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Chapter 1

Introduction

Optimization is a research field concerned with making the best decision out of a set of alternatives.
Numerical optimization is concerned with building algorithms for solving optimization problems.
These algorithms should not only be mathematically certified to reach the desired (approximate)
solution, but they should also be implementable on a computer, and demonstrate their efficiency
in practice. For this reason, researchers have sought algorithms that can converge to a problem
solution (or, more often, an approximation thereof) at the lowest possible cost. This paradigm is
that of complexity analysis, and is now of primary importance in optimization theory [149]. Although
complexity results were mostly used in convex optimization until the early 2000s [116, 118], the
prevalence of nonconvex optimization in modern applications such as machine learning generated
significant developments starting in the 2010s [33].

A common theme in most of the author’s research is the derivation of complexity results for
nonconvex optimization algorithms. The manuscript summarizes this research through this viewpoint.
After a review of the associated literature in Section 1.1, the contents of the manuscript are described
in Section 1.2.

1.1 Complexity results in nonconvex optimization

1.1.1 Complexity analysis in optimization

Early results in complexity date back to linear programming, and were instrumental to the interior-
point revolution that occurred at the end of the twentieth century [147]. For nonlinear optimization,
oracle complexity models became prevalent in the 1970s, with the terminology being set with the
textbook of Nemirovski and Yudin [116]. Prompted by the breakthrough results of Polyak[Heavy-ball]
and Nesterov [117], numerous first-order methods were proposed and analyzed from a complexity
perspective. Understanding the acceleration phenomenon, that gave rise to optimal complexity
algorithms, proved key to obtaining the best known results. The field of convex optimization has
now reached a mature stage [120, 55], although it remains a popular topic of investigation.

Evaluation complexity results for nonconvex optimization were significantly less investigated until
the late 2000s, despite early results for gradient descent [118]. Following the seminal work of
Nesterov and Polyak [121], a number of algorithmic variants were analyzed from an iteration and
evaluation complexity perspective. Classical variants of Newton’s method proved to be as slow
as gradient descent in the worst case [28], while cubic regularization methods exhibited optimal
complexity among second-order algorithms [121]. A number of variants on this paradigm were then
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analyzed [29, 30, 31, 32], and the field of complexity in nonconvex optimization is now established,
as exemplified by the textbook of Cartis, Gould and Toint [33].

1.1.2 Main complexity questions in smooth nonconvex optimization

In this manuscript, we mainly consider smooth nonconvex optimization problems of the form

minimize
x∈Rn

f(x), (1.1.1)

where f : Rn → R is a smooth (i.e. at least continuously differentiable) nonconvex function. Owing
to the nonconvexity of f , finding global or even local minima of f is intractable in general [114]. For
this reason, a more natural goal consists in searching for points that satisfy approximate stationary
conditions.

Given a tolerance ϵ ∈ (0, 1)1, an ϵ-first order stationary point of problem (1.1.1) is a vector
x̄ ∈ Rn such that

∥∇f(x)∥ ≤ ϵ, (1.1.2)

where ∥ · ∥ denotes the Euclidean (or ℓ2) norm on Rn.

Similarly, assuming that the function f is C2 and given two tolerances ϵ, ϵH ∈ (0, 1)2, an (ϵ, ϵH)-
second order stationary point of problem (1.1.1) is a vector x̄ ∈ Rn such that

∥∇f(x)∥ ≤ ϵ and λmin(∇2f(x)) ⪰ −ϵHIn, (1.1.3)

where λmin(·) denotes the minimum eigenvalue of the matrix and In is the identity matrix in Rn×n.

In this manuscript, complexity analysis is concerned with one of the two following questions.

Question 1.1.1 Given an algorithm applied to problem (1.1.1) and ϵ ∈ (0, 1), what is the worst-case
cost (in terms of iterations, evaluations, etc) of that algorithm to reach an ϵ-first order stationary
point?

Question 1.1.2 Given an algorithm applied to problem (1.1.1) and ϵ ∈ (0, 1), what is the worst-
case cost (in terms of iterations, evaluations, etc) of that algorithm to reach an (ϵ, ϵH)-second order
stationary point?

Answering either Question 1.1.1 or Question 1.1.2 requires a careful study of algorithmic behavior,
and appropriate metrics of cost.

1.2 Manuscript roadmap

This manuscript aims at providing an overview of the author’s research through the lens of complexity
guarantees in nonconvex optimization. In selecting the material to be presented, the author aimed
at highlighting his main contributions conducted both as an independent researcher and as a faculty
advisor.

1For simplicity, we will always assume that tolerances are smaller than 1. In addition to simplifying the analysis by
putting the emphasis on small values of ϵ, this also reflects popular practice that scales the objective function by a
constant to guarantee that initial gradients are of norm 1.
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1.2.1 Contributions

The rest of this manuscript is organized along four chapters. Chapter 2 to 4 follow a similar template.
The first section of these chapters serves an introductory purpose. It reviews complexity results
relevant for the chapter’s setting, by putting an emphasis on a particular technique which the other
sections build upon. The second section describes a major contribution from the author conducted
either during his postdoctoral studies or as a faculty researcher. The third section highlights a
more recent contribution involving a junior researcher (master student, PhD student, or postdoctoral
researcher) that worked under the author’s supervision. Those three chapters also include a final
section that highlights additional work and short-term research perspectives for the chapter’s line
of work. For simplicity, a specific family of algorithms is used to describe the key concepts and
contributions, while other algorithmic frameworks are discussed throughout.

Chapter 5 concludes the manuscript by reflecting on the research conducted by the author, and
draws on its current environment to provide a long-term vision for the future research conducted by
the author or his research group.

1.2.2 Notations and terminology

• Scalars (i.e. reals) are denoted by lowercase letters: a, b, c, α, β, γ.

• Vectors are denoted by bold lowercase letters: a, b, c,α,β,γ.

• Matrices are denoted by bold uppercase letters: A,B,C.

• Sets are denoted by bold uppercase cursive letters : A,B, C.

• The set of natural numbers (nonnegative integers) is denoted by N; the set of integers is
denoted by Z.

• The set of real numbers is denoted by R. Our notations for the subset of nonnegative real
numbers and the set of positive real numbers are R+ and R++, respectively.

• The notation Rn is used for the set of vectors with n ∈ N real components; although we may
not explicitly state it, we always assume that n ≥ 1.

• A vector x ∈ Rn is thought as a column vector, with xi ∈ R denoting its i-th coordinate in

the canonical basis of Rn. We thus write x =

 x1
...
xn

, or, in a compact form, x = [xi]1≤ı≤n.

• Given a column vector x ∈ Rn, the corresponding row vector is denoted by xT, so that
xT = [x1 · · · xn] and [xT]T = x. The scalar product between two vectors in Rn is defined
as xTy = yTx =

∑n
i=1 xiyi.

• The Euclidean norm of a vector x ∈ Rn is defined by ∥x∥2 =
√
xTx.

• For any integer n ≥ 1, the vectors 0n and 1n correspond to the vectors of Rn for which all
elements are 0 or 1, respectively.



8 1.2. MANUSCRIPT ROADMAP

• We use Rn×d to denote the set of real rectangular matrices with n rows and d columns, where
n and d will always be assumed to be at least 1. If n = d, Rn×n refers to the set of square
matrices of size n.

• We identify a matrix in Rn×1 with its corresponding column vector in Rn.

• Given a matrix A ∈ Rn×d, Aij refers to the coefficient from the i-th row and the j-th column of
A: the diagonal of A is given by the coefficients Aii. Provided this notation is not ambiguous,
we use the notations A, [Aij ]1≤i≤n

1≤j≤d
and [Aij ] interchangeably.

• Depending on the context, we may use aT
i to denote the i-th row of A or aj to denote the

j-th column of A, leading to A =

 aT
1
...
aT
n

 or A = [a1 · · · ad] , respectively.

• Given A = [Aij ] ∈ Rn×d, the Frobenius norm of A will be denoted by ∥A∥2F :=
∑n

i=1

∑d
j=1Aij .

• For every n ≥ 1, In refers to the identity matrix in Rn×n (with 1s on the diagonal and 0s
elsewhere). The notations 0n,d and 1n,d will be used for matrices in Rn×d that consist solely
of 0s or 1s, respectively.

• A function f : Rn → R is called C1 if it is continuously differentiable, and C1,1 if it is
continuously differentiable with a Lipschitz continuous gradient. The notation C1,1Lg

will denote

the set of C1,1 functions with Lg-Lipschitz continuous gradient.

• A function f : Rn → R is called C2 if it is twice continuously differentiable, and C2,2 if it is
continuously differentiable with a Lipschitz continuous Hessian.The notation C2,2L will denote
the set of C2,2 functions with L-Lipschitz continuous Hessian.

• Throughout the manuscript, O(E) will denote C E, where C is a positive constant that does
not depend on the quantities of interest arising in E. Similarly, Õ(E) indicates that the
constant depends at most logarithmically on the quantities of interest in E.



Chapter 2

Complexity of direct-search methods

This chapter is concerned with derivative-free optimization (DFO), wherein a function must be
optimized while relying solely on function evaluations. Mathematically, we consider the problem

minimize
x∈Rn

f(x), (2.0.1)

where only accesses to an oracle f are available, regardless of the smoothness properties of the
objective. A typical occurrence of such problems consists in optimizing the parameters of a simulation
code, that is both expensive to run and cannot be differentiated automatically, either due to the use
of proprietary software or that of poorly written subroutines. The field of derivative-free optimization,
also called blackbox optimization, was developed on this paradigm starting as early as the 1960s,
and grew out to become a subfield of optimization in itself [7, 45, 103]. The main optimization
conferences now always feature a derivative-free optimization stream, while zeroth-order algorithms
(a special class of derivative-free algorithms that approximate gradients through finite differences
formulas) have also gained popularity in the data science and learning communities.

This chapter begins with a brief overview of complexity results in derivative-free optimization,
with a particular focus on results derived for direct-search techniques (Section 2.1). Using again the
setup of direct search, the area of derivative-free methods based on random subspaces is introduced,
along with the possible complexity benefits that were demonstrated by the author together with
Lindon Roberts (Section 2.2). Section 2.3.1, based on contributions by the author and PhD student
Sébastien Kerleau, takes a closer look at quantities involved in the complexity bounds for deterministic
direct search, with a focus on how those quantities can be computed.

2.1 Direct-search methods and complexity results

In this section, we review complexity results in derivative-free optimization in the nonconvex setting
through the lens of direct-search methods, the class of algorithms that was most studied by the
author. Section 2.1.1 presents a basic direct-search algorithm, that is used to derive complexity
guarantees in Section 2.1.2. Complexity guarantees for other derivative-free techniques are discussed
further in Section 2.1.3.

2.1.1 Direct-search algorithm and main concepts

Direct-search methods are arguably the simplest class of derivative-free algorithms, in that they rely
on direct exploration of the variable space through suitably chosen directions. Under relatively mild
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assumptions on those directions, convergence guarantees can be derived for a number of variants on
the direct-search paradigm [7, 99]. However, only a subset of those variants can be equipped with
complexity guarantees [103, 61].

Algorithm 1 describes a basic direct-search method of so-called directional type, that can be
endowed with complexity guarantees. At each iteration, a set of directions Dj is considered for
possible evaluation of f in that direction. If one of those directions satisfies the sufficient decrease
condition (2.1.1), the corresponding point is accepted and the stepsize parameter αj is (possibly)
increased. Otherwise, the current iterate is kept for the next iteration and the stepsize is decreased.

Algorithm 1: A basic direct-search algorithm.

