
Retrograde Analysis of Woodpush

Tristan Cazenave1 and Richard J. Nowakowski2

1 LAMSADE
Universit́e Paris-Dauphine

Paris France
cazenave@lamsade.dauphine.fr

2 Dept. of Mathematics and Statistics
Dalhousie University

Halifax, NS B3J 3H5 Canada
rjn@mathstat.dal.ca

Abstract. Retrograde analysis enables to solve games, starting from the end and
moving toward the beginning. For games with repetition of positions and the ko
rule, the standard retrograde analysis algorithm has to be adapted. We present
an algorithm to solve games with the ko rule by retrograde analysis. The game of
Woodpush has the ko rule and its limited state space enables its complete analysis
with a modified retrograde analysis algorithm. The resulting Woodpush program
plays perfect moves instantly.

1 Introduction

The game of Woodpush is a recent game that involves ko. In thisgame, moves that
repeat the previous position are forbidden. It is a game moresimple than Go but it
retains the complexity of managing ko situations.

An example of a starting position for a game of width 9 is:

|L| |L| | | |R| |R|

Left is represented with L, and Right with R. A Left move consists in sliding one of
his pieces to the right as in the following example:

|L| |L| | | |R| |R| => |L| | |L| | |R| |R|

If some pieces are on the way of the sliding piece, they are jumped over. For example
the Right move in the following position jumps over the Left piece contiguous to it:

|L| | | |L|R| | |R| => |L| | |R|L| | | |R|

When a piece has an opponent piece behind it, it can move backward and push all
the pieces behind, provided it does not repeat the previous position (i.e. creates a ko):

|L| | |R|L| | | |R| => |L| |R|L| | | | |R|

For example, after this last Left move that moves backward, Right cannot move
backward because it is a direct ko that repeats the previous position.

The game is won when the opponent has no more pieces on the board. Here is an
example of a winning move by Right:

| | | | | | | |R|L| => | | | | | | | | |R|

The Left piece falls of the board and Right has won.
Retrograde analysis has been applied to many problems. It enables to generate

databases of positions or databases of patterns. For each possible position or pattern
it enables to find the status of the position and other information such as the minimal
number of moves required to win in the position. Once generated, databases enable to
control, reduce or even replace search.

Retrograde analysis was first used to solve chess endgames [18, 16, 15, 17] contain-
ing up to six pieces. Chess endgame databases enable to play endgames perfectly and
even discovered new chess knowledge about endgames [11].

Another successful application of retrograde analysis is the computation of Check-
ers endgames by Chinook [10, 13] which is an important part ofthe program that solved
Checkers [14]. Retrograde analysis has also been used in single player games such as
the 16 puzzle. It consisted in computing an admissible heuristics involving only some
of the pieces [6]. Pattern database can also be combined and improve on single pat-
tern databases [9]. Another application of pattern databases is Rubik’s cube [8] where
separate databases for corner and side cubes can be computedand improve much the
admissible heuristic. Pattern databases can also be used for the game of Go, comput-
ing for example databases on eyes or on life [1, 3, 2]. Improvements include associating
patterns to abstract conditions such as external liberties[4] and reducing memory re-
quirements using metarules [5].

Some complex games such as Awele have been completely solvedwith retrograde
analysis [12].

In his thesis [7], Bill Fraser describes the BruteForce program that searches an
endgame region in Go to calculate thermographs for every position. It enables his pro-
gram to find means, temperatures, and orthodox lines of play.Our work is related since
we use a brute force approach that takes ko into account, however we simply compute
the values of positions and not the associated thermograph.Moreover we deal with long
loops in the game graph, long loops only very rarely occur in Go positions.

Section 2 presents the retrograde analysis algorithms we have tested. Section 3 de-
tails experimental results. Section 4 concludes.

2 Retrograde Analysis Algorithms

In this section, the different algorithms we have tested arepresented. The standard Ret-
rograde analysis is first detailed. Then the adaptation of the algorithm to manage direct
ko is explained. Retrograde analysis that scores positionswith loops is then presented in
order to evaluate positions that involve loops in the state space. Eventually, the combi-
nation of retrograde analysis with direct ko and of retrograde analysis with avoidance of
loop enables to solve the game. In order to produce correct scores, retrograde analysis
is used again at the end of this process.

2.1 Standard Retrograde Analysis

At the start of the algorithm the database is initialized with the scores of terminal po-
sitions (i.e. positions where only one player has pieces). Other positions are marked as
unknown. The score of a terminal position is positive if Lefthas won and equals the
number of moves Left can play in a row, it is the opposite of thenumber of moves in a
row Right can play if Right has won the position.

The retrograde analysis algorithm uses two tables, one table for the positions where
Left is to move and one table for the positions where Right is to move. Each entry of
the table is an integer that contains the score of the position.

The algorithms iteratively calls two functions one after another. The first function
finds new values for Left given the values for Right. The second function finds new
values for Right given the values for Left. When no new values are found, the algorithm
terminates. The pseudo code for the function that finds new values for Left is given in
algorithm 1.

