Newton-Krylov techniques for nonconvex optimization

Clément W. Royer

Computational Maths Seminar, Australian National University

October 25, 2021

French people in Australia, summer of 2021

- First victory in 31 years!
- My first Australian talk in 31 years!

Why I am here

Talk about complexity...

- As opposed to global/local convergence results;
- Goal: Equip popular practical schemes with such guarantees.

..and linear algebra...

- Key to high-performance implementation;
- Krylov methods+Randomization!

...to make a case for second-order methods.

- Newton+Conjugate Gradient;
- Nonconvex setting.

Outline

- Complexity and nonconvexity
- 2 Conjugate gradient and nonconvex quadratics
- Newton-CG framework
- 4 Numerics

Outline

- Complexity and nonconvexity
- 2 Conjugate gradient and nonconvex quadratics
- 3 Newton-CG framework
- 4 Numerics

Nonconvex optimization

Nonconvex?

- Many data science problems are convex: linear classification, logistic regression,...
- Nonconvex instances: Deep learning, matrix/tensor optimization, robust statistics.

Nonconvex optimization

Nonconvex?

- Many data science problems are convex: linear classification, logistic regression,...
- Nonconvex instances: Deep learning, matrix/tensor optimization, robust statistics.

Optimization?

- Those problems often come with structure;
- Guarantees to find global optima using second-order conditions;
- Are high-order methods suitable then?

General problem and definitions

$$\min_{x\in\mathbb{R}^n}f(x)$$

with $f \in C^2(\mathbb{R}^n)$ bounded below and nonconvex.

General problem and definitions

$$\min_{x\in\mathbb{R}^n}f(x)$$

with $f \in \mathcal{C}^2(\mathbb{R}^n)$ bounded below and nonconvex.

Definitions in smooth nonconvex minimization

- First-order stationary point: $\|\nabla f(x)\| = 0$;
- Second-order stationary point: $\|\nabla f(x)\| = 0, \nabla^2 f(x) \geq 0$.

General problem and definitions

$$\min_{x\in\mathbb{R}^n}f(x)$$

with $f \in \mathcal{C}^2(\mathbb{R}^n)$ bounded below and nonconvex.

Definitions in smooth nonconvex minimization

- First-order stationary point: $\|\nabla f(x)\| = 0$;
- Second-order stationary point: $\|\nabla f(x)\| = 0, \nabla^2 f(x) \succeq 0.$

If x does not satisfy these conditions, $\exists d$ such that

- $d^{\top}\nabla f(x) < 0$: gradient-related direction. and/or
- **2** $d^{\top} \nabla^2 f(x) d < 0$: negative curvature direction \Rightarrow specific to nonconvex problems.

The matrix completion example

Matrix completion

$$\min_{X \in \mathbb{R}^{n \times m}, \operatorname{rank}(X) \leq r} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2 \quad M \in \mathbb{R}^{n \times m}, \ \Omega \subset [n] \times [m].$$

- Data: observed entries of M.
- Assumption: The true matrix is of (low) rank $r \ll \min(m, n)$.

The matrix completion example

Matrix completion

$$\min_{X \in \mathbb{R}^{n \times m}, \mathrm{rank}(X) \leq r} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2 \quad M \in \mathbb{R}^{n \times m}, \ \Omega \subset [n] \times [m].$$

- Data: observed entries of M.
- Assumption: The true matrix is of (low) rank $r \ll \min(m, n)$.

Nonconvex factored reformulation (Burer & Monteiro, '03)

$$\min_{U \in \mathbb{R}^{n \times r}, V \in \mathbb{R}^{m \times r}} \sum_{(i,i) \in \Omega} \left([UV^{\top}]_{ij} - M_{ij} \right)^2,$$

- (n+m)r variables $(\ll nm)$.
- Nonconvex in U and V...
- ..but global minima can be characterized.

A nice class of nonconvex problems

Nonconvex formulations for low-rank matrix problems (Ge et al. 2017)

$$\min_{U \in \mathbb{R}^{n \times r}, V \in \mathbb{R}^{m \times r}} f(U V^{\top}) \quad f \text{ smooth.}$$

A nice class of nonconvex problems

Nonconvex formulations for low-rank matrix problems (Ge et al. 2017)

$$\min_{U \in \mathbb{R}^{n \times r}, V \in \mathbb{R}^{m \times r}} f(U V^{\top}) \quad f \text{ smooth.}$$

- Second-order stationary points are global minima (or are close in function value);
- Strict saddle property: any first-order stationary point that is not a local minimum possesses negative curvature.