Inputs: x0 ∈ Rn, αmax > 0, α0 ∈ (0, αmax], c > 0, 0 < γdec < 1 < γinc, m ∈ N.
for j = 0, 1, ... do

Compute a set Dj ⊂ Rn of m vectors.
If there exists dj ∈ Dj such that

f(xj + αjdj) < f(xj)−
c

2
α2
j∥dj∥2, (2.1.1)

set xj+1 := xj + αjdj and αj+1 := min{γincαj , αmax}.
Otherewise, set xj+1 := xj and αj+1 := γdecαj .

end

An important feature of Algorithm 1 is that an iteration can end as soon as a direction of
sufficient decrease has been found. This process, termed opportunistic polling in the literature, is
often key to practical efficiency. From a complexity perspective, however, each iteration has a cost
of |Dj | function evaluations in the worst case.

In a smooth setting, Algorithm 1 requires the polling directions Dj to form a positive spanning
set, in the following sense [56].

Definition 2.1.1 A set D of vectors in Rn is called a positive spanning set if it spans Rn by
nonnegative linear combinations.

Positive spanning sets have been used to endow direct-search methods with global convergence
guarantees since the late 1990s [108] and are instrumental to modern analysis of those methods [7,
99]. This analysis relies on a specific quantity called the cosine measure, and defined by

cm(D) := min
v∈Rn

v ̸=0

max
d∈D
d̸=0

vTd

∥v∥ ∥d∥
. (2.1.2)

The cosine measure of an arbitrary set measures how well this set approximates any vector in the
space. Moreover, a set D is a PSS of Rn if and only if cm(D) > 0 [7]. Choosing good polling sets
for optimization then amounts to a compromise between the size of the PSS and the cosine measure.
Both aspects have been explored by the author in the context of his work, and will be detailed in
Sections 2.2 and 2.3.
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2.1.2 Complexity analysis of direct search

Vicente [144] was the first to derive complexity results for direct-search methods. The sufficient
decrease condition (2.1.1) is instrumental to obtaining complexity results. We present such a result
below in the smooth setting.

Assumption 2.1.1 The function f is continuously differentiable with L-Lipschitz continuous gradi-
ent, where L > 0.

Assumption 2.1.2 The function f is bounded below by flow ∈ R.

We also make the following assumption on the polling sets used by the algorithm.

Assumption 2.1.3 At every iteration j of Algorithm 1, the polling set Dk satisfies the following
properties:

(i) cm (Dj) ≥ τ for some τ ∈ (0, 1).

(ii) ∀d ∈ Dj , dmin ≤ ∥d∥ ≤ dmax, where 0 < dmin ≤ dmax.

The first property implies that all sets are positive spanning sets, and that the sequence of cosine
measures cannot vanish in the limit. Choosing Dj = D for all j with D a positive spanning set clearly
satisfies this property, however efficient direct-search techniques change PSSs at every iteration [99].
The second property can easily be guaranteed by normalizing directions to ensure their norm is
bounded. A common choice for that purpose consists in using unit vectors.

A complexity proof for Algorithm 1 can be obtained as follows. On one hand, Assumptions 2.1.1
and 2.1.3 guarantee that

αj ≤ O(∥∇f(xj)∥) (2.1.3)

for every unsuccessful iteration, at which no direction of sufficient decrease has been found. On the
other hand, Assumption 2.1.2 together with the sufficient decrease condition (2.1.1) as well as the
updating rules for αj guarantee that

∞∑
j=0

α2
j <∞, (2.1.4)

implying in particular that αj → 0. Combining those results eventually lead to the following com-
plexity bound [100, 144].

Theorem 2.1.1 Let Assumptions 2.1.1 and 2.1.2 hold. Suppose that Algorithm 1 is applied with
polling sets satisfying Assumption 2.1.3. Then, for any ϵ ∈ (0, 1), the algorithm computes an iterate
xJ such that ∥∇f(xJ)∥ ≤ ϵ in at most

O
(
τ−2 ϵ−2

)
(2.1.5)

iterations and
O
(
mτ−2 ϵ−2

)
(2.1.6)

function evaluations.
The constants in O(·) depend on α0, f(x0)− flow, γdec, γinc, c and L.

Two dependencies are worth highlighting in the bounds (2.1.5) and (2.1.6). First, both bounds
depend on τ . The larger τ is, the better the PSSs Dk are at approximating the entire space. Second,
the evaluation complexity bound (2.1.6) depends on m, i.e. the size of the PSSs used at every
iteration.
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2.1.3 Other complexity results in derivative-free optimization

Model-based derivative algorithms have also been endowed with complexity results on nonconvex
problems. In particular, model-based trust-region methods enjoy an iteration complexity inO(κ2 ϵ−2),
where κ measures the quality of the models that are used. Typical values for κ are of order

√
n,

yielding an iteration complexity bound that matches direct search in terms of dependencies on n and
ϵ. The evaluation complexity bound can also be shown to be O(n2ϵ−2) [64].

Methods rely on finite-difference estimates of derivatives have also been analyzed from a com-
plexity perspective. Cubic regularization based on finite-difference estimates have been endowed
with iteration and evaluation complexity guarantees of O(nϵ−3/2) and O(n2 log(ϵ−1)ϵ−3/2), respec-
tively [30]. This rate improves over direct search in terms of the dependency on ϵ, but not in
terms of dimension dependency. A random gradient-free method due to Nesterov [119]1 was shown
to satisfy an O(nϵ−2) complexity bound in terms of both iterations and evaluations, by relying
on randomized finite differences. More recently, several algorithms with improved complexity in
terms of dependency on the dimension have been proposed. Quadratic regularization methods with
finite-difference estimates have been endowed with an evaluation complexity in O(nϵ−2), thereby
improving over the complexity of classical direct search [71, 72]. A bound in O(n ϵ−2) can also be
obtained for derivative-free line-search methods, that perform extrapolation line search along polling
directions [21].

2.2 Dimensionality reduction and complexity

Derivative-free methods have traditionally been used for relatively small-dimensional problems, with
dimensions ranging from 100 (for direct-search schemes) to 1000 (for model-based schemes). A
partial explanation lies in the necessary use of a number of evaluations that scales with the dimension.
For this reason, and motivated by successes in compressed sensing, randomized approaches were
introduced to reduce the number of function evaluations used per iteration without compromising
convergence guarantees [9, 10, 77].

This section describes the work conducted by the author in that area as a faculty researcher,
together with Lindon Roberts. Section 2.2.1 adapts the direct-search framework of Section 2.1.1
to explore low-dimensional subspaces during the iteration process. Complexity guarantees for this
method are given in Section 2.2.2. A short literature review on this quickly expanding field is provided
in Section 2.2.3.

2.2.1 A subspace perspective on direct search

As in Section 2.1, we are concerned with solving problem (2.0.1) using derivative-free optimization
algorithms, and direct-search methods in particular. In a departure from earlier results, however, we
will consider randomized versions of the algorithm based on exploring directions within a randomly
generated subspace at every iteration.

Algorithm 2 is an adaptation of Algorithm 1 that emphasizes the subspace aspects of this method.
At every iteration, one first draws a random matrix P j that corresponds to a projection onto a low-
dimensional subspace (of dimension at most r ≤ n). A polling set Dj is then defined within that
subspace, implying that the directions considered for polling are {PT

j d |d ∈ Dj}. The rest of the
algorithm proceeds as in Algorithm 1.

1A revised version of this paper was published in 2017 [122].
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Algorithm 2: Direct search in random subspaces.

Inputs: x0 ∈ Rn, αmax > 0, α0 ∈ (0, αmax], c > 0, 0 < γdec < 1 < γinc, m ∈ N; r ≤ n.
for j = 0, 1, ... do

Compute a matrix P j ∈ Rr×n.
Compute a set Dj ⊂ Rr of m vectors.
If there exists dj ∈ Dj such that

f(xj + αkP
T
j dj) < f(xj)−

c

2
α2
j∥PT

j dj∥2, (2.2.1)

set xj+1 := xj + αjdj and αj+1 := min{γincαj , αmax}.
Otherewise, set xj+1 := xj and αj+1 := γdecαj .

end

By setting r = n and P j = In for every j, one recovers the classical direct-search framework.
The framework of Algorithm 2 is broader, in that it allows for selecting directions within a proper
subspace of Rn. A joint work with Lindon Roberts [136] provided numerical evidence that using
r = 1 and Dj = {1,−1} and P j is a vector following a Gaussian distribution is a suitable choice.
Note that the theory for Gaussian vectors was not covered from a theoretical perspective by previous
works [77].

2.2.2 Probabilistic complexity analysis

We now aim at extending the analysis of Section 2.1.2 to Algorithm 2. To this end, we enforce
properties on both the subspace matrices {P j} and the direction sets {Dj}. Since we aim at using
randomly generated matrices, those properties will only hold with high probability.

We first consider the subspace matrices, where dimensionality reduction arguments can be lever-
aged. Indeed, our hope in using those matrices is that they define subspaces in which most of the
gradient norm (our metric of interest) is preserved. In fact, we only require this property to hold
with sufficiently high probability.

Definition 2.2.1 Let η, σ and Pmax be positive quantities. For any realization of Algorithm 2 and
any j ∈ N, the matrix P j is called (η, σ, Pmax)-well aligned for f at xj provided

∥P j∇f(xj)∥ ≥ η∥∇f(xj)∥, (2.2.2)

∥P j∥ ≤ Pmax, (2.2.3)

σmin(P j) ≥ σ, (2.2.4)

where σmin(·) denotes the minimum nonzero singular value of the matrix P j .

Definition 2.2.2 The sequence {P j}j generated by Algorithm 2 is called (η, σ, Pmax, q)-well-aligned
for q ∈ (0, 1] if

P (P 0 is (η, σ, Pmax)-well aligned) ≥ q
∀k ≥ 1, P (P j is (η, σ, Pmax)-well aligned | Fj−1) ≥ q,

(2.2.5)

where Fj−1 is the σ-algebra generated by P 0,D0, . . . ,P j−1,Dj−1.



14 2.2. DIMENSIONALITY REDUCTION AND COMPLEXITY

Our requirement on Dj is given below, and is similar to that used in Section 2.1.2. A key
difference lies in the use of a cosine measure with respect to a single vector rather than the entire
space. Using random directions and lower-dimensional subspaces does not guarantee the positive
spanning property. However, obtaining a descent direction is sufficient to guarantee convergence,
and it even suffices for Dj to contain a descent direction in probability [77].

Definition 2.2.3 Let τ ∈ (0, 1] and dmax > 1. For any realization of Algorithm 2 and any index
j ∈ N, the set Dj is called (τ, dmax)-descent for f and P j at xj if

cm (Dj ,−P j∇f(xj)) = max
d∈Dj

−dTP j∇f(xj)

∥d∥∥P j∇f(xj)∥
≥ κ (2.2.6)

and
∀d ∈ Dj , d−1

max ≤ ∥d∥ ≤ dmax. (2.2.7)

Examples of sets satisfying Definition 2.2.3 are positive spanning sets in Rr with unitary elements.
As for the properties of P j , we provide a probabilistic counterpart of Definition 2.2.3 below.

Definition 2.2.4 The sequence {Dj}j generated by Algorithm 2 is called (τ, dmax, p)-descent for
p ∈ (0, 1] if

P
(
D0 is (τ, dmax)-descent

∣∣ F−1/2

)
≥ p

∀j ≥ 1, P
(
Dj is (τ, dmax)-descent

∣∣ Fj−1/2

)
≥ p,

(2.2.8)

where Fj−1/2 is the σ-algebra generated by P 0,D0, . . . ,P j−1,Dj−1,P j and F−1/2 is the σ-algebra
generated by P 0.

Using submartingale arguments, we are then able to provide a high-probability complexity bound
for our method.