Algorithm 1 Step for Left of the retrograde analysis algorithm.
stepForLeft ()
for position in all possible positionsdo

if value for Left to play ofposition is unknownthen
if no children ofposition is unknown for Right to playthen

value for Left to play ofposition ← value for Right to play of the best child of
position

end if
end if

end for

A problem with this standard algorithm is that it does not take the possible ko status
of a position into account. A position can either have a move that is forbidden by ko or
the same move allowed because there is no ko. Therefore the same position can have
different values according to its associated ko moves. We show in the next subsection
how we solve this problem.

2.2 Retrograde Analysis with Direct Ko

To take ko into account, every possible position is associated to a set of possibly forbid-
den moves. The evaluation of a position now takes its ko status into account in algorithm
2. This algorithm searches through all possible positions and all possible ko moves in
these positions. It does not consider the child with the selected ko move to compute the
value of a position associated to a ko move. Note that the children ofposition for Left
have an associated ko move for Right and that this ko move is used to find the relevant
value for Right of each child.

This algorithm correctly makes the difference between the different ko moves of a
position. However it does only score a small subset of all positions. This is due to loops
in the state space. If a position is inside a loop, it cannot bescored since a position is

Algorithm 2 Step for Left of the retrograde analysis algorithm with ko moves.
stepKoForLeft ()
for position in all possible positionsdo

for ko in all possible ko moves ofposition do
if value for Left to play ofposition with theko move forbidden is unknownthen

let children be the children ofposition except the child forko

if no position inchildren is unknown for Right to playthen
value for Left to play ofposition with ko ← value for Right to play of the best
child in children

end if
end if

end for
end for

scored only if all its descendants are scored. Moreover the child in the loop cannot be
scored since the position to score is also one of its descendant and is not scored. We
give in the next subsection an algorithm that enables these positions to be scored.

2.3 Retrograde Analysis with Avoidance of Loops

In order to evaluate positions that are in a loop, we adopt thefollowing policy: if there
is a winning move for the color to play, and if another move leads to a position in a
loop, the policy decides to ignore the loopy move and to evaluate the position with the
value of the best winning move. This is described in algorithm 3.

Algorithm 3 Step for Left of the retrograde analysis algorithm with ko moves and
avoidance of loops.

stepKoForLeftAvoidLoop ()
for position in all possible positionsdo

for ko in all possible ko moves ofposition do
if value for Left to play ofposition with theko move forbidden is unknownthen

let children be the children ofposition except the child forko

if at least one child inchildren is won for Leftthen
value for Left to play ofposition with ko ← value for Right to play of the best
child in children

end if
end if

end for
end for

This algorithm is only to be applied once the retrograde analysis with direct ko is
finished and cannot find new positions. When it is the case, all unknown positions are
either in a loop or have a descendant that is in a loop. The policy that avoids loops is
necessary to find new values.

However applying the function that avoids loops until no newvalues are found is not
enough. Because these new values enable new losing positions to be evaluated for the
player to play. Therefore new passes of the direct ko algorithms are needed to evaluate
these positions.

The function that avoids loops is not guaranteed to find the exact values for the
positions, but as it only scores positions that are won for the color to play, it cannot
evaluate a position as lost if it is won. The score may be underestimated but the sign of
the score is correct.

2.4 Interleaved Retrograde Analysis

In order to evaluate the maximum number of positions, retrograde analysis with direct
ko and retrograde analysis with avoidance of loops are interleaved and consecutively
called until they are both unable to find new values. When it is the case, the remaining
unknown positions are considered to lead either to a loop or to a loss. Instead of losing
both colors will choose to loop, making these positions a draw. The algorithm that
interleaves retrograde analysis is given in algorithm 4.

Algorithm 4 Interleaving retrograde analysis with ko moves and with avoidance of
loops.

interleavedAnalysis ()
score all terminal positions
while new positions with ko or with avoidance of loops are scoreddo

while new positions with ko are scoreddo
stepKoForLeft ()
stepKoForRight ()

end while
while new positions with avoidance of loops are scoreddo

stepKoForLeftAvoidLoop ()
stepKoForRightAvoidLoop ()

end while
end while
score unknown positions as draw

2.5 Retrograde Analysis Again

When interleaved retrograde analysis is finished, all positions have the correct sign
but not always the correct score. In order to find the correct scores, another algorithm
is required which reevaluates non terminal positions according to the scores of their
children. The program alternates Left and Right passes until there is no more changes.

