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French people in Australia, summer of 2021

First victory in 31 years!
My first Australian talk in 31 years!
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Why I am here

Talk about complexity...

As opposed to global/local convergence results;
Goal: Equip popular practical schemes with such guarantees.

..and linear algebra...
Key to high-performance implementation;
Krylov methods+Randomization!

...to make a case for second-order methods.
Newton+Conjugate Gradient;
Nonconvex setting.
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Outline

1 Complexity and nonconvexity

2 Conjugate gradient and nonconvex quadratics

3 Newton-CG framework

4 Numerics
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Nonconvex optimization

Nonconvex ?
Many data science problems are convex: linear classification, logistic
regression,...
Nonconvex instances: Deep learning, matrix/tensor optimization,
robust statistics.

Optimization ?
Those problems often come with structure;
Guarantees to find global optima using second-order conditions;
Are high-order methods suitable then?
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General problem and definitions

min
x∈Rn

f (x)

with f ∈ C2(Rn) bounded below and nonconvex.

Definitions in smooth nonconvex minimization
First-order stationary point: ‖∇f (x)‖ = 0;
Second-order stationary point: ‖∇f (x)‖ = 0,∇2f (x) � 0.

If x does not satisfy these conditions, ∃ d such that
1 d>∇f (x) < 0: gradient-related direction.

and/or
2 d>∇2f (x)d < 0: negative curvature direction
⇒ specific to nonconvex problems.
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The matrix completion example

Matrix completion

min
X∈Rn×m,rank(X )≤r

∑
(i ,j)∈Ω

(Xij −Mij)
2 M ∈ Rn×m, Ω ⊂ [n]× [m].

Data: observed entries of M.
Assumption: The true matrix is of (low) rank r � min(m, n).

Nonconvex factored reformulation (Burer & Monteiro, ’03)

min
U∈Rn×r ,V∈Rm×r

∑
(i ,j)∈Ω

(
[U V>]ij −Mij

)2
,

(n + m)r variables (� nm).
Nonconvex in U and V ...
..but global minima can be characterized.
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A nice class of nonconvex problems

Nonconvex formulations for low-rank matrix problems (Ge et al. 2017)

min
U∈Rn×r ,V∈Rm×r

f (U V>) f smooth.

Second-order stationary points are global minima (or are close in
function value);
Strict saddle property: any first-order stationary point that is not a
local minimum possesses negative curvature.

Obj: efficient algorithms to reach second-order stationary points;
Efficiency measured by complexity.
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Complexity in nonconvex optimization

Setup: Sequence of points {xk} generated by an algorithm applied to
minx∈Rn f (x).

First-order complexity result

Given εg ∈ (0, 1):
Worst-case cost to obtain an εg -point xK such that ‖∇f (xK )‖ ≤ εg .
Focus: Dependency on εg .

Second-order complexity result

Given εg , εH ∈ (0, 1):
Worst-case cost to obtain an (εg , εH)-point xK such that

‖∇f (xK )‖ ≤ εg , λmin(∇2f (xK )) ≥ −εH .

Focus: Dependencies on εg , εH .
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Gradient descent

xk+1 = xk − αk∇f (xk), αk > 0

With appropriate stepsize choice,

f (xk)− f (xk+1) ≥ O
(
‖∇f (xk)‖2

)
‖∇f (xk)‖ ≤ εg in at most O

(
ε−2
g

)
iterations;

1 iteration=1 gradient evaluation.

Sharp result

Pathological examples (Cartis, Gould, Toint, 2010);
Bound holds for several other methods.
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Gradient descent+Negative curvature

1 If ‖∇f (xk)‖ > εg , set xk+1 = xk − αk∇f (xk) with αk > 0;
2 If ‖∇f (xk)‖ ≤ εg and λk = λmin(∇2f (xk)) < −εH , set

xk+1 = xk + αkdk where αk > 0 and

dT
k ∇2f (xk)dk = −λk‖dk‖2, dT

k ∇f (xk) ≤ 0.

With appropriate stepsize choice,

f (xk)− f (xk+1) ≥
{
O
(
‖∇f (xk)‖2

)
O
(
|λk |3

)
‖∇f (xk)‖ ≤ εg and ∇2f (xk) � −εH I in at most O

(
max{ε−2

g , ε−3
H }
)

iterations;
1 iteration=1 gradient evaluation+1 eigenvalue/eigenvector
calculation.
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Complexity results

From nonconvex optimization (2006-)

Cost measure: Number of iterations (but those may be expensive);
Two types of guarantees:

1 ‖∇f (x)‖ ≤ εg ;
2 ‖∇f (x)‖ ≤ εg and ∇2f (x) � −εH I .