Theorem 2.2.1 Let Assumptions 2.1.1 and 2.1.2 hold. Suppose that Algorithm 2 is applied using
a (η, σ, Pmax, q)-well-aligned sequence {P j} and a (κ, dmax, p)-descent sequence {Dj} such that

pq > p0 := max

{
ln(γdec)

ln(γ−1
incγdec)

,
ln(γinc)

ln(γ−1
decγinc)

}
.

For any ϵ ∈ (0, 1), let Nϵ be the number of function evaluations necessary to compute an iterate xJ
such that ∥∇f(xJ)∥ ≤ ϵ. Then,

P
(
Nϵ ≤ O

(
mϕϵ−2

))
≥ 1− exp

[
−(pq − p0)

2

4pq
ϕ ϵ−2

]
, (2.2.9)

where
ϕ = η−2 σ−2 P 4

max d
8
max τ

−2. (2.2.10)

The constants in O(·) depend on α0, f(x0)− flow, γdec, γinc, c and L.

As ϵ gets smaller, the bound (2.2.9) becomes more and more certain. For this reason, results
such as Theorem 2.2.1 are sometimes referred to as “overwhelming probability” results. Note that
complexity bounds in expectation could also be provided.
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Columns of Dk \ P k choice Identity Gaussian s-Hashing Orthogonal
[In,−In] n2 n n n

Uniform angle PSS n3 n n n
[In,−e] n7 n n n

Random unit vectors n n n n

Table 2.1. Summary of evaluation complexity dependency on n for different choices of P k and Dk in Algo-
rithm 2.

At first glance, the complexity bound above does not yield any improvement compared to the
deterministic guarantee of Theorem 2.1.1. Assessing possible gains from randomness requires a
careful analysis of the constant ϕ.

Table 2.1 highlights the various dependencies that can be obtained using several possibilities
for Dk and P k. One sees that the best possible dependency is n, that improves over the best
known deterministic dependency in n2 discussed in Section 2.1.2. In particular, it matches that of
(randomized) finite-difference techniques [72, 119].

Figure 2.1 compares several variants of Algorithm 2 on subsets of problems originating from the
CUTEst benchmark [34, 69]. Note that the dimensions of those problems pose a particular challenge
for direct-search techniques. Indeed, deterministic variants (black and grey curves) struggle to solve
a significant fraction of problems within the desired evaluation budget, whereas randomized variants
(dashed lines) perform better thanks to their cheap per-iteration cost.

2.2.3 Other subspace methods and extensions

The first use of low-dimensional subspaces in derivative-free optimization with complexity guaran-
tees is arguably due to Nesterov in the context of finite-difference methods [119, 122]. Kozak et
al [101, 102] later explored the use of subspaces in finite-difference techniques, going beyond the
one-dimensional subspace case of Nesterov. For direct search, Gratton et al. were the first to propose
a (one-dimensional) subspace technique with complexity guarantees [77], although it did not make
use of the subspace nature of this approach. Model-based derivative-free methods were studied from
a subspace perspective by Cartis and Roberts [34], leading to a number of follow-up works [35, 40].

The latest developments in the area revolve around functions with stochastic objectives. Although
probabilistic results were established for both direct-search [6, 13, 59, 60] and model-based [17, 37, 39]
methods, the use of subspace was relatively underexplored until recently. Dzahini and Wild [62, 63]
explored both model-based methods and direct-search techniques, while similar techniques were
recently used in the context of zeroth-order/finite-difference schemes [131].

Overall, algorithms based on random subspaces are one of the most prominent lines of research in
derivative-free optimization and beyond. Using subspaces not only improves complexity guarantees,
but it is also attractive from a practical viewpoint, as it effectively requires less evaluations per
iteration while maintaining or even improving the performance of full-space variants [34, 136].

2.3 Positive spanning sets and complexity

In Section 2.2, we discussed how subspace approaches allow to relax the positive spanning set as-
sumption in direct-search methods. In this section, we revert to the standard, deterministic paradigm
and consider the problem of generating PSSs with favorable structure and properties. The main chal-
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(c) Large-scale problems, τ = 10−1
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(d) Large-scale problems, τ = 10−3

Figure 2.1. Comparison of standard and subspace variants of direct search.

lenge in such a task lies in computing the cosine measure (2.1.2), which is in itself an optimization
problem. Section 2.3.1 describes a class of positive spanning sets for which the cosine measure can
be provably computed in polynomial time. This class is later used in Section 2.3.2 to build resilient
positive spanning sets with a novel definition of cosine measure that can again be computed in
polynomial time for certain classes. Section 2.3.3 describes related work on cosine measures.

The results from both Section 2.3.1 and 2.3.2 have been obtained during the PhD thesis of
Sébastien Kerleau co-supervised by the author.

2.3.1 Computing the cosine measure easily with OSPBs

Consider a set of vectors D ∈ Rn×m, and suppose that this set is a positive spanning set. Hare
and Jarry-Bolduc [82] proposed an algorithm that computes the cosine measure of such a set by
looking at all possible linear bases contained in the PSS. Although this algorithm computes the
cosine measure, the number of linear bases to be considered may be exponential in the problem
dimension. In fact, it has recently been shown that computing the cosine measure is a NP-hard
problem [93], suggesting that it cannot be done in polynomial time in full generality (unless P=NP).
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Such results led to considering special classes of positive spanning sets, for which the computation
can be carried in polynomial time.

A positive spanning set D ∈ Rn×m is called a positive basis if no proper subset of D is a
PSS. Positive bases possess additional structure compared to PSSs, making them a valuable tool
in derivative-free optimization. In particular, it is known that the cardinality of positive bases lies
between n+1 and 2n [7]. Positive bases of size n+1 are called minimal positive bases, while positive
bases of size 2n are called maximal positive bases. Standard examples for positive bases include the
columns of [In −In] (the coordinate vectors and their negatives) and that of [In −e] (coordinate
vectors and the sum of their negatives). For both examples, the cosine measure can be computed
explicitly, and this result was used in Table 2.1. However, the result for [In −e] was not known in
the community until very recently [82], and the first proof seem to have been provided in the context
of Sébastien Kerleau’s work [83].

To obtain such a result, a special class of positive bases was identified, that relies on decomposing
positive bases within orthogonal subspaces. To this end, we first observe that Definition 2.1.1 can
be generalized to subspaces of Rn. A set D ∈ Rn×m defines a PSS of a subspace L ⊂ Rn provided
it generates L by nonnegative linear combinations. The notion of positive basis of a subspace can
be defined accordingly, and leads to the following structure [84].

Definition 2.3.1 Let D ∈ Rn×m be a positive basis of Rn. If there exist subspaces L1, . . . ,Ls of
Rn and associated minimal positive bases DL1 , . . . ,DLs such that

Rn = L1 ⊥ L2 ⊥ · · · ⊥ Ls and D = DL1 ∪ DL2 ∪ · · · ∪ DLs , (2.3.1)

then D is called an orthogonally structured positive basis, or OSPB.

The aforementioned sets [In −In] and [In −e] are examples of OSPBs. More generally, any
minimal positive basis is an OSPB.

Thanks to the decompositon (2.3.1), computing the cosine measure of an OSPB reduces to
computing that of all minimal positive bases involved in its decomposition (at most n). Moreover,
for any minimal positive basis of size dim(Li)+1, computing the cosine measure is a straightforward
calculation [83, Proposition 3.1]. It follows that the cosine measure of an OSPB can be computed in
polynomial time [83, Theorem 3.2]. Such a result allows in particular to recover the cosine measures
of the sets [In −In] and [In −e], equal to 1√

n
and 1√

n2+2(n−1)
√
n

, respectively.

2.3.2 Positive k-spanning sets

Using positive bases is valuable in derivative-free optimization, as those are PSSs that are inclu-
sionwise minimal for this property. Yet, using positive bases within an algorithm such Algorithm 1
means that the convergence theory relies on all associated function evaluations being computable.
This hypothesis is commonly challenged in applications, either because of hidden constraints that
prevents evaluating the function at certain points [96] or because the computing time may be pro-
hibitive for certain calculations [98]. For this reason, researchers have sought more resilient choices
of directions than positive spanning sets, leading to the introduction of positive k-spanning sets in
the 1980s [111, 112].

Definition 2.3.2 Given any k ≥ 1, a set D of vectors in Rn is called a positive k-spanning set
(PkSS) if it is a PSS and any subset S ⊂ D such that |S| ≥ |D| − (k − 1) is also a PSS.

A PkSS which is minimal for this property is called a positive k-basis.
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Both notions of PkSSs and positive k-bases generalize to subspaces of Rn. Note that the
definition reduces to that of PSSs and positive bases when k = 1.

Although those ideas were introduced in the early 1980s, the use of PkSSs was not investigated
in the derivative-free litterature. In fact, the structure of PkSSs itself remains to be understood.
For instance, it was quickly established that a PkSS (and thus a positive k-basis) must possess at
least n+2k− 1 vectors [111]. However, no upper bound is known for the maximal size of a positive
k-basis for general k. Interesting connections between PkSSs and polytopes were pointed out by
Woltzlaw [145], revealing that the upper bound lies between 2kn and kn(n+ 1)k−1 [145, Theorem
10.4.2].

Because PkSS were not studied in the context of direct search, there was not equivalent to the
cosine measure for those sets. The author introduced such a definition together with Warren Hare,
Gabriel Jarry-Bolduc and Sébastien Kerleau [83]. Given k ≥ 1 and D ∈ Rn×m, the k-cosine measure
of D is

cmk(D) := min
S⊂D

|S|=|D|−(k−1)

cm(S). (2.3.2)

The k-cosine measure characterizes PkSSs, in that it is positive if and only if the set is a PkSS.
Due to its formula, one sees that computing the k-cosine measure of a given set involves computing
(1-)cosine measures of certain subsets. Using again OSPBs, we identified classes of PkSSs for which
a bound on the k-cosine measure can be found in polynomial time.

Let D = DL1 ∪ · · · ∪ DLs ∈ Rn×m be an OSPB. Given k real numbers β1,. . . ,βk, we consider

D(β1, . . . , βk) =
k⋃

i=1

βiD, where βiD = {βid | d ∈ D}. (2.3.3)

If β1, . . . , βk are nonzero real numbers with distinct absolute values, one can show that D(β1, . . . , βk)
is a PkSS with

cmk (D(β1, . . . , βk)) ≥ cm(D).

Such a strategy can be applied to the maximal positive basis {In −In}.
A more expressive strategy to generate PkSSs consists in applying rotation operators to the

elements of D in a way that preserves the subspace decomposition and does not create duplicates [83,
Theorem 4.3]. For any k ≥ 1, there exists rotations R1, . . . , Rk in Rn such that the set

D(R1, . . . , Rk) =

k⋃
i=1

Ri(D), where Ri(D) = {Ri(d) | d ∈ D}, (2.3.4)

is a positive k-spanning set. We then have

cmk (D(R1, . . . , Rk)) ≥ cm(D).

This rotation-based strategy can be used to obtain PkSSs from the minimal positive basis {In −e}.
For both strategies, a lower bound on the k-cosine measure can be computed in polynomial time,
and thus used to bound the dimension dependencies in complexity results.

To illustrate this observation, we strengthen the complexity results of Algorithm 1 using positive
k-spanning sets. We begin by modifying Assumption 2.1.3 as follows.

Assumption 2.3.1 At every iteration j of Algorithm 1, the polling set Dj satisfies the following
properties:
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(i) cmk (Dj) ≥ τk for some τk ∈ (0, 1).

(ii) ∀d ∈ Dj , dmin ≤ ∥d∥ ≤ dmax.

Using PkSSs makes Algorithm 1 tolerant to stragglers or missing evaluations. In particular, a
complexity bound can be obtained while missing up to k − 1 evaluations at every iteration.