3 Experimental Results

For size 7, retrograde analysis uses 128 passes. All positions are scored. Right, the
second player, wins by four. Here is the winning line with perfect play from both players
with succeeding positions written one after another:

L		L		R		R
	L	L		R		R
	L	L	R			R
		L	R	L		R
		L	R	L	R	
	L	R	L		R	
	L	R	L	R		
L	R	L		R		
L	R	L	R			
	R	L	R	L		
		R	L	R	L	
	R	L		R	L	
	R	L			R	L
R	L				R	L
R	L					R
L						R
L					R	
	L				R	
	L			R		
		L		R		
		L	R			
			R	L		
				R	L	
				R		L
			R			L
			R			

For size 9, our algorithm uses 366 passes. 933 positions cannot be scored by the
algorithm. They are given value 0 which means a draw. The initial position, scored with
the rule of direct ko, is a draw due to a superko (repetition ofa position after more than
two moves):

L		L				R		R
L			L			R		R
L			L		R			R
L				L	R			R
L				L	R		R	
	L			L	R		R	
	L			L	R	R		
		L		L	R	R		

		L	R	L	R			
	L	R	L		R			
	L		R	L	R			
		L	R	L	R			
		L		R	L	R		
			L	R	L	R		
			L		R	L	R	
			L	R	L		R	
			L	R	L	R		
		L	R	L		R		
		L		R	L	R		
			L	R	L	R		

For size 11, our algorithm uses 860 passes. 8,563 positions are scored 0 by the
algorithm. The initial position is also a draw:

L		L						R		R
L			L					R		R
L			L				R			R
L				L			R			R
L				L		R				R
L					L	R				R
L					L	R			R	
	L				L	R			R	
	L				L	R		R		
		L			L	R		R		
		L			L	R	R			
			L		L	R	R			
			L	R	L	R				
		L	R	L		R				
		L		R	L	R				
			L	R	L	R				
			L		R	L	R			
				L	R	L	R			
				L		R	L	R		
				L	R	L		R		
				L	R	L	R			
			L	R	L		R			
			L		R	L	R			
				L	R	L	R			

4 Conclusion

An algorithm that evaluates Woodpush positions using retrograde analysis has been
presented. It correctly evaluates the score of positions and scores positions that lead to
a superko as a draw. The resulting program plays perfect moves instantaneously.

For size 7 Woodpush, the game is a loss by 4 for the first player.For size 9 and 11
the game is a draw with the direct ko rule due to a repetition ofpositions.

An extension of our work is to extend our results to games withsuperko. Either
using superko together with retrograde analysis, or using the direct ko database to solve
superko with search.

Retrograde analysis algorithms that undo moves instead of browsing all possible
positions are usually more rapid. It is certainly possible to adapt our algorithm in this
way even though speed of the retrograde analysis algorithm is not a matter for the sizes
that were solved.

References

1. T. Cazenave. Apprentissage de le résolution de problèmes de vie et de mort au jeu de go.
Rapport de DEA, Université Paris 6, 1993.

2. T. Cazenave. Automatic Acquisition of Tactical Go Rules. InGame Programming Workshop
in Japan ’96, pages 10–19, Kanagawa, Japan, 1996.

3. T. Cazenave. Système d’Apprentissage Par Auto-Observation. Application au jeu de Go.
Phd thesis, Université Paris 6, December 1996.

4. T. Cazenave. Generation of Patterns With External Conditions for the Game of Go. In
H.J. van den Herik and B. Monien, editors,Advance in Computer Games 9, pages 275–293.
Universiteit Maastricht, Maastricht, 2001.

5. Tristan Cazenave. Metarules to improve tactical go knowledge.Inf. Sci., 154(3-4):173–188,
2003.

6. J. C. Culberson and J. Schaeffer. Pattern Databases.Computational Intelligence, 4(14):318–
334, 1998.

7. W. E. Fraser. Computer-assisted thermographic analysis of go endgames. Phd thesis, Uni-
versity of California, Berkeley, 2002.

8. R. E. Korf. Finding optimal solutions to rubik’s cube using pattern databases. InAAAI-97,
pages 700–705, 1997.

9. R. E. Korf and A. Felner. Disjoint pattern database heuristics.Artificial Intelligence, 134(1-
2):9–22, 2002.

10. R. Lake, J. Schaeffer, and P. Lu. Solving large retrograde-analysis problems using a network
of workstations. In H.J. van den Herik, I.S. Herschberg, and J.W.H.M. Uiterwijk, editors,
Advances in Computer Chess 7, pages 135–162. University of Limburg, Maastricht, The
Netherlands, 1994.

11. J. Nunn. Extracting information from endgame databases.ICCA Journal, 16(4):191–200,
1993.

12. J. W. Romein and H. E. Bal. Solving awari with parallel retrograde analysis.IEEE Computer,
36(10):26–33, October 2003.

13. J. Schaeffer.One Jump Ahead: Challenging Human Supremacy at Checkers. Springer-
Verlag, New York, NY, 1997.

14. J. Schaeffer. Game over: Black to play and draw in checkers.ICGA Journal, 30:187–197,
2007.

15. L. Stiller. Multilinear algebra and chess endgames. In R.J. Nowakowski, editor,Games of
No Chance, volume 29. MSRI Publications, Cambridge, MA, 1996.

16. K. Thompson. Retrograde analysis of certain endgames.ICCA Journal, 9(3):131–139, 1986.
17. K. Thompson. 6-piece endgames.ICCA Journal, 19(4):215–226, 1996.
18. H.J. van den Herik and I. S. Herschberg. The construction of anomniscient endgame

database.ICCA Journal, 8(2):6–87, 1985.