A nice class of nonconvex problems

Nonconvex formulations for low-rank matrix problems (Ge et al. 2017)

$$\min_{U \in \mathbb{R}^{n \times r}, V \in \mathbb{R}^{m \times r}} f(U V^{\top}) \quad f \text{ smooth.}$$

- Second-order stationary points are global minima (or are close in function value);
- Strict saddle property: any first-order stationary point that is not a local minimum possesses negative curvature.
- Obj: efficient algorithms to reach second-order stationary points;
- Efficiency measured by complexity.

Complexity in nonconvex optimization

Setup: Sequence of points $\{x_k\}$ generated by an algorithm applied to $\min_{x \in \mathbb{R}^n} f(x)$.

Complexity in nonconvex optimization

Setup: Sequence of points $\{x_k\}$ generated by an algorithm applied to $\min_{x \in \mathbb{R}^n} f(x)$.

First-order complexity result

Given $\epsilon_g \in (0,1)$:

- Worst-case cost to obtain an ϵ_g -point x_K such that $\|\nabla f(x_K)\| \le \epsilon_g$.
- Focus: Dependency on ϵ_g .

Complexity in nonconvex optimization

Setup: Sequence of points $\{x_k\}$ generated by an algorithm applied to $\min_{x \in \mathbb{R}^n} f(x)$.

First-order complexity result

Given $\epsilon_g \in (0,1)$:

- Worst-case cost to obtain an ϵ_g -point x_K such that $\|\nabla f(x_K)\| \le \epsilon_g$.
- Focus: Dependency on ϵ_g .

Second-order complexity result

Given $\epsilon_g, \epsilon_H \in (0,1)$:

• Worst-case cost to obtain an (ϵ_g, ϵ_H) -point x_K such that

$$\|\nabla f(x_K)\| \le \epsilon_g, \qquad \lambda_{\min}(\nabla^2 f(x_K)) \ge -\epsilon_H.$$

• Focus: Dependencies on ϵ_g , ϵ_H .

Gradient descent

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k), \quad \alpha_k > 0$$

Gradient descent

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k), \quad \alpha_k > 0$$

• With appropriate stepsize choice,

$$f(x_k) - f(x_{k+1}) \ge \mathcal{O}\left(\|\nabla f(x_k)\|^2\right)$$

- $\|\nabla f(x_k)\| \le \epsilon_g$ in at most $\mathcal{O}\left(\epsilon_g^{-2}\right)$ iterations;
- 1 iteration=1 gradient evaluation.

Gradient descent

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k), \quad \alpha_k > 0$$

• With appropriate stepsize choice,

$$f(x_k) - f(x_{k+1}) \ge \mathcal{O}\left(\|\nabla f(x_k)\|^2\right)$$

- $\|\nabla f(x_k)\| \le \epsilon_g$ in at most $\mathcal{O}\left(\epsilon_g^{-2}\right)$ iterations;
- 1 iteration=1 gradient evaluation.

Sharp result

- Pathological examples (Cartis, Gould, Toint, 2010);
- Bound holds for several other methods.

Gradient descent+Negative curvature

- If $\|\nabla f(x_k)\| > \epsilon_g$, set $x_{k+1} = x_k \alpha_k \nabla f(x_k)$ with $\alpha_k > 0$;
- ② If $\|\nabla f(x_k)\| \le \epsilon_g$ and $\lambda_k = \lambda_{\min}(\nabla^2 f(x_k)) < -\epsilon_H$, set $x_{k+1} = x_k + \alpha_k d_k$ where $\alpha_k > 0$ and

$$d_k^{\mathrm{T}}
abla^2 f(x_k) d_k = -\lambda_k \|d_k\|^2, \quad d_k^{\mathrm{T}}
abla f(x_k) \leq 0.$$

Gradient descent+Negative curvature

- ② If $\|\nabla f(x_k)\| \le \epsilon_g$ and $\lambda_k = \lambda_{\min}(\nabla^2 f(x_k)) < -\epsilon_H$, set $x_{k+1} = x_k + \alpha_k d_k$ where $\alpha_k > 0$ and

$$d_k^{\mathrm{T}}
abla^2 f(x_k) d_k = -\lambda_k \|d_k\|^2, \quad d_k^{\mathrm{T}}
abla f(x_k) \leq 0.$$

• With appropriate stepsize choice,

$$f(x_k) - f(x_{k+1}) \ge \begin{cases} \mathcal{O}(\|\nabla f(x_k)\|^2) \\ \mathcal{O}(|\lambda_k|^3) \end{cases}$$

- $\|\nabla f(x_k)\| \le \epsilon_g$ and $\nabla^2 f(x_k) \succeq -\epsilon_H I$ in at most $\mathcal{O}\left(\max\{\epsilon_g^{-2}, \epsilon_H^{-3}\}\right)$ iterations:
- 1 iteration=1 gradient evaluation+1 eigenvalue/eigenvector calculation.