Theorem 2.3.1 Let Assumptions 2.1.1 and 2.1.2 hold. Suppose that Algorithm 1 is applied with
polling sets satisfying Assumption 2.3.1, and that at most k−1 evaluations fail to complete at every
iteration. Then, for any ϵ ∈ (0, 1), the algorithm computes an iterate xJ such that ∥∇f(xJ)∥ ≤ ϵ
in at most

O
(
τ−2
k ϵ−2

)
(2.3.5)

iterations and
O
(
mτ−2

k ϵ−2
)

(2.3.6)

function evaluations.

Provided the PkSSs used in Theorem 2.3.1 are built from OSPBs, a bound τk on their cosine
measure can be provided. For instance, using rotations of the minimal positive basis [In −e] yields
m = k(n + 1) and τk = 1√

n2+2(n−1)
√
n

, corresponding to a complexity bound in O(k n3). Using

scaled versions of the maximal positive basis [In −In] gives m = 2kn, τk = 1√
n

, so that (2.3.6) is

of order O(k n2). The latter dependency is the best found to date, although it is unclear what the
dependencies are for minimal positive k-bases.

2.3.3 Further work on positive spanning sets

Regis [134, 135] studied properties of positive spanning sets by writing the optimality conditions of
the optimization problem defining the cosine measure (2.1.2). A number of structural results were
derived in Nævdal [115] to characterize the best cosine measures achievable by positive bases of size
n+1 and 2n. Hare, Jarry-Bolduc and Planiden [84] introduced the notion of orthogonally structured
positive bases (under a different name), and were able to generate positive bases with optimal cosine
measure for certain OSPBs.

The thesis of Sébastien Kerleau [97] contains additional results on positive (k-)spanning sets, and
their connection with discrete objects such as graphs and polytopes. In particular, using analogies
between strongly connected digraphs and positive spanning sets, a decomposition theorem akin to
the ear decomposition in graph theory was proposed during the thesis of Sébastien Kerleau [46]. This
decomposition revisits an earlier result by Romanowicz [137], but is more practical in that it allows
for explicit characterization of families of positive spanning sets of certain cardinality. Characterizing
the best tradeoff between the size of a PkSS and its k-cosine measure remains an open problem,
even when k = 1 [57]. Indeed, this problem bears a close connection with sphere packing and frame
theory [128].

2.4 Conclusions and perspectives for Chapter 2

In this section, we presented several complexity results for direct-search algorithms obtained by
the author and collaborators. The results from Section 2.2 correspond to a joint work with Lin-
don Roberts [136], and the associated Python package was incorporated in Meta’s Nevergrad plat-
form [132]. The results of Section 2.3 have been partly published in an article with W. Harre, G.
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Jarry-Bolduc and S. Kerleau [83]. The complete results are integrally published in the PhD thesis of
Sébastien Kerleau [97].

Subspace approaches for derivative-free optimization are currently a growing topic of research,
that goes beyond the field of derivative-free optimization as it tackles important scalability issues. A
number of methods have been revisited from a subspace perspective in recent years, yet the gain in
terms of complexity has been less straightforward than for direct search. Still, practical successes of
these approaches suggest that this line of research will keep growing in the future. A relatively un-
derexplored setup is that of subspace methods for constrained derivative-free optimization. A natural
continuation of the work conducted by the author and Lindon Roberts on constrained derivative-free
optimization [78, 90] would consist in extending the results of Section 2.2 to the constrained setting.

In the context of model-based methods, the use of PSSs is typically replaced with that of fully
linear models, that are constructed using either interpolation or regression [42, 43, 44, 45]. As
those problems are small-dimensional in general, and convex, they can be solved easily in practice.
Nevertheless, the cost of building those models can be harder to quantify than in direct search, where
the steps are somewhat more explicit. Still, assessing the quality of linear models remains a topic of
interest in the derivative-free optimization community [113, 130]. Since positive spanning sets can
be used to construct linear models in model-based derivative-free optimization [45], our results offer
a natural path investigate the quality of these linear models (in the spirit of Section 2.3.1) or the
construction of such models using PkSSs (described in Section 2.3.2).



Chapter 3

Complexity of conjugate gradient
methods

This chapter is concerned with first-order methods, that rely on gradient and function evaluations
to perform optimization. A number of first-order schemes have been thoroughly analyzed from a
complexity viewpoint in convex and strongly convex settings, thereby allowing to classify algorithms
according to their complexity guarantees. By contrast, in a general nonconvex setting, the basic
complexity bound of gradient-based algorithms has proven difficult to beat, surprisingly setting all
methods equal from a complexity perspective. The author’s work has focused on the class of con-
jugate gradient methods, which can exhibit good numerical behavior when applied to numerical
problems. By introducing tweaks to the original algorithm, one can equip them with complexity
bounds that reflect their original empirical behavior.

Section 3.1 introduces the canonical algorithm within that class of methods, gradient descent, as
well as the main complexity results for that algorithm. Section 3.2 then presents results obtained by
the author during his postdoctoral studies on conjugate gradient for the special case of nonconvex
quadratic functions. Section 3.3 returns to the general nonconvex setting, and describes results
obtained by the author together with his former intern Rémi Chan--Renous-Legoubin on nonlinear
conjugate gradient methods. Section 3.4 discusses short-term perspectives on this work.

3.1 Gradient descent and fundamental complexity results

Throughout this section, we are concerned with the optimization problem

minimize
x∈Rn

f(x), (3.1.1)

where f is a continuously differentiable function with Lipschitz continuous gradient. This setting
is arguably one of the most classical in mathematical optimization, as this assumption holds for a
number of convex (linear regression, logistic regression) and nonconvex (sigmoid regression) problems.
It is also the simplest paradigm under which one can derive complexity guarantees for gradient-based
techniques [118, 28].

Section 3.1.1 presents a gradient-based algorithm that will be used as prototypical algorithm for
the rest of this chapter. Complexity guarantees for this method are discussed in Section 3.1.2, and
other results in the literature are surveyed in Section 3.1.3.

21
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3.1.1 A basic gradient algorithm with line search

Gradient descent is the canonical algorithm for optimizing smooth, nonlinear functions. It consists in
moving along the negative gradient direction at each iteration. A crucial component of this method
lies in the length of such a move, also called stepsize, akin to the stepsize in direct-search schemes.

Algorithm 3: Gradient descent algorithm.

Initialization: x0 ∈ Rn, α0 > 0, γdec ∈ (0, 1), c ∈ (0, 1).
for k = 0, 1, ... do

1. Compute the gradient gk = ∇f(xk).

2. Find the largest stepsize α ∈ { γjdecα0 | j ∈ N } such that

f(xk − αgk) < f(xk)− c α∥gk∥2 (3.1.2)

3. Set αk = α and xk+1 = xk − αk∇f(xk).

end

Algorithm 3 relies on a backtracking (also known as Armijo) line search to compute a suitable
stepsize for moving along the negative gradient direction. Although textbook analyses for gradient
descent consider a constant or a decreasing stepsize, it is also possible to derive complexity guarantees
for this method using line-search schemes [149, 36]. We present such a guarantee in the next section.

3.1.2 Complexity analysis of gradient descent

We consider the same setup than in Chapter 2, i.e. the minimization of a C1,1 function. A complexity
result was obtained by Cartis, Sampaio and Toint [36] for gradient-based method using line search.
The proof for Algorithm 3 can be found in a number of textbooks, such as the recent monograph of
Wright and Recht [149].

Theorem 3.1.1 Suppose that Algorithm 3 is applied to problem (3.1.1) under Assumptions 2.1.2
and 2.1.1. Then, the method computes an iterate xJ such that ∥∇f(xJ)∥ ≤ ϵ in at most

O(ϵ−2) (3.1.3)

iterations or, equivalently gradient evaluations, where the constant in O(·) depends on L, f(x0),
flow, c, α0 and γdec. The associated cost in terms of function evaluations is at most

O(ϵ−2), (3.1.4)

where the constant in (3.1.4) differs from that of (3.1.3) by a factor logarithmic in α0, c, L and
γdec.

The dependency ϵ−2 was shown to be essentially sharp [28], through the introduction of an
example for which Algorithm 3 takes at least O(ϵ−2+δ) evaluations to reach an ϵ-stationary point
for any δ > 0. This small-dimensional example was later refined to obtain an O(ϵ−2) bound [33].
Interestingly, larger-dimensional examples, for which the problem dimension is defined according to
the complexity bound, have also been proposed [26].



CHAPTER 3. COMPLEXITY OF CONJUGATE GRADIENT METHODS 23

3.1.3 Extensions to other gradient-based schemes

The use of gradient-related directions [149] is a classical paradigm under which complexity guarantees
for gradient descent are preserved (up to constant factors). Rather than using the negative gradient
as a search direction, one considers a vector dk such that

dT
k gk ≤ −σ∥dk∥ ∥gk∥ and ∥dk∥ ≤ κ∥gk∥. (3.1.5)

These conditions, together with a modified line-search condition (3.1.2) (involving ∥dk∥2 or dT
k gk

rather than ∥gk∥2) then lead to complexity guarantees of the same order than that of Theorem 3.1.1 in
terms of dependencies of ϵ. Moreover, a nonmonotone strategy, that consists in measuring decreases
with respect to the largest function value encountered over the past few iterations, can be used with
similar complexity guarantees than that described in the previous section [36].

Besides gradient descent, trust-region methods with first-order guarantees (not necessarily relying
on exact second-order information) also reach an ϵ-first order stationary point in at most O(ϵ−2)
iterations [79]. It is known that this dependency on ϵ is tight for continuously differentiable functions
with Lipschitz continuous derivatives [27, 33].

3.2 Linear conjugate gradient and nonconvex quadratics

In this section, we consider a specific class of continuously differentiable problems, namely quadratic
problems of the form

minimize
x∈Rn

q(x) :=
1

2
xTHx+ gTx, (3.2.1)

where H ∈ Rn×n is a symmetric matrix, and g ∈ Rn. Such problems typically arise as subproblems
in second-order optimization methods, such as those to be described in Chapter 4.

When the matrix H is positive semidefinite (resp. positive definite), problem (3.2.1) is a convex
(resp. strongly convex) optimization problem, and it can be solved efficiently using first-order meth-
ods. Among those techniques, the conjugate gradient method [89] has remained one of the most
popular approaches for tackling such problems, that is guaranteed to converge in n iterations under
exact arithmetic. In addition, a convergence rate can be obtained for conjugate gradient on strongly
convex quadratics [123, Theorem 5.5 and equation (5.36)]. This rate matches that of accelerated
techniques such as Nesterov’s accelerated gradient and Polyak’s heavy ball method [148].

When the matrix H is not positive semidefinite, problem (3.2.1) is unbounded, as the function
q decreases indefinitely along negative curvature directions. More precisely, a negative curvature
direction for problem (3.2.1) is a (nonzero) vector d ∈ Rn such that

dTHd < 0 and dTg ≤ 0. (3.2.2)

If such a direction exists, it follows that the problem is unbounded. When problem (3.2.1) arises as
a subproblem of a nonlinear optimization method, the direction of negative curvature can be used
to define a step for this algorithm [41].

Given a quadratic problem (3.2.1), we thus seek an algorithm that either outputs an approximate
solution of the problem if it exists, or identifies nonconvexity by exhibiting a direction of negative
curvature.
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3.2.1 Gradient descent and Krylov methods

A first possibility to tackle the problem mentioned at the end of the previous section consists in
applying gradient descent to the nonconvex quadratic problem (3.2.1). When g = 0, gradient
descent resembles the power method, a well-known strategy for approximating extreme eigenvalues
in linear algebra [68]. In the case of a strongly convex quadratic function, gradient descent is
guaranteed to converge to an approximate solution in a number of iterations that is logarithmic in
the optimality tolerance [120]. This bound can even be improved using accelerated techniques such
as Nesterov’s accelerated gradient or Polyak’s heavy-ball method [55]. In addition, Krylov methods
such aslinear conjugate gradient exhibit acceleration properties, in the sense that they converge at
an accelerated rate [94].