Best methods: Second-order methods, deterministic variations on
Newton’s iteration involving Hessians.

Gradient Descent 1○ O
(
ε−2
g

)
+ Negative Curvature 2○ O

(
max{ε−2

g , ε−3
H }
)

Trust Region 1○ O
(
ε−2
g

)
2○ O

(
max{ε−2

g ε−1
H , ε−3

H }
)

Cubic Regularization 1○ O
(
ε
−3/2
g

)
2○ O

(
max{ε−3/2

g , ε−3
H }
)
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Complexity results (2)

Influenced by convex optimization/learning (2016-)

Cost measure: gradient evaluations+Hessian-vector products ⇒ main
iteration cost.
Two types of guarantees:

1 ‖∇f (x)‖ ≤ εg
2 ‖∇f (x)‖ ≤ εg and ∇2f (x) � −ε1/2g I .

Best methods: developed from accelerated gradient (better than
gradient descent on convex problems).

Gradient descent +
random perturbation

1○, 2○ Õ
(
ε−2
g

)
(High probability)

Accelerated gradient
+ random perturbation

1○, 2○ Õ(ε
−7/4
g ) (High probability)

Accelerated gradient
with nonconvexity detection

1○ Õ(ε
−7/4
g ) (Deterministic)
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What we want to do

Newton’s method

xk+1 = xk + αkdk , ∇2f (xk)dk = −∇f (xk)

αk computed via line search for global convergence;
Large-scale implementation: Conjugate Gradient (CG);
Works well when ∇2f (xk) � 0.

Newton’s method in nonconvex case

Big issue: ∇2f (xk) 6� 0!
Still used in practice ⇒ Can we explain it?
Efficient ⇒ Can we get complexity guarantees?
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Nonconvex quadratics

min
y∈Rn

1
2
yTHy + gTy

with H = HT ∈ Rn×n not necessarily positive definite, g ∈ Rn.

Regularized variants

Trust region: miny∈Rn
1
2y

THy + gTy s.t. ‖y‖ ≤ δ

Cubic regularization: miny∈Rn gTy + 1
2y

THy + σ
3 ‖y‖

3.

Lanczos-type approaches (Carmon & Duchi 2020, Gould & Simoncini 2020)

Solve the problem over the Krylov subspace {g ,Hg ,H2g , . . . ,H j−1g};
Can fail to compute the solution (hard case, occurs when H 6� 0);
But complexity guarantees hold in probability!
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Nonconvex quadratics in nonconvex optimization

min
x∈Rn

f (x) ⇒ min
y∈Rn

1
2
yT∇2f (xk)y + yT∇f (xk)

Do we really want to solve the quadratic problem?
We actually want to compute a step to go from xk to xk+1!
If the quadratic is unbounded (∇2f (xk) 6� 0), negative curvature
directions can be used.

Our subproblem

Given a quadratic q : y ∈ Rn 7→ 1
2y

THy + gT y ,
1 Find an approximate minimum of q...
2 OR compute a direction of negative curvature for H.

Can we do that using conjugate gradient?
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The conjugate gradient method

Goal: Solve Hy = −g , where H = HT � 0.

Conjugate gradient method
Init: Set y0 = 0Rn , r0 = g , p0 = −g , j = 0, ξ ≥ 0.
For j = 0, 1, 2, ...

Compute yj+1 = yj +
‖rj‖2
pT
j Hpj

pj and rj+1 = Hyj+1 + g .

Set pj+1 = −rj+1 +
‖rj+1‖2
‖rj‖2 pj .

Set j = j + 1; terminate if ‖rj‖ ≤ ξ‖r0‖.

Only requires v 7→ Hv (“matrix-free”);
Terminates in at most n iterations when H � 0.
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Complexity of conjugate gradient

Recall: rj = Hyj + g .

Convergence rate of CG
If εH I ≺ H � MI ,

‖rj‖2 ≤ 4κ
(
1− 2√

κ+ 1

)2j

‖r0‖2, κ = M
εH
.

Conjugate gradient for Hy = −g
If εH I ≺ H � MI , ‖HyJ + g‖ ≤ ξ‖g‖ after at most

J = min
{
n,O(κ1/2 ln(κ/ξ))

}
= min

{
n, Õ(ε

−1/2
H )

}
iterations/matrix-vector products.
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CG in nonconvex optimization

What can go wrong?
We’ll consider Hy = −g with possibly H 6� 0;
Two issues:

Presence of negative curvature;
Loss of guarantees for CG steps.

