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French people in Australia, summer of 2021

@ My first Australian talk in 31 years!

@ First victory in 31 years! J
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Why | am here

Talk about complexity...

@ As opposed to global/local convergence results;

@ Goal: Equip popular practical schemes with such guarantees.

..and linear algebra...

o Key to high-performance implementation;

@ Krylov methods+Randomization!

...to make a case for second-order methods.

@ Newton+Conjugate Gradient;

@ Nonconvex setting.
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@ Complexity and nonconvexity
© Conjugate gradient and nonconvex quadratics
© Newton-CG framework

e Numerics
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@ Complexity and nonconvexity

C. W. Royer Newton-Krylov optimization ANU 21 5



Nonconvex optimization

@ Many data science problems are convex: linear classification, logistic
regression,...

e Nonconvex instances: Deep learning, matrix/tensor optimization,
robust statistics.
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Nonconvex optimization

Nonconvex ?

@ Many data science problems are convex: linear classification, logistic
regression,...

e Nonconvex instances: Deep learning, matrix/tensor optimization,
robust statistics.

Optimization 7

@ Those problems often come with structure;

e Guarantees to find global optima using second-order conditions;

@ Are high-order methods suitable then?
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General problem and definitions

in f
2 f0

with f € C2(R") bounded below and nonconvex.
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General problem and definitions

in f
2 f0

with f € C2(R") bounded below and nonconvex.

Definitions in smooth nonconvex minimization

o First-order stationary point: ||Vf(x)| = 0;
@ Second-order stationary point: |Vf(x)| = 0, V2f(x) = 0.
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General problem and definitions

in f
2 f0

with f € C2(R") bounded below and nonconvex.

Definitions in smooth nonconvex minimization

o First-order stationary point. ||Vf(x)| = 0;
@ Second-order stationary point: |Vf(x)| = 0, V2f(x) = 0.
If x does not satisfy these conditions, 3 d such that

@ d'Vf(x) < 0: gradient-related direction.
and/or

@ d'V?f(x)d < 0: negative curvature direction
= specific to nonconvex problems.
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The matrix completion example

i Xii — Mj; 2 M e Rnxm’ QcC .
XeRnxnpllzﬂlk(X)Sr(i%;Q( J ) [} > [m}

o Data: observed entries of M.

@ Assumption: The true matrix is of (low) rank r < min(m, n).
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The matrix completion example

i Xii — Mj; 2 M e Rnxm’ QcC .
XeRnx'p}I;;k(X)Sr(i%;Q( J ) [} > [m}

o Data: observed entries of M.

@ Assumption: The true matrix is of (low) rank r < min(m, n).

Nonconvex factored reformulation (Burer & Monteiro, '03)

min 5 (0VT) - M)

UER*r VeRmxr &
(ig)eq

@ (n+ m)r variables (< nm).

@ Nonconvex in U and V...

@ ..but global minima can be characterized.
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A nice class of nonconvex problems

Nonconvex formulations for low-rank matrix problems (Ge et al. 2017)

min f(UVT") f smooth.
UERnxr7VERer
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A nice class of nonconvex problems

Nonconvex formulations for low-rank matrix problems (Ge et al. 2017)

min f(UVT") f smooth.
UERnxr7VERer

@ Second-order stationary points are global minima (or are close in
function value);

@ Strict saddle property: any first-order stationary point that is not a
local minimum possesses negative curvature.
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A nice class of nonconvex problems

Nonconvex formulations for low-rank matrix problems (Ge et al. 2017)

min f(UVT") f smooth.
UERnxr7VERer

@ Second-order stationary points are global minima (or are close in
function value);

@ Strict saddle property: any first-order stationary point that is not a
local minimum possesses negative curvature.

o Obj: efficient algorithms to reach second-order stationary points;

o Efficiency measured by complexity.
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Complexity in nonconvex optimization

Setup: Sequence of points {xx} generated by an algorithm applied to
min,egrn f(x).
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Complexity in nonconvex optimization

Setup: Sequence of points {xx} generated by an algorithm applied to
min,egrn f(x).

First-order complexity result

Given e € (0,1):
e Worst-case cost to obtain an eg-point xx such that || Vf(xk)|| < €.