Complexity results

From nonconvex optimization (2006-)

- <u>Cost measure</u>: Number of iterations (but those may be expensive);
- Two types of guarantees:
- Best methods: Second-order methods, deterministic variations on Newton's iteration involving Hessians.

Complexity results

From nonconvex optimization (2006-)

- <u>Cost measure</u>: Number of iterations (but those may be expensive);
- Two types of guarantees:
 - 1 $\|\nabla f(x)\| \le \epsilon_g$; 2 $\|\nabla f(x)\| \le \epsilon_g$ and $\nabla^2 f(x) \succeq -\epsilon_H I$.
- Best methods: Second-order methods, deterministic variations on Newton's iteration involving Hessians.

Gradient Descent	(1)	$\mathcal{O}\left(\epsilon_{\sigma}^{-2}\right)$		
+ Negative Curvature	2	$\mathcal{O}\left(\max\{\hat{\epsilon}_{g}^{-2}, \hat{\epsilon}_{H}^{-3}\}\right)$		
Trust Region	1	$\mathcal{O}\left(\epsilon_{\varrho}^{-2}\right)$		
	2	$\mathcal{O}\left(\max\{\epsilon_{g}^{-2}\epsilon_{H}^{-1},\epsilon_{H}^{-3}\}\right)$		
Cubic Regularization	1	$\mathcal{O}\left(\epsilon_{g}^{-3/2} ight)$		
	2	$\mathcal{O}\left(\max\{\epsilon_{g}^{-3/2},\epsilon_{H}^{-3}\}\right)$		

Complexity results (2)

Influenced by convex optimization/learning (2016-)

- <u>Cost measure</u>: gradient evaluations+Hessian-vector products ⇒ main iteration cost.
- Two types of guarantees:
- <u>Best methods</u>: developed from accelerated gradient (better than gradient descent on convex problems).

Complexity results (2)

Influenced by convex optimization/learning (2016-)

- <u>Cost measure</u>: gradient evaluations+Hessian-vector products ⇒ main iteration cost.
- Two types of guarantees:

 - $\|\nabla f(x)\| \le \epsilon_g \text{ and } \nabla^2 f(x) \succeq -\epsilon_g^{1/2} I.$
- Best methods: developed from accelerated gradient (better than gradient descent on convex problems).

Gradient descent + random perturbation	1,2	$\tilde{\mathcal{O}}\left(\epsilon_{\mathbf{g}}^{-2}\right)$	(High probability)
Accelerated gradient + random perturbation	1,2	$ ilde{\mathcal{O}}(\epsilon_{g}^{-7/4})$	(High probability)
Accelerated gradient with nonconvexity detection	1	$ ilde{\mathcal{O}}(\epsilon_{g}^{-7/4})$	(Deterministic)

What we want to do

Newton's method

$$x_{k+1} = x_k + \alpha_k d_k, \quad \nabla^2 f(x_k) d_k = -\nabla f(x_k)$$

- α_k computed via line search for global convergence;
- Large-scale implementation: Conjugate Gradient (CG);
- Works well when $\nabla^2 f(x_k) > 0$.

What we want to do

Newton's method

$$x_{k+1} = x_k + \alpha_k d_k, \quad \nabla^2 f(x_k) d_k = -\nabla f(x_k)$$

- α_k computed via line search for global convergence;
- Large-scale implementation: Conjugate Gradient (CG);
- Works well when $\nabla^2 f(x_k) \succ 0$.

Newton's method in nonconvex case

Big issue: $\nabla^2 f(x_k) \not\succ 0!$

- Still used in practice ⇒ Can we explain it?
- Efficient ⇒ Can we get complexity guarantees?

Outline

- Complexity and nonconvexity
- Conjugate gradient and nonconvex quadratics
- 3 Newton-CG framework
- 4 Numerics

Nonconvex quadratics

$$\min_{y \in \mathbb{R}^n} \frac{1}{2} y^{\mathrm{T}} H y + g^{\mathrm{T}} y$$

with $H = H^{T} \in \mathbb{R}^{n \times n}$ not necessarily positive definite, $g \in \mathbb{R}^{n}$.

Regularized variants

Trust region: $\min_{y \in \mathbb{R}^n} \frac{1}{2} y^{\mathrm{T}} H y + g^{\mathrm{T}} y$ s.t. $\|y\| \le \delta$

Cubic regularization: $\min_{y \in \mathbb{R}^n} g^{\mathrm{T}} y + \frac{1}{2} y^{\mathrm{T}} H y + \frac{\sigma}{3} ||y||^3$.