How to make it right?
Regularization;
Use intrinsic nonconvexity detection properties of CG.
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Conjugate gradient for Hy = −g

Algorithm

assuming εH I ≺ H � MI

Init: Set y0 = 0Rn , r0 = g , p0 = −g , j = 0, ξ ≥ 0.

For j = 0, 1, . . .

and ‖rj‖2 ≤ 4κ
(
1− 2√

κ+1

)2j
‖r0‖2

Compute yj+1 = yj +
‖rj‖2
pT
j Hpj

pj , rj+1 = Hyj+1 + g and pj+1.

Set j = j + 1; terminate if ‖rj‖ ≤ ξ‖r0‖.

Convergence rate of CG (gives complexity)

If εH I ≺ H � MI ,

‖rj‖2 ≤ 4κ
(
1− 2√

κ+ 1

)2j

‖r0‖2, κ = M
εH
.

What if H 6� εH I?
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Conjugate gradient for possibly indefinite systems

Capped Conjugate Gradient
Init: Set y0 = 0Rn , r0 = g , p0 = −g , j = 0, ξ ≥ 0.
While p>j Hpj > εH‖pj‖2 and ‖rj‖2 ≤ T τ j‖r0‖2

Compute yj+1 = yj +
‖rj‖2
pT
j Hpj

pj , rj+1 = Hyj+1 + g and pj+1.

Set j = j + 1; terminate if ‖rj‖ ≤ ξ‖r0‖.

Properties of Capped CG
If H � MI :

As long as rj is computed:

‖rj‖2 ≤ T τ j‖r0‖2, T = 16κ5, τ =
√
κ√
κ+1 , κ = M

εH
.

The method runs at most Ĵ = min
{
n, Õ

(
ε
−1/2
H

)}
iterations (“cap")

before terminating or violating one condition.
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The method runs at most Ĵ = min
{
n, Õ

(
ε
−1/2
H

)}
iterations (“cap")

before terminating or violating one condition.
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Main result - Violating conditions in Capped CG

Theorem (Royer, O’Neill, Wright - 2020)

If Capped CG applied to Hd = −g stops after J ≤ Ĵ iterations
with ‖rj‖ > ξ‖r0‖, then

1 Either p>J HpJ ≤ εH‖pJ‖2,
2 Or ‖rJ‖2 > T τ J‖r0‖2,

yJ+1 can be computed and there exists
j ∈ {0, . . . , J − 1} such

(yJ+1 − yj)
>H(yJ+1 − yj) ≤ εH‖yJ+1 − yj‖2.

What it means
Can run (Capped) CG without computing λmin(H) first!
Either we converge as if we had H � εH I ...
...or we find a direction of curvature ≤ εH !
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CG and minimum eigenvalues

Estimating eigenvalues

Task: Given H = H>, find d such that d>Hd ≤ 0 if H 6� −εH I .

Even Capped CG does not necessarily detect negative curvature!
We would like to know whether λmin(∇2f (x)) > −εH (for complexity).

Approach
Run CG on a linear system with a random right-hand side uniformly
distributed on the unit sphere.

Guarantees approximation of λmin(H) with high probability (Kuczyński
and Woźniakowski 1992) for Lanczos’ method;
Lanczos and CG generate the same Krylov subspaces!
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CG and minimum eigenvalues (2)

Theorem (Royer, O’Neill, Wright 2020)

Let H ∈ Rn×n symmetric with ‖H‖ ≤ M, δ ∈ [0, 1), and CG be applied to(
H + εH

2 I
)
y = b with b ∼ U(Sn−1).

Then, after

J = min

{
n,

⌈
ln(3n/δ2)

2

√
M

εH

⌉}
= min

{
n, Õ(ε

−1/2
H )

}
.

iterations,
Either CG finds negative curvature explicitly: pT

J

(
H + εH

2 I
)
pJ ≤ 0;

Or it certifies with probability at least 1− δ that H � −εH I .
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Outline

1 Complexity and nonconvexity

2 Conjugate gradient and nonconvex quadratics

3 Newton-CG framework

4 Numerics
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Line-Search Newton-Capped CG

Inputs: x0 ∈ Rn, θ, ξ ∈ (0, 1), η > 0, εg , εH ∈ (0, 1), δ ∈ [0, 1).
For k=0, 1, 2, . . .