@ Focus: Dependency on ¢,.
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Complexity in nonconvex optimization

Setup: Sequence of points {xx} generated by an algorithm applied to
min,egrn f(x).

First-order complexity result
Given e € (0,1):
e Worst-case cost to obtain an eg-point xx such that || Vf(xk)|| < €.

@ Focus: Dependency on ¢,.

Second-order complexity result

Given eg, ey € (0,1):

e Worst-case cost to obtain an (¢, €47)-point xx such that

||Vf(XK)H < €g /\min(v2f(xK)) > —€H.

e Focus: Dependencies on ¢, €y.
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Gradient descent

Xk4+1 = Xk — aka(xk), a >0
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Gradient descent

Xk4+1 = Xk — Oéka(Xk), ar >0

e With appropriate stepsize choice,
F(xi) = F(xit1) = O (IIVF(x)lI)

o [[VF(xc)|l < €g in at most O (e, ?) iterations;
o 1 iteration=1 gradient evaluation.
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Gradient descent

Xk4+1 = Xk — Ckaf(Xk), a >0

With appropriate stepsize choice,

F(xk) = F(xir1) = O (IVF(x)|)

IVF(x)|| < €g in at most O (e, ?) iterations;
1 iteration=1 gradient evaluation.

(]

Pathological examples (Cartis, Gould, Toint, 2010);

Bound holds for several other methods.

(]
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Gradient descent+Negative curvature

o If ||Vf(Xk)|| > €g, St Xpr1 = Xk — aka(Xk) with oy > 0;
QIf ||Vf(Xk)|| < €g and \, = )\min(v2f(xk)) < —e€y, set
Xk+1 = Xk + oucdy where o, > 0 and

dIV2(x)di = =Ml di||?,  dEfVF(x) < 0.
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Gradient descent+Negative curvature

Q If |[VF(xk)| > eg. set xk1 = xk — a VF(xi) with aye > 0;
QIf ||Vf(Xk)|| < €g and \, = /\min(v2f(xk)) < —€H, set
Xk+1 = Xk + oucdy where o, > 0 and

dIV2(x)di = =Ml di||?,  dEfVF(x) < 0.

e With appropriate stepsize choice,

CRCBE N

o |[VF(xk)|l < e€g and V3f(xx) = —epl in at most O (max{e?,e[f})
iterations;

@ 1 iteration=1 gradient evaluation+1 eigenvalue/eigenvector
calculation.
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Complexity results

From nonconvex optimization (2006-)

@ Cost measure: Number of iterations (but those may be expensive);
@ Two types of guarantees:
Q V(X < ;i
@ |VF(x)| < ¢ and V2f(x) = —epl.
@ Best methods: Second-order methods, deterministic variations on
Newton's iteration involving Hessians.
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Complexity results

From nonconvex optimization (2006-)

@ Cost measure: Number of iterations (but those may be expensive);
@ Two types of guarantees:
Q V(X < ;i
@ |VF(x)| < ¢ and V2f(x) = —epl.
@ Best methods: Second-order methods, deterministic variations on
Newton's iteration involving Hessians.

Gradient Descent @ 0 (e;?)
+ Negative Curvature | @ O (max{e; 2, 1’}
Trust Region @ O (e?
@ O (max{e; ey € })
Cubic Regularization | D @) (6;3/2
@ o (max{eg / ,5;3})
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Complexity results (2)

Influenced by convex optimization/learning (2016-)

o Cost measure: gradient evaluations+Hessian-vector products = main
iteration cost.

@ Two types of guarantees:
Q V(X < e
Q |VF(x)|| < e and V2F(x) = —cp/*1.
@ Best methods: developed from accelerated gradient (better than
gradient descent on convex problems).
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Complexity results (2)

Influenced by convex optimization/learning (2016-)

o Cost measure: gradient evaluations+Hessian-vector products = main
iteration cost.
@ Two types of guarantees:
Q V(X < e
Q |VF(x)|| < e and V2F(x) = —cp/*1.
@ Best methods: developed from accelerated gradient (better than
gradient descent on convex problems).

Gradient descent +
random perturbation

(High probability)

D.Q O(g?