Nonconvex quadratics

$$\min_{y \in \mathbb{R}^n} \frac{1}{2} y^{\mathrm{T}} H y + g^{\mathrm{T}} y$$

with $H = H^{T} \in \mathbb{R}^{n \times n}$ not necessarily positive definite, $g \in \mathbb{R}^{n}$.

Regularized variants

Trust region: $\min_{y \in \mathbb{R}^n} \frac{1}{2} y^{\mathrm{T}} H y + g^{\mathrm{T}} y$ s.t. $\|y\| \le \delta$

Cubic regularization: $\min_{y \in \mathbb{R}^n} g^{\mathrm{T}} y + \frac{1}{2} y^{\mathrm{T}} H y + \frac{\sigma}{3} \|y\|^3$.

Lanczos-type approaches (Carmon & Duchi 2020, Gould & Simoncini 2020)

- \bullet Solve the problem over the Krylov subspace $\{g, Hg, H^2g, \dots, H^{j-1}g\};$
- Can fail to compute the solution (hard case, occurs when $H \not\succeq 0$);
- But complexity guarantees hold in probability!

Nonconvex quadratics in nonconvex optimization

$$\min_{x \in \mathbb{R}^n} f(x) \Rightarrow \min_{y \in \mathbb{R}^n} \frac{1}{2} y^{\mathrm{T}} \nabla^2 f(x_k) y + y^{\mathrm{T}} \nabla f(x_k)$$

- Do we really want to solve the quadratic problem?
- We actually want to compute a step to go from x_k to x_{k+1} !
- If the quadratic is unbounded $(\nabla^2 f(x_k) \not\succeq 0)$, negative curvature directions can be used.

Nonconvex quadratics in nonconvex optimization

$$\min_{x \in \mathbb{R}^n} f(x) \Rightarrow \min_{y \in \mathbb{R}^n} \frac{1}{2} y^{\mathrm{T}} \nabla^2 f(x_k) y + y^{\mathrm{T}} \nabla f(x_k)$$

- Do we really want to solve the quadratic problem?
- We actually want to compute a step to go from x_k to x_{k+1} !
- If the quadratic is unbounded $(\nabla^2 f(x_k) \not\succeq 0)$, negative curvature directions can be used.

Our subproblem

Given a quadratic $q: y \in \mathbb{R}^n \mapsto \frac{1}{2}y^{\mathrm{T}}Hy + g^Ty$,

- \bigcirc Find an approximate minimum of q...
- \bigcirc OR compute a direction of negative curvature for H.

Can we do that using conjugate gradient?

The conjugate gradient method

Goal: Solve Hy = -g, where $H = H^{T} > 0$.

Conjugate gradient method

Init: Set
$$y_0 = 0_{\mathbb{R}^n}$$
, $r_0 = g$, $p_0 = -g$, $j = 0$, $\xi \ge 0$.

For j = 0, 1, 2, ...

- Compute $y_{j+1} = y_j + \frac{\|r_j\|^2}{p_j^T H p_j} p_j$ and $r_{j+1} = H y_{j+1} + g$.
- Set $p_{j+1} = -r_{j+1} + \frac{\|r_{j+1}\|^2}{\|r_i\|^2} p_j$.
- Set j = j + 1; terminate if $||r_j|| \le \xi ||r_0||$.
- Only requires $v \mapsto Hv$ ("matrix-free");
- Terminates in at most *n* iterations when H > 0.

Complexity of conjugate gradient

Recall: $r_j = Hy_j + g$.

Convergence rate of CG

If $\epsilon_H I \prec H \preceq MI$,

$$\|r_j\|^2 \leq 4\kappa \left(1 - \frac{2}{\sqrt{\kappa} + 1}\right)^{2j} \|r_0\|^2, \quad \kappa = \frac{M}{\epsilon_H}.$$

Conjugate gradient for Hy = -g

If $\epsilon_H I \prec H \preceq MI$, $||Hy_J + g|| \leq \xi ||g||$ after at most

$$J = \min \left\{ n, \mathcal{O}(\kappa^{1/2} \ln(\kappa/\xi)) \right\} = \min \left\{ n, \tilde{\mathcal{O}}(\epsilon_H^{-1/2}) \right\}$$

iterations/matrix-vector products.

CG in nonconvex optimization

What can go wrong?

- We'll consider Hy = -g with possibly $H \not\succ 0$;
- Two issues:
 - Presence of negative curvature;
 - Loss of guarantees for CG steps.

How to make it right?

- Regularization;
- Use intrinsic nonconvexity detection properties of CG.

Algorithm

Init: Set
$$y_0 = 0_{\mathbb{R}^n}, \ r_0 = g, \ p_0 = -g, \ j = 0, \xi \ge 0.$$

For j = 0, 1, ...