When the quadratic is nonconvex, two perspectives can be adopted on problem (3.2.1). On
consists in regularizing the objective using a trust-region constraint or a cubic regularization term. In
both cases, an analysis of gradient descent and Krylov subspace methods can then be conducted [22,
23]. In order to guarantee that the method does converge to a minimum, adding randomness may
be required, leading to convergence rates that hold with high probability [24].

The other perspective on problem (3.2.1) consists in estimating how fast an algorithm can escape
saddle points (i.e. first-order stationary points that are not local minima). Interest for such results
rose in the late 2010s following a breakthrough result by Lee et al. [106, 105], that showed that
gradient descent almost never (in a probability sense) converges towards a saddle point at which
the Hessian matrix is indefinite. Nevertheless, the method can require exponential time to escape
the vicinity of such a saddle point [58]. Randomness again alleviates this issue, and convergence
rates for converging to a second-order stationary point have been obtained for gradient descent [91],
accelerated gradient [92] as well as heavy ball [124]. A core idea consists in looking near the saddle
point, where the function resembles a nonconvex quadratic function.

3.2.2 Revisiting linear conjugate gradient

In order to tackle the original problem of interest (3.2.1), which may potentially be nonconvex, we
considered two uses of conjugate gradient. On one hand, we aim at computing an approximate
solution of the problem if there exists one. On the other hand, we would like to use linear conjugate
gradient to detect negative curvature if it exists, in line with practical behavior.

Algorithm 4 states the basic conjugate gradient method [123, Chapter 5] applied to a modified
version of problem (3.2.1), namely

minimize
x∈Rn

q(x) :=
1

2
xTH̄x+ gTx, (3.2.3)

where H̄ is a shifted version of H. In exact arithmetic, this algorithm converges in n iterations to
a solution when the quadratic is strongly convex. Otherwise, the method can stop when detecting
a negative curvature direction. Together with Michael O’Neill and Stephen Wright, the author
quantified this phenomenon by considering a regularized version of problem (3.2.1).

Theorem 3.2.1 ([138, Corollary 3]) Suppose that conjugate gradient is applied to the modified
problem (3.2.3) with H̄ = H + ϵ In and ḡ a random vector uniformly drawn in the unit sphere. Let
p ∈ (0, 1] and

J̄ = min
{
n, 1 +

⌈
ln(2.75n/(1− p)2)∥H∥1/2 ϵ−1/2

⌉}
. (3.2.4)

Then, with probability p, one of the two events below occur:
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Algorithm 4: Conjugate gradient algorithm for problem (3.2.1).

Initialization: r0 = g, p0 = −r0, y0 = 0, j = 0.
while pT

j H̄pj > 0 and ∥rj∥ > 0 do

1. Set αj =
∥rj∥2
pT
j H̄pj

2. Compute yj+1 = yj + αjpj

3. Compute rj+1 = rj + αjH̄pj

4. Compute βj+1 =
∥rj+1∥2
∥rj∥2

5. Set pj+1 = −rj+1 + βj+1pj .

6. Set j = j + 1.

end

(i) Algorithm 4 computes pj such that pT
j H̄pj < 0 in j ≤ J̄ iterations, or

(ii) Algorithm 4 does not terminate before iteration J̄ , in which case it provides a certificate that
H̄ ⪰ − ϵ

2In with probability p.

In addition, we proposed a version of conjugate gradient, called Capped Conjugate Gradient (or
Capped CG), that uses extra checks and stopping criteria to detect nonconvexity in a deterministic
fashion. Our inspiration stemmed from the accelerated gradient technique of Carmon et al. [25], and
consists in appropriately regularizing the objective function to guarantee sufficient curvature when
needed.

As a result, the number of iterations of Algorithm 5 does not exceed min
{
n, Õ(ϵ−1/2)

}
[138,

Lemma 1]. This complexity is on par with that of accelerated methods. We again emphasize that
this result applies to nonconvex quadratics: either the method computes an approximate solution to
the linear system H̄y = −g, or it outputs a direction of small curvature for H̄, i.e. a direction of
negative curvature for H.

3.2.3 Applications and extensions

Together with Michael J. O’Neill and Stephen J. Wright, the author proposed a Newton-line search
algorithm based on using the capped CG routine [138], that achieves the best known iteration and
evaluation complexity among second-order methods. We will discuss a variant of this algorithm in
Chapter 4. A subsequent line of work due to Yang Liu and Fred Roosta, based on minimum residual
methods such as conjugate residuals or MINRES, demonstrated that such methods were competitive
with conjugate gradient in terms of detecting negative curvature [110].

A number of extensions of the capped CG algorithm have been proposed in constrained optimiza-
tion settings. Yue Xie and Stephen J. Wright have use capped CG within algorithms for nonconvex
optimization with bound constraints [151] and nonlinear equality constraints [150]. Chuan He and
Zhaosong Lu, along with collaborators, investigated extension of Newton-Capped CG to conic and
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Algorithm 5: Capped Conjugate Gradient

Inputs: Symmetric matrix H ∈ Rn×n; vector g ̸= 0; damping parameter ϵ ∈ (0, 1); desired
relative accuracy ζ ∈ (0, 1).

Optional input: scalar M (set to 0 if not provided).
Outputs: d type, d.

Secondary outputs: final values of M , κ, ζ̂, τ , and T .
Set

H̄ := H + 2ϵIn, κ :=
M + 2ϵ

ϵ
, ζ̂ :=

ζ

3κ
, τ :=

√
κ√

κ+ 1
, T :=

4κ4

(1−
√
τ)2

.

y0 ← 0, r0 ← g, p0 ← −g, j ← 0.

If p⊤
0 H̄p0 < ϵ∥p0∥2, set d = p0 and terminate with d type=NC.

Elseif ∥Hp0∥ > M∥p0∥ set M ← ∥Hp0∥/∥p0∥ and update κ, ζ̂, τ, T accordingly.
while True do

αj ← r⊤j rj/p
⊤
j H̄pj

yj+1 ← yj + αjpj

rj+1 ← rj + αjH̄pj

βj+1 ← (r⊤j+1rj+1)/(r
⊤
j rj)

pj+1 ← −rj+1 + βj+1pj

j ← j + 1

If ∥Hpj∥ > M∥pj∥, set M ← ∥Hpj∥/∥pj∥ and update κ, ζ̂, τ, T accordingly.

If ∥Hyj∥ > M∥yj∥, set M ← ∥Hyj∥/∥yj∥ and update κ, ζ̂, τ, T accordingly.

If ∥Hrj∥ > M∥rj∥, set M ← ∥Hrj∥/∥rj∥ and update κ, ζ̂, τ, T accordingly.

If ∥rj∥ ≤ ζ̂∥r0∥, set d← yj and terminate with d type=SOL

Elseif y⊤
j H̄yj < ϵ∥yj∥2, set d← yj and terminate with d type=NC

Elseif p⊤
j H̄pj < ϵ∥pj∥2, set d← pj and terminate with d type=NC

Elseif ∥rj∥ >
√
Tτ j/2∥r0∥

• Compute αj ,yj+1 as in the main loop above

• Find i ∈ {0, . . . , j − 1} such that

(yj+1 − yi)
⊤H̄(yj+1 − yi)

∥yj+1 − yi∥2
< ϵ. (3.2.5)

• Set d← yj+1 − yi and terminate with d type=NC.

end



CHAPTER 3. COMPLEXITY OF CONJUGATE GRADIENT METHODS 27

nonlinear constraints [85, 87, 88]. An extension to functions with Hölder-continuous Hessians was
also recently proposed [86].

Finally, a Newton-type method for nonconvex least squares problems was investigated during the
PhD thesis of Iskander Legheraba [107]. This method relies on capped CG to solve a quadratic
subproblem at every iteration.

3.3 Restarting nonlinear conjugate gradient

In this section, we come back to the general nonlinear nonconvex optimization setting and consider
problem (3.1.1), which we aim at tackling using line-search gradient-based methods. Conventional
wisdom in nonlinear optimization suggests that a number of techniques can be more efficient than
gradient descent in practice [123]. In particular, nonlinear conjugate gradient methods remain an
important topic of investigation in large-scale optimization, with demonstrated practical interest [80,
129].

Interestingly, a work by Carmon et al. [25] found that a very basic implementation of nonlinear
conjugate gradient was capable of outperforming gradient descent as well as accelerated variants
designed for complexity purposes on robust regression tasks. This observation was the starting point
for studying nonlinear conjugate gradient techniques from a complexity perspective, through the
master internship of Rémi Chan--Renous-Legoubin at Université Paris Dauphine-PSL.

Section 3.3.1 describes the algorithm of interest, in connection with the gradient descent algo-
rithm studied in Section 3.1. Section 3.3.2 presents results that were obtained for nonlinear conjugate
variants and later published in EURO Journal on Computational Optimization [38]. Section 3.3.3
discusses extensions of this approach, following in particular recent developments in the noisy setting.

3.3.1 A restarting framework for line-search methods

As explained in Section 3.1, deriving complexity results for gradient-based methods in a line-search
framework requires control over the two main components of a line-search scheme. On the one hand,
the search direction must be a sufficient descent direction, i.e. it must make a sufficiently negative
inner product with the negative gradient. On the other hand, the norm of this direction should be
related to that of the gradient.

These observations were the motivation behind introducing Algorithm 6. At every iteration, the
method is allowed to pick a direction according to the current gradient and possibly information
from previous iterations. Before performing a line search along this direction, the algorithm checks
if that direction is in sufficient agreement with the gradient. If not, then this direction is replaced
by the negative gradient and the corresponding iteration is called a restarted iteration. For such an
iteration, we thus have dk = −gk and

dT
k gk = −∥gk∥2 and ∥dk∥ = ∥gk∥. (3.3.3)

For a non-restarted iteration, the converse of condition (3.3.1) holds, i.e.

dT
k gk ≤ −κ∥gk∥1+p and ∥dk∥ ≤ κ−1∥gk∥

1+p
2 . (3.3.4)

Using p = 1 in (3.3.4) yields a condition that resembles that for line-search methods based on
descent directions [36]. Still, the purpose of introducing the parameter p was to go beyond the
classical condition, in order to obtain a better complexity for the method.
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Algorithm 6: Line-search algorithm with restarting condition.

Initialization: x0 ∈ Rn, α0 > 0, γdec ∈ (0, 1), c ∈ (0, 1), p ∈ [0, 1], κ ∈ (0, 1).
for k = 0, 1, ... do

1. Compute the gradient gk = ∇f(xk).

2. Compute a gradient-based direction dk using gk and possibly past information.

3. If the restarting condition holds, i.e. if

dT
k gk ≥ −κ∥gk∥1+p or ∥dk∥ ≥ κ−1∥gk∥

1+p
2 , (3.3.1)

set dk = −gk.

4. Find the largest stepsize α ∈ { γjdecα0 | j ∈ N } such that

f(xk + αdk) < f(xk) + c αgT
k dk (3.3.2)

5. Compute a steplength αk > 0.

6. Set xk+1 = xk − αk∇f(xk).

end

3.3.2 Restarted nonlinear conjugate gradient

Together with Rémi Chan–Renous-Legoubin [38], the author focused on a variant of Algorithm 6
based on nonlinear conjugate gradient methods [81]. At every iteration k ≥ 1, we first compute dk

as
dk = −∇f(xk) + βkdk−1, (3.3.5)

where βk is a coefficient that depends on the particular method at hand (note that we set d0 =
−∇f(x0)). In our experiments, and in agreement with previous investigation [25], we set βk using
the PRP+ (Polak-Ribière-Polyak+) rule, i.e.