Accelerated gradient
+ random perturbation

OO @(€;7/4) (High probability)

Accelerated gradient
with nonconvexity detection

(Deterministic)

@ O

C. W. Royer
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What we want to do

Xkr1 = Xk + od,  V2F(x)de = =V F(x)

@ «y computed via line search for global convergence;
@ Large-scale implementation: Conjugate Gradient (CG);
o Works well when V2f(x) = 0.
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What we want to do

Xkr1 = Xk + od,  V2F(x)de = =V F(x)

@ «y computed via line search for global convergence;
@ Large-scale implementation: Conjugate Gradient (CG);
o Works well when V2f(x) = 0.

Newton's method in nonconvex case
Big issue: V2f(xx) # 0!
@ Still used in practice = Can we explain it?

e Efficient = Can we get complexity guarantees?
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© Conjugate gradient and nonconvex quadratics
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Nonconvex quadratics

.1 7 Ty
min -y~ H
oy o W ey

with H = HT € R™" not necessarily positive definite, g € R”.

Regularized variants

Trust region: miny crn %yTHy +gTy st |y <6

Cubic regularization: minycgn gty + 2yTHy + Zllyl1P.
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Nonconvex quadratics

1 T T
~yTH
Gl o by

with H = HT € R"™%" not necessarily positive definite, g € R".

Regularized variants

Trust region: minyern 3yTHy +gTy st |y <0

Cubic regularization: minycgn gty + 2yTHy + Zllyl1P.

Lanczos-type approaches (Carmon & Duchi 2020, Gould & Simoncini 2020)

@ Solve the problem over the Krylov subspace {g, Hg, H’g, ..., H~'g};
e Can fail to compute the solution (hard case, occurs when H % 0);

@ But complexity guarantees hold in probability!
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Nonconvex quadratics in nonconvex optimization

. N T
min f(x) = min =y " V°f(xx)y +y Vf(x
x€ERN (x) yerr 27 (xe)y +y V()
@ Do we really want to solve the quadratic problem?

@ We actually want to compute a step to go from xx to xx1!

o If the quadratic is unbounded (V2f(xx) # 0), negative curvature
directions can be used.
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Nonconvex quadratics in nonconvex optimization

. N T
min f(x) = min -y " V°f(xx)y + vy Vf(x
~CRN (x) yeRn2y (xk)y +y (xk)
@ Do we really want to solve the quadratic problem?

@ We actually want to compute a step to go from xx to xx1!

o If the quadratic is unbounded (V2f(xx) # 0), negative curvature
directions can be used.

Our subproblem

Given a quadratic g: y € R" — %yTHy +g'y,
O Find an approximate minimum of q...
@ OR compute a direction of negative curvature for H.

Can we do that using conjugate gradient?
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The conjugate gradient method

Goal: Solve Hy = —g, where H = H' = 0.

Conjugate gradient method
Init: Set yo =Ogrn, o =g, pp=—g, j=0, £>0.
For j=0,1,2,...

e Compute yj11 = yj +

7112

o Hgy P and rjt1 = Hyj11 + g

lI7j41]

Set pjy1=—rjy1+ T2 Pi-
Set j = j + 1; terminate if ||rj|| < &||rol|.

(7]

Only requires v — Hv (“matrix-free”);

Terminates in at most n iterations when H = 0.

(]
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Complexity of conjugate gradient

Recall: r; = Hy; + g.

Convergence rate of CG

If eyl < H < MI,

2 \¥
||U||2§4“<1—\/E+1> Iroll?, &= 2.

Conjugate gradient for Hy = —g
If eyl < H = MI, |[Hy; + g|| <&||g|| after at most

J = min {n, O(k/? |n("<ﬁ/§))} = min {n, @(6;1/2)}

iterations/matrix-vector products.
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CG in nonconvex optimization

What can go wrong?

o We'll consider Hy = —g with possibly H % 0;
@ Two issues:

o Presence of negative curvature;
o Loss of guarantees for CG steps.

How to make it right?

@ Regularization;

@ Use intrinsic nonconvexity detection properties of CG.
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Conjugate gradient for Hy = —g

Init: Set yo =Ogrn, n =g, po=—g&, j=0,§ > 0.
For j=0,1,...

7112 _
p»r’Hp_Pj, ri+1 = Hyj+1 + g and pj41.
J J

@ Set j = j + 1; terminate if ||rj|| < &|ro]|.

o Compute yj 11 =y +
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Conjugate gradient for Hy = —g

Init: Set yo =Ogrn, n =g, po=—g&, j=0,§ > 0.
For j=0,1,...