- Compute $y_{j+1} = y_j + \frac{\|r_j\|^2}{p_j^T H p_j} p_j$, $r_{j+1} = H y_{j+1} + g$ and p_{j+1} .
- Set j = j + 1; terminate if $||r_j|| \le \xi ||r_0||$.

Algorithm

Init: Set $y_0 = 0_{\mathbb{R}^n}, \ r_0 = g, \ p_0 = -g, \ j = 0, \xi \ge 0.$

For j = 0, 1, ...

- Compute $y_{j+1} = y_j + \frac{\|r_j\|^2}{p_j^T H p_j} p_j$, $r_{j+1} = H y_{j+1} + g$ and p_{j+1} .
- Set j = j + 1; terminate if $||r_j|| \le \xi ||r_0||$.

Convergence rate of CG (gives complexity)

If
$$\epsilon_H I \prec H \preceq MI$$
,

$$\|r_j\|^2 \leq 4\kappa \left(1 - \frac{2}{\sqrt{\kappa} + 1}\right)^{2j} \|r_0\|^2, \quad \kappa = \frac{M}{\epsilon_H}.$$

Algorithm assuming $\epsilon_H I \prec H \preceq MI$

Init: Set
$$y_0 = 0_{\mathbb{R}^n}, \ r_0 = g, \ p_0 = -g, \ j = 0, \xi \ge 0.$$

While
$$p_j^{\top} H p_j > \epsilon_H \|p_j\|^2$$
 and $\|r_j\|^2 \le 4\kappa \left(1 - \frac{2}{\sqrt{\kappa} + 1}\right)^{2j} \|r_0\|^2$

- Compute $y_{j+1} = y_j + \frac{\|r_j\|^2}{p_j^T H p_j} p_j$, $r_{j+1} = H y_{j+1} + g$ and p_{j+1} .
- Set j = j + 1; terminate if $||r_j|| \le \xi ||r_0||$.

Convergence rate of CG (gives complexity)

If
$$\epsilon_H I \prec H \prec MI$$
,

$$\|r_j\|^2 \leq 4\kappa \left(1 - \frac{2}{\sqrt{\kappa} + 1}\right)^{2j} \|r_0\|^2, \quad \kappa = \frac{M}{\epsilon_H}.$$

Algorithm assuming $\epsilon_H I \prec H \preceq MI$

Init: Set
$$y_0 = 0_{\mathbb{R}^n}, \ r_0 = g, \ p_0 = -g, \ j = 0, \xi \ge 0.$$

While
$$p_j^{\top} H p_j > \epsilon_H \|p_j\|^2$$
 and $\|r_j\|^2 \le 4\kappa \left(1 - \frac{2}{\sqrt{\kappa} + 1}\right)^{2j} \|r_0\|^2$

- Compute $y_{j+1} = y_j + \frac{\|r_j\|^2}{p_j^T H p_j} p_j$, $r_{j+1} = H y_{j+1} + g$ and p_{j+1} .
- Set j = j + 1; terminate if $||r_j|| \le \xi ||r_0||$.

Convergence rate of CG (gives complexity)

If
$$\epsilon_H I \prec H \prec MI$$
,

$$\|r_j\|^2 \leq 4\kappa \left(1 - \frac{2}{\sqrt{\kappa} + 1}\right)^{2j} \|r_0\|^2, \quad \kappa = \frac{M}{\epsilon_H}.$$

What if $H \not\succ \epsilon_H I$?

Conjugate gradient for possibly indefinite systems

Capped Conjugate Gradient

Init: Set
$$y_0 = 0_{\mathbb{R}^n}$$
, $r_0 = g$, $p_0 = -g$, $j = 0, \xi \ge 0$.
While $p_j^\top H p_j > \epsilon_H \|p_j\|^2$ and $\|r_j\|^2 \le T \tau^j \|r_0\|^2$

- Compute $y_{j+1} = y_j + \frac{\|r_j\|^2}{p_j^T H p_j} p_j$, $r_{j+1} = H y_{j+1} + g$ and p_{j+1} .
- Set j = j + 1; terminate if $||r_j|| \le \xi ||r_0||$.

Conjugate gradient for possibly indefinite systems

Capped Conjugate Gradient

Init: Set $y_0 = 0_{\mathbb{R}^n}$, $r_0 = g$, $p_0 = -g$, $j = 0, \xi \ge 0$. While $p_j^\top H p_j > \epsilon_H \|p_j\|^2$ and $\|r_j\|^2 \le T \tau^j \|r_0\|^2$

- Compute $y_{j+1} = y_j + \frac{\|r_j\|^2}{p_j^T H p_j} p_j$, $r_{j+1} = H y_{j+1} + g$ and p_{j+1} .
- Set j = j + 1; terminate if $||r_j|| \le \xi ||r_0||$.