βk = max

[
∇f(xk)

T(∇f(xk)−∇f(xk−1))

∥∇f(xk−1)∥2
, 0

]
. (3.3.6)

Note that this parameter is known to guarantee global convergence [54, 67], but that no complexity
results were established prior to this work. Our goal in obtaining such a complexity bound was
to identify the possible benefit of taking nonlinear CG iterations, which can be assessed thanks to
condition (3.3.4).

Theorem 3.3.1 Suppose that Assumptions 2.1.1 and 2.1.2 hold. Suppose that Algorithm 6 is
applied using the formula (3.3.5) to compute dk without restarts. Then, the method reaches xK

such that ∥∇f(xk)∥ ≤ ϵ in at most

O(ϵ−2) +O
(
ϵ−(1+p)

)
, (3.3.7)



CHAPTER 3. COMPLEXITY OF CONJUGATE GRADIENT METHODS 29

(a) Comparison between restarted methods and other
first-order methods. The curves corresponding to
Restarted NCG with p ∈ {0.5, 0.75, 1} overlap with that
of standard nonlinear CG.

(b) A representative instance of the robust regres-
sion problem of interest. The curves corresponding
to Restarted NCG with p ∈ {0.5, 0.75, 1} overlap
with that of standard nonlinear CG, and all have the
same 2 restarted iterations (blue circles with red filing).
Restarted NCG(p = 0.25) variant had 66 restarted iter-
ations, while Restarted NCG(p = 0) had 148 restarted
iterations.

Figure 3.1. Comparison of restarted nonlinear CG variants with non-restarted nonlinear CG, gradient descent
and a semi-adaptive variant [25]. All restarting variants use κ = 10−2 and the PRP+ update (3.3.6).

iterations, where the first term is a bound on the number of restarted iterations and the second is a
bound on the number of non-restarted iterations.

Due to the possibility of restarts, the bound (3.3.7) does not improve over the bound of gradient
descent from Section 3.1. Indeed, in the worst case, one may have to restart at every iteration, in
which case the algorithm is equivalent to gradient descent.

Nevertheless, if the number of restarted iterations is relatively low compared to the total number
of iterations, one may consider the second term as being more illustrative of the algorithmic behavior.
Using both the robust statistics problem from Carmon et al. [25] and problems from the CUTEst
collection [69], we validated this hypothesis empirically. In practice, we found that using p ≥ 0.5 led
to very similar performance compared to standard nonlinear CG on a benchmark of robust regression
instances generated using Bernoulli noise and Tukey biweight loss [25], in that the method almost
never restarted. As shown in Figure 3.1, the performance of the nonlinear CG variants is better
than that of gradient descent techniques, but it deteriorates as one decreases the value of p, even
though using a small value for p seemingly improves part of the complexity bound in (3.3.7). In fact,
decreasing p also increases the number of restarts, and the method behaves more like a gradient
descent scheme than a nonlinear conjugate gradient one.

Overall, our study revealed that checks can be added to a nonlinear conjugate gradient technique
in order to equip it with complexity guarantees without compromising its practical performance. In
our setting, choosing the value of p was critical, and values close to 1 led to the best performance on
our targeted problem. Our experiments on CUTEst show a small deterioration in performance upon
adding the restart condition (see Figure 3.2), even though the variants with p ≥ 0.5 still perform
close to the vanilla method. Interestingly, for the Fletcher-Reeves nonlinear CG variant, which is
known for being more amenable to theoretical analyses [81], the restarting condition seems to have
little impact on the performance for sufficiently large p.
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(a) PRP+ formula (3.3.6). (b) Fletcher-Reeves formula βk = ∥∇f(xk)∥2
∥∇f(xk−1)∥2

.

Figure 3.2. Comparison between standard nonlinear CG [123], orthogonal nonlinear CG [95], and several
restarted nonlinear CG variants, on CUTEst test problems.

3.3.3 Extensions of the restarted framework

Algorithm 6 is an algorithmic framework, that can be combined with any gradient-type technique
(and possibly other line-search strategies). In particular, quasi-Newton algorithms, that form one of
the most efficient methods in nonlinear optimization, can be controlled with a restarted condition
in the same spirit as nonlinear conjugate gradient methods. In a report recently submitted with
Albert Berahas and Michael O’Neill [12], the author investigates the combination of L-BFGS [109]
with the restarted condition (3.3.1). Although this particular condition seem less appropriate for
L-BFGS techniques, we again observe that parameters (p, κ) can be defined such that the condition
is not often triggered. Interestingly, the best value of p is less than 1, leading to a low number of
restarts and, as a result, to a favorable balance between restarted and non-restarted iterations for
our complexity bound.

This recent study also investigates noisy problems, in which function and gradient values are
replaced by noisy estimates. By enforcing control on the noise similarly to existing literature [11], we
obtain convergence results to a neighborhood of a stationary point.

3.4 Conclusion and perspectives for Chapter 3

Deriving complexity bounds for gradient descent on a nonconvex optimization problem is one of
the most classical components of modern-day optimization courses. Although the analysis is typ-
ically performed using fixed stepsizes, using a line search leads to similar overall guarantees while
quantifying the cost of not knowing problem-dependent quantities such as the Lipschitz constant
for the gradient. To the best of our knowledge, despite other line-search procedures leading to
better practical performance [123], the connection between line search and complexity guarantees
remains underexplored. In particular, it is unclear whether more elaborate line searches and direction
choices can improve over the classical gradient descent method with Armijo line search in terms of
complexity.

The simplest class of nonlinear optimization problems is that of quadratic optimization problems.
In nonconvex optimization, nonconvex quadratic problems arise naturally in algorithms for more
general problems, and must be tackled efficiently to compute appropriate steps for the overall problem.
The author’s research has focused on tackling this task using linear conjugate gradient, arguably the
method of choice for solving strongly convex quadratic problems. Regularizing the quadratic term
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proved instrumental to obtain complexity results. Those results highlighted the method’s ability
to either solve the problem to sufficient accuracy or detect sufficient nonconvexity when present.
Numerous linear algebra and iterative techniques can be used to tackle strong convex quadratic
problems while possessing optimal or near-optimal complexity guarantees [55]. However, not all of
them have been endowed with guarantees in a nonconvex setting, and investigating such an extension
is a natural continuation of the work conducted with Michael J. O’Neill and Stephen J. Wright [125].

Classical numerical optimization techniques fail to improve over gradient descent, despite overper-
forming gradient descent on typical benchmarks. The restarting framework introduced in Section 3.3
is one attempt as connecting practice and theory, by adding checks on the directions that are used
to update the iterate, and limiting those that deviate significantly from gradient descent steps. For
nonlinear conjugate gradient, such an approach gave rise to a method close to textbook nonlinear
conjugate gradient but with complexity guarantees. In addition to revisiting other nonlinear conju-
gate gradient and quasi-Newton schemes with a restarting perspective, one could also go beyond
these methods to tackle noisy and stochastic settings. To this end, one could rely upon objective-
function-free algorithms for nonconvex optimization [73, 74]. Extending the restarting framework
of Section 3.3 would remove the need for (possibly noisy) function estimates without compromising
complexity guarantees.



Chapter 4

Complexity of trust-region Newton
methods

Newton-type methods are based on incorporating second-order derivative information into optimiza-
tion algorithms so as to improve over first-order schemes. This seemingly appealing property does
not directly translate into improved complexity results, as basic variants of Newton’s method exhibit
the same worst-case complexity than gradient descent techniques [28]. Still, a number of algorithms
have been proposed that satisfy optimal complexity bounds provided the function to be minimized
is sufficiently smooth. In this chapter, we will again consider the problem

minimize
x∈Rn

f(x), (4.0.1)

but will now assume that the function f is twice continuously differentiable with a Lipschitz continu-
ous Hessian. Under this assumption, we seek algorithms that can be applied to problem (4.0.1) and
compute approximate second-order stationary points in the sense of (1.1.3).

In this chapter, we illustrate the author’s work on Newton-type methods with complexity guar-
antees through the lens of trust-region methods. Section 4.1 discusses the challenges in equipping
Newton’s method with good complexity results. Section 4.2 shows how a standard globalization
technique of Newton’s method (trust regions) can be endowed with best-known complexity bounds
for second-order techniques. Finally, Section 4.3 improves the complexity of Newton trust-region
schemes when the problem at hand has favorable landscape.

4.1 Newton’s method and an issue with complexity

In its most elementary form, Newton’s method is not well defined, and globalization techniques (line
search, trust region, regularization) are required to make it globally convergent. Still, it is known
to exhibit fast (quadratic) local convergence rates in the vicinity of minimizers around which the
function is locally strongly convex [20]. From a complexity point of view, Newton’s method does
not possess better guarantees than gradient descent on nonconvex C1,1 problems [28]. However, for
C2,2 functions, a more refined analysis can be performed and improvement over first-order complexity
bounds can be established.

Section 4.1.1 presents known complexity results for Newton-trust region schemes, that leverage
second-order derivative information. Section 4.2.1 explains how the first method can be modified to

32
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obtain best-known complexity results for the class of C2,2 nonconvex objective functions. Section 4.3.2
discusses strict saddle functions, a particular subclass of nonconvex problems for which even a basic
trust-region method gets improved complexity guarantees.

4.1.1 A classical Newton-trust region technique

Algorithm 7 presents a standard trust-region algorithm using a second-order model [41]. The mag-
nitude of Newton steps is controlled by enforcing a trust-region constraint while computing a step,
which is written as a quadratic optimization problem over a ball (4.1.1). At each iteration, de-
pending on the agreement between the model and the true objective, the step is either accepted or
rejected, and the trust-region radius ∆k is either expanded or shrunk (though more sophisticated
rules exist [41, 152]).

Algorithm 7: Basic Newton-trust region algorithm.

Initialization: x0 ∈ Rn, ∆0 > 0, ∆max > ∆0, c ∈ (0, 1).
for k = 0, 1, ... do

1. Compute a tentative step by solving the trust-region subproblem

minimize
s∈Rn

∥s∥≤∆k

mk(s) := gT
k s+

1

2
sTHks, (4.1.1)

where gk = ∇f(xk) and Hk = ∇2f(xk).

2. Compute

ρk =
f(xk + sk)− f(xk)

mk(0)−mk(sk)
.

3. If ρk ≥ c, set xk+1 = xk + sk and ∆k+1 = min {γinc∆k,∆max}.

4. Otherwise, set xk+1 = xk and ∆k+1 = γdec∆k.

end

For simplicity, we focus here on exact solves of the trust-region subproblem, though we note that
inexact solves using Krylov subspace techniques are among the most used techniques in practice [143,
140]. We will comment on the inexact setting in Section 4.2.3.

4.1.2 Sub-optimal complexity bounds for Newton trust region

The first complexity analysis of trust-region methods appears due to Gratton, Sartenaer and Toint [79]
and focused on finding an approximate first-order stationarity point in the sense of Question 1.1.1.
First-order complexity results for trust-region schemes were formalized as such by Cartis et al. [28].
Second-order complexity bounds were provided for trust-region methods by Cartis et al. [29], through
an analysis that also applies to Algorithm 7. We describe below the main complexity result that can
be obtained for this algorithm.



344.2. A TRUST-REGION NEWTON METHOD WITH BEST KNOWN COMPLEXITY RESULTS

Theorem 4.1.1 Suppose that f is C2,2 with a Lipschitz continuous Hessian. Then Algorithm 7
reaches an (ϵ, ϵH)-stationary point (satisfying (1.1.3)) in at most

O
(
max

{
ϵ−2ϵ−1

H , ϵ−3
H

})
(4.1.2)

iterations.