1 If ‖∇f (xk)‖ > εg , compute dk via Capped CG applied to(
∇2f (xk) + 2εH I

)
d = −∇f (xk).

2 Otherwise, use CG as an eigenvalue oracle with probability δ. If it
certifies that ∇2f (xk) � −εH I terminate, otherwise use its output as
dk .

3 Perform a backtracking line search to compute αk = θjk such that

f (xk + αkdk) < f (xk)− η

6
α3
k‖dk‖3.

4 Set xk+1 = xk + αk dk .
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Capped Conjugate Gradient for Newton steps

Key result
Apply Capped CG to(

∇2f (xk) + 2εH I
)
d = −∇f (xk).

Then, after at most min
{
n, Õ(ε

−1/2
H )

}
iterations/Hessian-vector

products, the methods outputs
1 a regularized Newton step dk with∥∥(∇2f (xk) + 2εH I )dk +∇f (xk)

∥∥ ≤ ξ‖∇f (xk)‖;

2 Or a direction of curvature ≤ εH for ∇2f (xk) + 2εH I .
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∥∥ ≤ ξ‖∇f (xk)‖;

2 Or a direction of negative curvature ≤ −εH for ∇2f (xk)!
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CG as minimum eigenvalue oracle

For the matrix ∇2f (xk), consider CG applied to(
∇2f (xk) +

εH
2
I
)
d = b, with b ∼ Sn−1.

Then, for every δ ∈ [0, 1), we obtain one of the two outcomes below:
1 a direction of negative curvature ≤ −εH/2,
2 a certificate that ∇2f (xk) � −εH I ,

using at most Õ
(

min{n, ε−1/2
H }

)
gradients/Hessian-vector products, with

probability at least 1− δ.
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Complexity results

First-order deterministic complexity

With εH = ε
1/2
g , reaches xk such that ‖∇f (xk)‖ ≤ εg in at most

O(ε
−3/2
g ) iterations;

Õ
(

min{nε−3/2
g , ε

−7/4
g }

)
gradients/Hessian-vector products.

Second-order high probability result
In addition to the results above, we also have

λmin(∇2f (xk)) ≥ −ε1/2g

with probability at least (1− δ)O(ε
−3/2
g ).

Sharp in terms of iteration complexity (Cartis, Gould, Toint 2018);
Best know computational complexity for second-order methods.

C. W. Royer Newton-Krylov optimization ANU 21 31



Complexity results

First-order deterministic complexity

With εH = ε
1/2
g , reaches xk such that ‖∇f (xk)‖ ≤ εg in at most

O(ε
−3/2
g ) iterations;

Õ
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Numerical illustration

Back to our low-rank matrix problem

min
U∈Rm×r ,V∈Rn×r

1
2

∥∥∥PΩ(UV> −M)
∥∥∥2

F
,

with M ∈ Rm×n, |Ω| ≈ {5%, 15%} ×mn.
Synthetic data: (n,m) = (500, 499).

Comparison
First-order Newton-Capped CG;
Nonlinear CG (Polak-Ribière);
Dedicated solvers (Alternating methods):

Alternated gradient descent (Tanner and Wei 2016);
LMaFit (Wen et al. 2012).
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Matrix completion (synthetic data, rank 5)
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Matrix completion (synthetic data, rank 15)
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Conclusion

CG and nonconvex quadratics
Can detect negative curvature in probability;
Can detect nonconvexity!
Keys: Regularization+Extra checks.

Newton-CG methods
Best known complexity guarantees;
Works with line search/trust region framework.

+ Extensions to constraints.
+ Specialization to matrix problems.
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Follow-ups

Other practical variants
Nonlinear CG;
Other linear algebra routines (Newton-MR);
Key: Dealing with negative curvature.

Better algorithms

Can we do even better than ε−7/4?
With something that we can implement?
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That’s all!

Thank you for your attention!
clement.royer@dauphine.psl.eu

https://www.lamsade.dauphine.fr/∼croyer/

C. W. Royer Newton-Krylov optimization ANU 21 38

https://www.lamsade.dauphine.fr/~croyer/

	Introduction
	Complexity and nonconvexity
	Nonconvexity in data science
	Complexity bounds

	Conjugate gradient and nonconvex quadratics
	Capped Conjugate Gradient
	Minimum eigenvalue oracles

	Newton-CG framework
	Numerics
	Conclusion