Properties of Capped CG

If $H \prec MI$:

• As long as r_j is computed:

$$\|r_j\|^2 \le T\tau^j \|r_0\|^2, \qquad T = 16\kappa^5, \ \tau = \frac{\sqrt{\kappa}}{\sqrt{\kappa}+1}, \kappa = \frac{M}{\epsilon_H}.$$

• The method runs at most $\hat{J} = \min \left\{ n, \tilde{\mathcal{O}} \left(\epsilon_H^{-1/2} \right) \right\}$ iterations ("cap") before terminating or violating one condition.

Main result - Violating conditions in Capped CG

Theorem (Royer, O'Neill, Wright - 2020)

If Capped CG applied to Hd=-g stops after $J\leq \hat{J}$ iterations with $\|r_j\|>\xi\|r_0\|$, then

- $\bullet \quad \text{Either } p_J^\top H p_J \le \epsilon_H \|p_J\|^2,$
- ② Or $||r_J||^2 > T\tau^J ||r_0||^2$,

Main result - Violating conditions in Capped CG

Theorem (Royer, O'Neill, Wright - 2020)

If Capped CG applied to Hd=-g stops after $J \leq \hat{J}$ iterations with $\|r_i\| > \xi \|r_0\|$, then

- $\bullet \quad \text{Either } p_J^\top H p_J \leq \epsilon_H \|p_J\|^2,$
- ② Or $||r_J||^2 > T\tau^J ||r_0||^2$, y_{J+1} can be computed and there exists $j \in \{0, \dots, J-1\}$ such

$$(y_{J+1}-y_j)^{\top}H(y_{J+1}-y_j) \leq \epsilon_H ||y_{J+1}-y_j||^2.$$

Main result - Violating conditions in Capped CG

Theorem (Royer, O'Neill, Wright - 2020)

If Capped CG applied to Hd=-g stops after $J\leq \hat{J}$ iterations with $\|r_j\|>\xi\|r_0\|$, then

- $\bullet \quad \text{Either } p_J^\top H p_J \le \epsilon_H \|p_J\|^2,$
- ② Or $||r_J||^2 > T\tau^J ||r_0||^2$, y_{J+1} can be computed and there exists $j \in \{0, \dots, J-1\}$ such

$$(y_{J+1}-y_j)^{\top}H(y_{J+1}-y_j) \leq \epsilon_H ||y_{J+1}-y_j||^2.$$

What it means

- Can run (Capped) CG without computing $\lambda_{min}(H)$ first!
- Either we converge as if we had $H > \epsilon_H I...$
- ...or we find a direction of curvature $< \epsilon_H!$

CG and minimum eigenvalues

Estimating eigenvalues

Task: Given $H = H^{\top}$, find d such that $d^{\top}Hd \leq 0$ if $H \not\vdash -\epsilon_H I$.

CG and minimum eigenvalues

Estimating eigenvalues

Task: Given $H = H^{\top}$, find d such that $d^{\top}Hd \leq 0$ if $H \not\vdash -\epsilon_H I$.

- Even Capped CG does not necessarily detect negative curvature!
- We would like to know whether $\lambda_{\min}(\nabla^2 f(x)) > -\epsilon_H$ (for complexity).

CG and minimum eigenvalues

Estimating eigenvalues

Task: Given $H = H^{\top}$, find d such that $d^{\top}Hd \leq 0$ if $H \not\vdash -\epsilon_H I$.

- Even Capped CG does not necessarily detect negative curvature!
- We would like to know whether $\lambda_{\min}(\nabla^2 f(x)) > -\epsilon_H$ (for complexity).

Approach

Run CG on a linear system with a random right-hand side uniformly distributed on the unit sphere.

- Guarantees approximation of $\lambda_{\min}(H)$ with high probability (Kuczyński and Woźniakowski 1992) for Lanczos' method;
- Lanczos and CG generate the same Krylov subspaces!

CG and minimum eigenvalues (2)

Theorem (Royer, O'Neill, Wright 2020)

Let $H \in \mathbb{R}^{n \times n}$ symmetric with $||H|| \leq M$, $\delta \in [0,1)$, and CG be applied to

$$(H + \frac{\epsilon_H}{2}I)$$
 $y = b$ with $b \sim \mathcal{U}(\mathbb{S}^{n-1})$.

Then, after

$$J = \min \left\{ n, \left\lceil \frac{\ln(3n/\delta^2)}{2} \sqrt{\frac{M}{\epsilon_H}} \right\rceil \right\} = \min \left\{ n, \tilde{\mathcal{O}}(\epsilon_H^{-1/2}) \right\}.$$

iterations,

- Either CG finds negative curvature explicitly: $p_J^T \left(H + \frac{\epsilon_H}{2}I\right) p_J \leq 0$;
- Or it certifies with probability at least 1δ that $H \succ -\epsilon_H I$.

