, long loops only very rarely occuranp@sitions.

Section 2 presents the retrograde analysis algorithms wetkated. Section 3 de-
tails experimental results. Section 4 concludes.

2 Retrograde Analysis Algorithms

In this section, the different algorithms we have testecoagsented. The standard Ret-
rograde analysis is first detailed. Then the adaptationeo&ithorithm to manage direct
ko is explained. Retrograde analysis that scores positiithdoops is then presented in
order to evaluate positions that involve loops in the stpges. Eventually, the combi-
nation of retrograde analysis with direct ko and of retrogranalysis with avoidance of
loop enables to solve the game. In order to produce correcésgcretrograde analysis
is used again at the end of this process.



2.1 Standard Retrograde Analysis

At the start of the algorithm the database is initializedhwifte scores of terminal po-
sitions (i.e. positions where only one player has pieces)efpositions are marked as
unknown. The score of a terminal position is positive if Liefts won and equals the
number of moves Left can play in a row, it is the opposite ofribeber of moves in a
row Right can play if Right has won the position.

The retrograde analysis algorithm uses two tables, one fabthe positions where
Left is to move and one table for the positions where Righbimbve. Each entry of
the table is an integer that contains the score of the pasitio

The algorithms iteratively calls two functions one aftepter. The first function
finds new values for Left given the values for Right. The selchmction finds new
values for Right given the values for Left. When no new valuesaund, the algorithm
terminates. The pseudo code for the function that finds néuwesdor Left is given in
algorithm 1.

Algorithm 1 Step for Left of the retrograde analysis algorithm.
stepForLeft ()
for position in all possible positionso
if value for Left to play ofposition is unknownthen
if no children ofposition is unknown for Right to playhen
value for Left to play ofposition < value for Right to play of the best child of
position
end if
end if
end for

A problem with this standard algorithm is that it does nottttke possible ko status
of a position into account. A position can either have a mbet is forbidden by ko or
the same move allowed because there is no ko. Therefore e gasition can have
different values according to its associated ko moves. W sh the next subsection
how we solve this problem.

2.2 Retrograde Analysiswith Direct Ko

To take ko into account, every possible position is assedittt a set of possibly forbid-
den moves. The evaluation of a position now takes its kostata account in algorithm
2. This algorithm searches through all possible positiordsall possible ko moves in
these positions. It does not consider the child with thecseteko move to compute the
value of a position associated to a ko move. Note that themtilofposition for Left
have an associated ko move for Right and that this ko moveeid tesfind the relevant
value for Right of each child.

This algorithm correctly makes the difference between ifferént ko moves of a
position. However it does only score a small subset of alitiprs. This is due to loops
in the state space. If a position is inside a loop, it cannaidmeed since a position is



Algorithm 2 Step for Left of the retrograde analysis algorithm with koves

stepKoForLeft ()
for position in all possible positiondo
for ko in all possible ko moves gfosition do
if value for Left to play ofposition with the ko move forbidden is unknowthen
let children be the children oposition except the child foko
if no position inchildren is unknown for Right to playhen
value for Left to play ofposition with ko < value for Right to play of the best
child in children
end if
end if
end for
end for

scored only if all its descendants are scored. Moreover hild i the loop cannot be
scored since the position to score is also one of its desoeaaha is not scored. We
give in the next subsection an algorithm that enables thesikigns to be scored.

2.3 Retrograde Analysiswith Avoidance of L oops

In order to evaluate positions that are in a loop, we adopfdt@wing policy: if there
is a winning move for the color to play, and if another movedke#o a position in a
loop, the policy decides to ignore the loopy move and to atealthe position with the
value of the best winning move. This is described in algamith

Algorithm 3 Step for Left of the retrograde analysis algorithm with kove® and
avoidance of loops.
stepKoForLeftAvoidLoop ()
for position in all possible positiongo
for ko in all possible ko moves gfosition do
if value for Left to play ofposition with the ko move forbidden is unknowthen
let children be the children oposition except the child foko
if at least one child irhildren is won for Leftthen
value for Left to play ofposition with ko < value for Right to play of the best
child in children
end if
end if
end for
end for

This algorithm is only to be applied once the retrograde\aisiwith direct ko is
finished and cannot find new positions. When it is the case niihawn positions are
either in a loop or have a descendant that is in a loop. Theythiat avoids loops is
necessary to find new values.



However applying the function that avoids loops until no naues are found is not
enough. Because these new values enable new losing peditidre evaluated for the
player to play. Therefore new passes of the direct ko alymstare needed to evaluate
these positions.

The function that avoids loops is not guaranteed to find trectexalues for the
positions, but as it only scores positions that are won ferdblor to play, it cannot
evaluate a position as lost if it is won. The score may be weslienated but the sign of
the score is correct.

2.4 Interleaved Retrograde Analysis

In order to evaluate the maximum number of positions, re&rdg analysis with direct
ko and retrograde analysis with avoidance of loops arel@aeed and consecutively
called until they are both unable to find new values. When hésdase, the remaining
unknown positions are considered to lead either to a loop aréss. Instead of losing
both colors will choose to loop, making these positions avdiehe algorithm that

interleaves retrograde analysis is given in algorithm 4.

Algorithm 4 Interleaving retrograde analysis with ko moves and withidaoce of
loops.
interleavedAnalysis ()
score all terminal positions
while new positions with ko or with avoidance of loops are scated
while new positions with ko are scorefb
stepKoForLeft ()
stepKoForRight ()
end while
while new positions with avoidance of loops are scoded
stepKoForLeftAvoidLoop ()
stepKoForRightAvoidLoop ()
end while
end while
score unknown positions as draw

2.5 Retrograde AnalysisAgain

When interleaved retrograde analysis is finished, all positihave the correct sign
but not always the correct score. In order to find the correates, another algorithm
is required which reevaluates non terminal positions atingrto the scores of their
children. The program alternates Left and Right passeéthetie is no more changes.



3 Experimental Results

For size 7, retrograde analysis uses 128 passes. All pusitioe scored. Right, the
second player, wins by four. Here is the winning line withfpet play from both players
with succeeding positions written one after another:
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For size 9, our algorithm uses 366 passes. 933 positiontaenscored by the
algorithm. They are given value 0 which means a draw. Thalgbsition, scored with
the rule of direct ko, is a draw due to a superko (repetitioa pbsition after more than
two moves):

[t It |1 IRTR
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For size 11, our algorithm uses 860 passes. 8,563 positienscared 0 by the
algorithm. The initial position is also a draw:
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4 Conclusion

An algorithm that evaluates Woodpush positions using geeide analysis has been
presented. It correctly evaluates the score of positiodssanres positions that lead to
a superko as a draw. The resulting program plays perfect sringantaneously.



For size 7 Woodpush, the game is a loss by 4 for the first pl&pgrsize 9 and 11
the game is a draw with the direct ko rule due to a repetitiopositions.

An extension of our work is to extend our results to games witperko. Either
using superko together with retrograde analysis, or usiaglirect ko database to solve
superko with search.

Retrograde analysis algorithms that undo moves insteadosiding all possible
positions are usually more rapid. It is certainly possibl@dapt our algorithm in this
way even though speed of the retrograde analysis algorghmatia matter for the sizes
that were solved.
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