The bound (4.1.2) was shown to be sharp for Algorithm 7, which may seem surprising as bet-
ter bounds in O

(
max

{
ϵ−2, ϵ−3

H

})
can be obtained by gradient descent augmented with negative

curvature directions [146, Section 9.3]. This improved bound can be derived for relatively minor
modifications of Algorithm 7, such as choosing inexact steps at every iteration according to the
criterion to improve [47], or busing two different trust regions to account for each criterion of (1.1.3)
individually [76].

4.1.3 More on complexity of Newton-type methods

The optimal known complexity bound for a Newton-type method is O
(
max

{
ϵ−3/2, ϵ−3

H

})
, which

was first established for cubic regularization techniques [29, 121]. Similar guarantees were achieved
by TRACE [51], a trust-region-based method, and by a hybrid variant combining trust-region and
cubic regularization features [52].

Together with Stephen J. Wright, the author analyzed line-search variants of Newton’s method,
showing a bound in O

(
max

{
ϵ−3ϵ3H , ϵ−3

H

})
. Although not strictly equivalent to the one for cubic

regularization, both bounds reduce to O(ϵ−3/2) whenever the two terms in the max are set to be
equal, i.e. when ϵH = ϵ1/2. All methods of this form were later shown to belong to an optimal class
of second-order schemes [32].

We note that the results for trust-region and cubic regularization schemes have been extended to
the Riemannian setting, i.e. when the variable is constrained to lie in a Riemannian manifold [1, 19].
Several other complexity results have been proven in the Riemannian setting, with the difficulty lying
in accounting for the Riemannian geometry of the problem in key assumptions such as Lipschitz
continuity of the derivatives [18].

4.2 A trust-region Newton method with best known complexity
results

This section is concerned with obtaining optimal complexity results for a trust-region variant as
close as possible to the textbook variant [123, Chapter 4]. Together with Frank E. Curtis, Daniel
P. Robinson, and Stephen J. Wright, the author proposed an algorithm that merely requires to add
regularization to the trust-region subproblem in order to satisfy optimal complexity guarantees.

Section 4.2.1 describes the algorithm at hand, and its complexity is given in Section 4.2.2.
Extensions of this algorithm, including inexact solves of the trust-region subproblem and related
work, are discussed in Section 4.2.3.

4.2.1 An algorithm with regularized steps

Algorithm 8 differs from the standard method through the addition of a regularizing term in the
subproblem objective [50]. This seemingly minor modification is key to guaranteeing complexity
results, provided the regularization coefficient is set according to optimality tolerances.
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Algorithm 8: Newton-trust region algorithm with regularization.

Initialization: x0 ∈ Rn, ∆0 > 0, ∆max > ∆0, c ∈ (0, 1).
for k = 0, 1, ... do

1. Compute a tentative step by solving the trust-region subproblem

minimize
s∈Rn

∥s∥≤∆k

mk(s) +
ϵH
2
∥s∥2, (4.2.1)

where mk(s) is defined as in (4.1.1).

2. Compute

ρk =
f(xk + sk)− f(xk)

mk(0)−mk(sk)
.

3. If ρk ≥ c, set xk+1 = xk + sk and ∆k+1 = min {γinc∆k,∆max}.

4. Otherwise, set xk+1 = xk and ∆k+1 = γdec∆k.

end

4.2.2 Complexity results

At each iteration, Algorithm 8 minimizes a regularized version of problem (4.2.1). In particular, this
certifies that any nonzero step will produce a model decrease in O(ϵH∥s∥2), which is instrumental
to deriving optimal iteration complexity bounds.

Theorem 4.2.1 Suppose that f is C2,2 with a Lipschitz continuous Hessian. Then Algorithm 7
reaches an (ϵ, ϵH)-stationary point in at most

Õ
(
max

{
ϵ−2ϵH , ϵ−3

H

})
(4.2.2)

iterations.

When the two terms in the maximum of (4.2.2) are set to be equal, the bound (4.2.2) matches
that of cubic regularization and other optimal Newton-type techniques [32].

Algorithm 8 can also been analyzed in an inexact fashion, by applying a Krylov-type technique to
compute an approximate solution of (4.2.1). One natural candidate for this purpose is the truncated
conjugate gradient method [140, 143], that applies conjugate gradient while stopping as soon as the
trust-region boundary is reached. By combining this idea with the analysis of Section 3.2.2, one
can design an inexact method with best-known complexity guarantees [50, Theorem 4.7]. A key to
deriving these results is the use of a stronger regularization in the inexact variant than in the exact
variant. More precisely, we replace the objective of (4.2.1) by mk(s) + ϵH∥s∥2, i.e. we double the
regularization parameter.
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(a) Iterations for exact and inexact variants. (b) Hessian-vector products of inexact variants.

Figure 4.1. Comparison of TRACE [51], standard Newton(-CG) trust-region schemes [41] and propsed
Newton(-CG) trust-region schemes with regularization and complexity guarantees [50]. Experiments were
conducted on a subset of CUTEst problems using ϵ =

√
ϵH = 10−5.

4.2.3 The numerical impact of regularization

Our analysis requires regularization of order ϵH , which is a fair amount of regularization for standard
tolerance values. Figure 4.1 presents experiments ran using ϵ = 10−5 and ϵH = ϵ1/2 ≈ 3.10−3 (recall
that this represents the most favorable setting for our complexity bound (4.1.2)). The iteration
profiles (leftmost figure) show that our approach with regularization does compare favorably with
standard, non-regularized schemes. On the other hand, our inexact variants make a heavier use
of Hessian-vector products (rightmost figure), due to the cost of applying capped CG (and, in
particular, the strong convergence criterion). In a nutshell, these experiments illustrate the price paid
for equipping a trust-region method with (optimal) complexity guarantees.

Overall, these experiments

4.3 Trust-region Newton methods for strict saddle problems

For general nonconvex C2,2 functions, the bounds seen in Sections 4.1 and 4.2 cannot be im-
proved [32]. Nevertheless, on certain classes of nonconvex problems, gradient-based techniques
can exhibit better complexity bounds, that are logarithmic in the optimality tolerances, akin to the
bounds obtained for strongly convex optimization. Such properties include the Polyak- Lojasiewicz
condition [149, Section 3.8], and typically involve first-order derivative information. Similar proper-
ties using second-order derivatives were proposed in the literature [48, 49], while scattered results
appeared for specific nonconvex problems [141].

This section is based on a joint work with Florentin Goyens [70], in which we studied the complex-
ity of (Riemannian) Newton trust-region methods when applied to a particular class of nonconvex
problems called strict saddle problems. Section 4.3.1 defines this problem class, while Section 4.3.2
provides a complexity bound for the basic trust-region method of Section 4.1.1 that leverages the
strict saddle structure. Other developments related to strict saddle functions are reviewed in Sec-
tion 4.3.3.
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4.3.1 The strict saddle paradigm

Together with Florentin Goyens [70], the author formalized the notion of a strict saddle function
in the context of Riemannian optimization, so as to encompass a variety of problems defined over
Riemannian manifolds. More precisely, we considered problems of the form

minimize
x∈M

f(x),

where M is a Riemannian manifold embedded in Rn, and f is twice continuously differentiable
in a Riemannian sense. Roughly speaking, the notions of gradient (first-order derivative), Hessian
(second-order derivative), and Lipschitz continuity can be extended from the Euclidean settingM =
Rn to the Riemannian setting [18]. Consequently, one can both extend classical Euclidean algorithms
to the Riemannian setting, and adapt their complexity analysis to handle manifold constraints. For
the sake of both consistency and simplicity, however, we will present the results in the Euclidean
case.

As in the rest of this chapter, we are concerned with computing approximate second-order sta-
tionary points in the sense of (1.1.3).

Definition 4.3.1 Let f : Rn → R be twice differentiable and let γ, λ, µ, δ be positive constants.
The function f is (γ, λ, µ, δ)-strict saddle if Rn = Rg ∪Rh ∪Rl, where

Rg = {x ∈ Rn : ∥∇f(x)∥ ≥ γ}
Rh = {x ∈ Rn : λmin

(
∇2f(x)

)
≤ −λ}

Rl = {x ∈ Rn : there exists x∗ ∈ Rn, a local minimizer of f such that ∥x− x∗∥ ≤ δ and

f is µ-strongly convex over the set {y ∈ Rn : ∥x∗ − y∥ < 2δ}} .

A strict saddle function thus possesses a particular landscape, that divides the space into three
(possibly non-connected and/or overlapping) regions. Per the definition, any point with zero gradient
must be either a strict saddle point if it belongs to Rh (that is, a first-order stationary point that is
not a second-order stationary point) or close to a local minimum if it belongs to Rl.

Examples of such strict saddle functions include strongly convex functions over Rn, for which
Rh = ∅. A simple example of strict saddle function is the one-dimensional dimension ϕ : x 7→
(x2 − 1)2. Note that this function is semialgebraic, and as such falls into other nice classes of
nonconvex functions [5]. Rayleigh quotient minimization over the sphere and complex instances of
the phase retrieval problem are other instances of strict saddle functions [70, 142].

4.3.2 Complexity results to the strict saddle setting

The purpose of our work with Florentin Goyens [70] was the study of a popular method (trust region)
in the specific context of strict saddle problems. We will thus consider the following assumption.

Assumption 4.3.1

(i) The function f is twice continuously differentiable with Lipschitz continuous Hessian.

(ii) The function f is (γ, λ, µ, δ)-strict saddle.
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We emphasize that the second part of Assumption 4.3.1 is not required for the optimization
process to be well-defined. In fact, we now present a simplified version of our main complexity
result [70, Theorem 3.18] that applies to Algorithm 7 as stated in Section 4.1.1.

Theorem 4.3.1 Suppose that Assumption 4.3.1 holds. Then, Algorithm 7 reaches an (ϵ, ϵH)-
stationary point in at most Nf +Nϵ evaluations, where{

Nf = O
(
max{1, γ−2, γ−4/3λ−1, γ4/3µ−1, γ−2/3µ−2, λ−3, λ−2µ−1, λ−1µ−2, µ−3, µ−2δ−1

)
Nϵ = O

(
log log

(
ϵ−1

))
.

(4.3.1)
iterations.

The bound (4.3.1) decomposes into two parts. The first term does not depend on optimality
tolerances ϵ, ϵH , but rather on problem specific constants. This result is reminiscent of guarantees
for Newton-type algorithms in the strongly convex setting [20, Section 9.6]. The second term is
doubly logarithmic in ϵ−1, which is a significant improvement over the result of both Theorem 4.1.1
and Theorem 4.2.1, for which the dependency is polynomial in ϵ−1.

4.3.3 Further work on landscape-aware algorithms

Definition 4.3.1 originates from Ge et al. [65], that was concerned with the particular problem of
tensor decomposition. A number of nonconvex instances have since then been analyzed in a similar
fashion, in order to distinguish them from arbitrary nonconvex instances. Applications involving
matrix variables, such as matrix sensing [14] and low-rank matrix completion [66]. Sun et al. [141]
investigated a number of problems and showed that they satisfied a strict saddle property. Numerous
examples have been collected and explained by Wright and Ma [146].

Provided all saddle points are strict, gradient-type methods such as gradient descet) can be
certified to converge, sometimes with a good complexity, to second-order stationary point, thereby
alleviating the need for tailored algorithms [105, 91]. Still, a number of landscape-aware algorithms
have been proposed in the literature. The method of Paternain et al. [126] was designed for functions
that satisfy a form of strict saddle property, in the sense that the Hessian cannot have eigenvalues
arbitrarily small in magnitude. Sun et al. [142] studied a trust-region algorithm (with fixed trust-
region radius) for a strict saddle formulation of phase retrieval. Though less focused on strict saddle,
the general framework of Curtis and Robinson [49] as well as the phase complexity analysis of Cartis
et al. [33, Section 5.4] fall into this category. Florentin Goyens and the author also proposed a
landscape aware method using again a capped CG routine to solve the trust-region subproblem.
Provided the strict saddle parameters are known, the algorithm chooses an appropriate step and
possibly an appropriate regularization parameter according to those constants [70, Algorithm 4].