Outline

- Complexity and nonconvexity
- 2 Conjugate gradient and nonconvex quadratics
- Newton-CG framework
- 4 Numerics

Line-Search Newton-Capped CG

Inputs: $x_0 \in \mathbb{R}^n$, $\theta, \xi \in (0,1)$, $\eta > 0, \epsilon_g, \epsilon_H \in (0,1), \delta \in [0,1)$. For k=0,1,2,...

• If $\|\nabla f(x_k)\| > \epsilon_g$, compute d_k via Capped CG applied to

$$(\nabla^2 f(x_k) + 2\epsilon_H I) d = -\nabla f(x_k).$$

- **2** Otherwise, use CG as an eigenvalue oracle with probability δ . If it certifies that $\nabla^2 f(x_k) \succ -\epsilon_H I$ terminate, otherwise use its output as d_k .
- **③** Perform a backtracking line search to compute $\alpha_k = \theta^{j_k}$ such that

$$f(x_k + \alpha_k d_k) < f(x_k) - \frac{\eta}{6} \alpha_k^3 ||d_k||^3.$$

3 Set $x_{k+1} = x_k + \alpha_k d_k$.

Capped Conjugate Gradient for Newton steps

Key result

Apply Capped CG to

$$(\nabla^2 f(x_k) + \frac{2\epsilon_H I}{2}) d = -\nabla f(x_k).$$

Then, after at most $\min\left\{n, \tilde{\mathcal{O}}(\epsilon_H^{-1/2})\right\}$ iterations/Hessian-vector products, the methods outputs

 $oldsymbol{0}$ a regularized Newton step d_k with

$$\left\| \left(\nabla^2 f(x_k) + 2\epsilon_H I \right) d_k + \nabla f(x_k) \right\| \leq \xi \|\nabla f(x_k)\|;$$

② Or a direction of curvature $\leq \epsilon_H$ for $\nabla^2 f(x_k) + 2\epsilon_H I$.

Capped Conjugate Gradient for Newton steps

Key result

Apply Capped CG to

$$(\nabla^2 f(x_k) + \frac{2\epsilon_H I}{2}) d = -\nabla f(x_k).$$

Then, after at most $\min\left\{n, \tilde{\mathcal{O}}(\epsilon_H^{-1/2})\right\}$ iterations/Hessian-vector products, the methods outputs

 $oldsymbol{0}$ a regularized Newton step d_k with

$$\left\| \left(\nabla^2 f(x_k) + 2\epsilon_H I \right) d_k + \nabla f(x_k) \right\| \leq \xi \|\nabla f(x_k)\|;$$

② Or a direction of negative curvature $\leq -\epsilon_H$ for $\nabla^2 f(x_k)!$

CG as minimum eigenvalue oracle

For the matrix $\nabla^2 f(x_k)$, consider CG applied to

$$\left(\nabla^2 f(x_k) + \frac{\epsilon_H}{2}I\right)d = b$$
, with $b \sim \mathbb{S}^{n-1}$.

Then, for every $\delta \in [0,1)$, we obtain one of the two outcomes below:

- a direction of negative curvature $\leq -\epsilon_H/2$,
- 2 a certificate that $\nabla^2 f(x_k) \succ -\epsilon_H I$,

using at most $\tilde{\mathcal{O}}\left(\min\{n,\epsilon_H^{-1/2}\}\right)$ gradients/Hessian-vector products, with probability at least $1-\delta$.

Complexity results

First-order deterministic complexity

With $\epsilon_H = \epsilon_g^{1/2}$, reaches x_k such that $\|\nabla f(x_k)\| \le \epsilon_g$ in at most

- $\mathcal{O}(\epsilon_g^{-3/2})$ iterations;
- $\tilde{\mathcal{O}}\left(\min\{n\epsilon_g^{-3/2},\epsilon_g^{-7/4}\}\right)$ gradients/Hessian-vector products.

Complexity results

First-order deterministic complexity

With $\epsilon_H = \epsilon_g^{1/2}$, reaches x_k such that $\|\nabla f(x_k)\| \le \epsilon_g$ in at most

- $\mathcal{O}(\epsilon_g^{-3/2})$ iterations;
- $\tilde{\mathcal{O}}\left(\min\{n\epsilon_g^{-3/2},\epsilon_g^{-7/4}\}\right)$ gradients/Hessian-vector products.

Second-order high probability result

In addition to the results above, we also have

$$\lambda_{\min}(\nabla^2 f(x_k)) \ge -\epsilon_g^{1/2}$$

with probability at least $(1-\delta)^{\mathcal{O}(\epsilon_g^{-3/2})}$.

Complexity results

First-order deterministic complexity

With $\epsilon_H = \epsilon_g^{1/2}$, reaches x_k such that $\|\nabla f(x_k)\| \le \epsilon_g$ in at most

- $\mathcal{O}(\epsilon_g^{-3/2})$ iterations;
- $\tilde{\mathcal{O}}\left(\min\{n\epsilon_g^{-3/2},\epsilon_g^{-7/4}\}\right)$ gradients/Hessian-vector products.

Second-order high probability result

In addition to the results above, we also have

$$\lambda_{\min}(\nabla^2 f(x_k)) \ge -\epsilon_g^{1/2}$$

with probability at least $(1 - \delta)^{\mathcal{O}(\epsilon_g^{-3/2})}$.

- Sharp in terms of iteration complexity (Cartis, Gould, Toint 2018);
- Best know computational complexity for second-order methods.

Numerical illustration

Back to our low-rank matrix problem

$$\min_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} \frac{1}{2} \left\| P_{\Omega} (UV^{\top} - M) \right\|_{F}^{2},$$

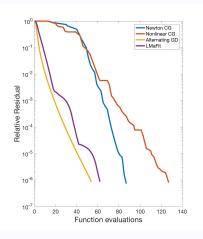
with $M \in \mathbb{R}^{m \times n}$, $|\Omega| \approx \{5\%, 15\%\} \times mn$.

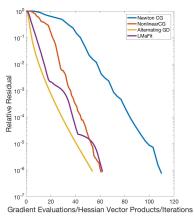
• Synthetic data: (n, m) = (500, 499).

Comparison

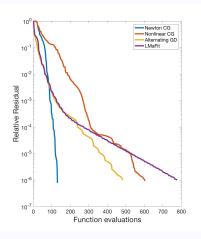
- First-order Newton-Capped CG;
- Nonlinear CG (Polak-Ribière);
- Dedicated solvers (Alternating methods):
 - Alternated gradient descent (Tanner and Wei 2016);
 - LMaFit (Wen et al. 2012).

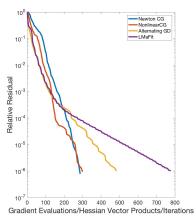
Matrix completion (synthetic data, rank 5)





Matrix completion (synthetic data, rank 15)





Conclusion

CG and nonconvex quadratics

- Can detect negative curvature in probability;
- Can detect nonconvexity!
- Keys: Regularization+Extra checks.

Newton-CG methods

- Best known complexity guarantees;
- Works with line search/trust region framework.
- + Extensions to constraints.
- + Specialization to matrix problems.

Follow-ups

Other practical variants

- Nonlinear CG;
- Other linear algebra routines (Newton-MR);
- Key: Dealing with negative curvature.

Better algorithms

- Can we do even better than $e^{-7/4}$?
- With something that we can implement?

Some references

- N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan and T. Ma, Finding approximate local minima faster than gradient descent, ACM-SIGACT Symposium on Theory of Computing (STOC), 2017.
- S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization, Mathematical Programming, 2003.
- Y. Carmon and J. C. Duchi, First-order methods for nonconvex quadratic minimization, SIAM Review, 2020.
- Y. Carmon, J. C. Duchi, O. Hinder and A. Sidford, Convex until proven guilty: dimension-free acceleration of gradient descent on non-convex functions, International Conference on Machine Learning (ICML), 2017.
- C. Cartis, N. I. M. Gould and Ph. L. Toint, On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization, SIAM Journal on Optimization, 2010.
- C. Cartis, N. I. M. Gould and Ph. L. Toint, Worst-case evaluation complexity and optimality of second-order methods for nonconvex smooth optimization, International Congress of Mathematicians (ICM), 2018.
- F. E. Curtis, D. P. Robinson, C. W. Royer and S. J. Wright, Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization, SIAM Journal on Optimization, 2021.
- R. Ge, C. Jin and Y. Zheng, No spurious local minima in nonconvex low rank problems: A unified geometric analysis, International Conference on Machine Learning (ICML), 2017.
- N.I.M. Gould and V. Simoncini, Error estimates for iterative algorithms for minimizing regularized quadratic subproblems, Optimization Methods and Software, 2019.
- J. Kuczyński and H. Woźniakowski, Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start, SIAM Journal on Matrix Analysis and Applications, 1992.
- C. W. Royer, M. O'Neill and S. J. Wright, A Newton-CG algorithm with complexity guarantees for smooth unconstrained optimization, Mathematical Programming, 2020.
- C. W. Royer and S. J. Wright, Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization, SIAM Journal on Optimization, 2018.

That's all!

Thank you for your attention!

clement.royer@dauphine.psl.eu

https://www.lamsade.dauphine.fr/~croyer/