4.4 Conclusions and perspectives for Chapter 4

Newton-type methods are more challenging to analyze from a complexity viewpoint than gradient-
based (or even derivative-free) techniques. Since those algorithms rely on second-order information,
it appears natural to consider second-order stationary points as targets of those methods. In fact,
this setting, that amounts to considering Question 1.1.2 in lieu of Question 1.1.1, appears to be
the one where second-order methods provably possess better guarantees than standard first-order
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algorithms. A key to deriving such results lies in a careful use of negative curvature directions. In
particular, regularizing the objective appears to be a way to leverage significant negative curvature
when present.

The algorithm proposed with Frank E. Curtis, Daniel P. Robinson and Stephen J. Wright [50]
achieves optimal complexity results thanks to regularization. However, such regularization may
increase the method’s practical cost. Building a hybrid method allowing for the computation of un-
regularized steps (and, in particular, actual Newton steps when possible) could be a way to make this
method even closer to the classical ones. Competitors such as the conjugate residuals-trust region
method [53] could also be investigated from a complexity perspective.

Florentin Goyens’ postdoctoral work with the author [70] established that classical Newton trust-
region methods could be endowed with better complexity bounds when applied to strict saddle
nonconvex functions. Although the properties of strict saddle functions are particularly suitable in
optimization algorithms, certain nonconvex formulations such as overparameterized models do not
satisfy our definition. Several proposals have looked into other nonconvex landscapes for which fast
local convergence rates could be established [133], and this research direction is worth pursuing in
order to tackle functions whose symmetries introduce non-isolated minima.



Chapter 5

Conclusion: From complexity to
structures

In this final chapter, we briefly reflect on the contents of this manuscript, and how they highlight
the author’s research agenda and supervision capabilities. We then highlight several middle-term to
long-term research perspectives that the author plans to consider for the next stage of his career.

5.1 Summary of the manuscript

This manuscript highlighted contributions of its author posterior to the PhD, that revolved around
complexity of nonconvex optimization algorithms. Chapter 2 deals with nonconvex derivative-free
optimization, the author’s first research topic that continues to be an interest of his. As a member
of the derivative-free optimization (DFO) community, the author has been part of a growing line of
research on subspace methods, as described in Section 2.2. In parallel, the author co-supervised the
PhD thesis of Sébastien Kerleau (defence scheduled in Fall 2025), that lead to precise evaluations of
dimension dependences in complexity bounds.

Chapter 3 focuses on gradient-based methods, a topic tackled by the author through linear and
nonlinear conjugate gradient techniques. The former allowed to design new eigenvalue approximation
techniques for indefinite matrices, a key ingredient for generic nonconvex problems. These results,
developed during the author’s postdoctoral work, have received significant attention from the non-
convex optimization community. The author has maintained interest in that space, with the goal
of developing algorithms as close as possible to textbook efficient nonlinear optimization techniques
but with optimal complexity guarantees. Rémi Chan--Renous-Legoubin’s master internship produced
such a method, of nonlinear conjugate gradient type.

Chapter 4 is concerned with Newton-type methods, and in particular those with second-order
guarantees. The author’s interest for such algorithms grew out of part of his PhD work on second-
order derivative-free algorithms [75, 76]. However, his primary contributions in the filed occurred
during his postdoctoral years, and culminated in a joint publication between his posdoctoral advisor
and two external faculty researchers [50]. Having tackled generic nonconvex problems, the author
turned to specific problems structures while supervising Florentin Goyens (postdoctoral researcher in
the author’s group from 2022 to 2024). By leveraging Florentin Goyens’s expertise in Riemannian
optimization, we were able to define a broad class of problems of interest and to show improved
guarantees for classical schemes on these problems, thanks to their favorable landscape structure.

40
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5.1.1 Perspectives: Leveraging structures

A significant portion of the author’s research has focused on generic, abstract nonconvex formula-
tions, in which one can only rely on oracle information (function and derivative values) to perform
optimization. Although this is a valuable paradigm for developing general purpose techniques, the
ability to exploit special structure is key to obtain efficient methods in practice. It is even more im-
portant when one is concerned with a specific application or a problem, since that problem’s specifics
can be leveraged for efficient solves.

In this section, the author identifies several broad perspectives for his research, based on current
departures from his existing works and longer-term perspectives.

5.1.2 Perspective I: Structure for nonconvex problems

The postdoctoral work of Florentin Goyens [70] focused on manifold optimization and specific (strict
saddle) structures. Complexity results can reflect this favorable structure when it exists, as is the
case on eigenvalue problems, for instance (recall the results of Section 3.2).

Meanwhile, identifying the gap between well-structured nonconvex instances and badly struc-
tured instances remains a challenge. The PhD thesis of Iskander Legheraba (defence scheduled in
September 2025) highlighted challenges in these approaches. In this thesis, the seemingly simple
problem of matrix square root approximation

minimize
X∈Rn×n

1

2

∥∥X2 −M
∥∥2
F
, (5.1.1)

where M ∈ Rn×n is an arbitrary data matrix, was considered. Despite existing algorithmic proposals
dedicated to solving this problem when M ≻ 0, there are no available proof for the strict saddle
nature of problem (5.1.1). Moreover, there exist matrices M such that the problem is provably not
strict saddle [107].

To encourage the development of algorithms dedicated to strict saddle problems, akin to the rise
of convex optimization techniques, precise examples and benchmarks seem necessary. A classification
effort of nonconvex problems was already suggested by the optimization community [141, 49], yet
the lack of unified terminology and examples is an obstacle to developing a research community
on this topic. To move this concept one step further, the author believes that a good subclass of
nonconvex optimization problems should feature both toy examples and established benchmarks. To
this end, the author submitted an ANR proposal (whose results are still pending at the time of this
manuscript), that he hopes will allow him to push this topic further.

5.1.3 Perspective II: Discrete structures

The PhD thesis of Sébastien Kerleau revealed important connections between positive spanning
sets and strongly connected digraphs, that have recently been published [46]. Further connections
between the discrete mathematics community and the derivative-optimization one are likely to yield
new optimization methods. The concept of positive k-spanning sets is one example among many.
More broadly, we envision that polyhedral and geometrical techniques could benefit derivative-free
integer programming, a field that remains relatively underexplored by the derivative-free optimization
community.

Discrete structures have also led to advances in complexity. Submodular functions, originally a
discrete notion for functions defined on finite sets, have been recently revisited from a continuous
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perspective [8]. Interestingly, continuous submodular functions can be nonconvex, while possessing
additional structure that allows for efficient optimization in a complexity sense [15]. Following a
master internship supervision in 2024 (whose results will be presented at the conference ICCOPT
2025), the author plans to develop this research direction, both from the fundamental and the
application side. Indeed, submodular optimization has found renewed interest from the machine
learning community, and natural language processing in particular [16]. The author plans to build
on the expertise in his department around that topic.

5.1.4 Perspective III: Structure beyond nonconvex problems

As stated in the introduction of this manuscript, complexity analysis in optimization arguably began
with linear programmming. After established software and algorithms were built on interior-point
methods, partly because of their favorable polynomial complexity guarantees [147], recent years have
experienced a surge of interest in primal-dual first-order techniques. Those methods can be quite
successful in extreme-scale problems due to their low per-iteration cost, while being amenable to a
rich complexity analysis [3, 4]. A PhD thesis will be offered in October 2025 (with Antonin Chambolle
as supervisor) on these aspects, with the goal of exploiting the specific structure of linear programs
arising in optimal transport, a field that has attracted increasing attention in recent years [127].

Solving continuous linear programs is a typical building block for solving integer linear programs,
typically through branch-and-bound techniques [104]. The author has been involved in an effort to
solve a particular integer linear program that models office allocation space during building renovation
at Université Paris Dauphine-PSL [2]. He was then able to assess the challenges posed by such
programs, as well as the immediate benefits of leveraging structure. A research-oriented approach to
this problem is currently under study in order to assess whether continuous algorithms (with good
complexity properties) are suited as subroutines for solving this problem.

5.2 Final word: Research structures

After his PhD, the author was fortunate to conduct research in the Wisconsin Institute for Discovery
(WID) as a postdoctoral researcher and then to LAMSADE as a faculty. In WID, he had numerous
interactions with machine learning researchers during the rise of nonconvex optimization algorithms
and landscape results in that community (starting 2016). The problems encountered by the commu-
nity led to his focusing on nonconvex optimization during his postdoctoral studies [139, 138], then to
his work on optimization landscapes and specific optimization problems [38, 70]. Those discussions
continued within the machine learning team in LAMSADE, leading to the co-supervision of two PhD
theses (Iskander Legheraba - 2020-2025, and Bastien Cavarretta since 2024) together with other
team members.

While in WID, the author also had the opportunity to exchange with researchers in discrete
mathematics, a topic of primary interest at LAMSADE. Having taken part in several events in WID,
the author naturally started discussions with members of LAMSADE upon being recruited. Those
ecled to the PhD thesis of Sébastien Kerleau (2021-2025), as well as a ongoing collaboration with
colleagues around integer linear programming models [2].

In the future, the author plans to foster these interactions, as he believes they benefit to all
parties involved while giving rise to both interesting problems and valuable applications. Building
research networks will be at the core of his research agenda.
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ABSTRACT
Optimization is concerned with making the best decision out of a set of alternatives. 
Optimization problems are modeled using mathematical objects, then solved using 
numerical algorithms. When those problems are convex, a common practice consists in 
comparing algorithms in terms of complexity guarantees, thereby using results that have 
been developed for more than fifty years. For nonconvex problems, however, complexity 
results have only grown in importance over the past fifteen years, while numerous 
research questions remain underexplored ;

This manuscript reviews its author’s contributions in the field of complexity analysis in 
nonconvex optimization, both as an independent researcher and as a supervisor. The 
manuscript is organized around three main research directions. We first focus on 
derivative-free optimization, where the dependency on the dimension is a crucial aspect 
of complexity guarantees. We then investigate conjugate gradient techniques, and 
describe changes to classical algorithmic templates that lead to complexity results. 
Finally, we study Newton trust-region methods, illustrating how their complexity results 
evolve with different subclasses of nonconvex optimization problems. We end the 
manuscript with long-term perspectives on complexity analysis, centered around the idea 
of structures.

RÉSUMÉ
L’optimisation vise à prendre la meilleure décision parmi un ensemble de possibilités. Les
problèmes d’optimisation se modélisent par des objets mathématiques, résolus ensuite 
numériquement au moyen d’algorithmes. Lorsque ces problèmes sont convexes, les 
algorithmes sont souvent comparés à travers leurs bornes de complexité, dont le calcul 
est étudié depuis plus de cinquante ans. Dans le cas non convexe, en revanche, les 
analyses de complexité n’ont réellement pris leur essor que durant les quinze dernières 
années, et de nombreuses questions de recherche demeurent encore peu explorées.

Ce manuscrit présente les travaux de l'auteur en tant que chercheur indépendant et 
encadrant en analyse de complexité pour l'optimisation non convexe, et s'articule selon 
trois axes de recherche principaux. On s'intéresse tout d'abord à l'optimisation sans 
dérivées, où la dépendance des bornes de complexité en la dimension du problème est 
cruciale. On étudie ensuite les algorithmes de gradient conjugué, pour lesquels on
identifie des modifications à même de conduire à des garanties de complexité. Enfin, on 
se concentre sur les algorithmes de Newton avec régions de confiance, dont la 
complexité varie naturellement selon la classe de problèmes non convexe considérée. Le
manuscrit se conclut par une réflexion sur l'évolution de la recherche en analyse de
complexité sur le long terme, à travers l'étude de diverses structures.
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