&

e Compute yj11 = y; + L P T+l = Hyj+1+ g and pjt1.

p;" Hp
@ Set j = j + 1; terminate if ||rj|| < |||

Convergence rate of CG (gives complexity)
If eyl < H =< MlI,

2 \¥
I < 4 (1= <21 ) ol <= 2.
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Conjugate gradient for Hy = —g

Init: Set yo =Ogrn, n =g, po=—g&, j=0,§ > 0.
2j
While p Hp; > eullpil* and |52 < 4x (1= 25) " lInll?

VE+1
112
e Compute yj11 = y; + ,J!;Qll,pj Pjs ri+1 = Hyj+1 + g and pj1.
J

@ Set j = j + 1; terminate if ||rj|| < |||

Convergence rate of CG (gives complexity)
If eyl < H =< MlI,

2 \¥
Io? <4 (1= <21 ) ol <= 2.
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Conjugate gradient for Hy = —g

Init: Set yo =Ogrn, n =g, po=—g&, j=0,§ > 0.
2j
While p Hp; > eullpil* and |52 < 4x (1= 25) " lInll?

VE+1
112
e Compute yj11 = y; + ,J!;Qll,pj Pjs ri+1 = Hyj+1 + g and pj1.
J

@ Set j = j + 1; terminate if ||rj|| < |||

Convergence rate of CG (gives complexity)
If eyl < H =< MlI,

2 \¥
||U||2§4“<1—\/E+1> Iroll?, &= 2.

What if H 3 eyl?
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Conjugate gradient for possibly indefinite systems
Capped Conjugate Gradient

Init: Set yo = Ogn, ro =g, po = —g, j=0,§>0.
While p/ Hp; > ep|pj||* and |[1[|* < T/||ro]|?

(Ll
p;" Hp;
@ Set j = j + 1; terminate if ||rj|| < &|ro]|.

o Compute yj11 = yj + pis fiv1 = Hyj11 + g and pji.
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Conjugate gradient for possibly indefinite systems
Capped Conjugate Gradient

Init: Set yo = Ogn, ro =g, po = —g, j=0,§>0.
While p! Hp; > eql|p;|1® and ||| < T+ ro]?

o Compute yj 11 =y + ”TO,L”/p pj, ri+1 = Hyj+1 + g and pj;1.

@ Set j = j + 1; terminate if ||rj|| < &|ro]|.

Properties of Capped CG
If H < MI:

@ As long as rj is computed:

112 N2 B o
151> < T |roll?, T =16k°, = M,
o The method runs at most J = min {n O ( } iterations (“cap")

before terminating or violating one condition.
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Main result - Violating conditions in Capped CG
Theorem (Royer, O'Neill, Wright - 2020)

If Capped CG applied to Hd = —g stops after J < J iterations
with |15/ > €]|ro], then

@ Either p] Hp, < enllpsl2,

@ Or ||ry]|? > Tr7||n||%
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Main result - Violating conditions in Capped CG
Theorem (Royer, O'Neill, Wright - 2020)

If Capped CG applied to Hd = —g stops after J < J iterations
with |15/ > €]|ro], then
@ Either p] Hp, < enllpsl2,

@ Or [|ry]|> > T7||n|? yss1 can be computed and there exists
j€{0,...,J—1} such

(vsr1 — ) "H(yss1 — ¥) < enllyssr — yilI>
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Main result - Violating conditions in Capped CG

Theorem (Royer, O'Neill, Wright - 2020)

If Capped CG applied to Hd = —g stops after J < J iterations
with |15/ > €]|ro], then

@ Either pJTHpJ <enllpsl?

@ Or [|ry]|> > T7||n|? yss1 can be computed and there exists

j€{0,...,J—1} such

(vsr1 — ) "H(yss1 — ¥) < enllyssr — yilI>

What it means
@ Can run (Capped) CG without computing Amin(H) first!
@ Either we converge as if we had H = eyl...

@ ...or we find a direction of curvature < ey!

C. W. Royer Newton-Krylov optimization
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CG and minimum eigenvalues

Estimating eigenvalues

Task: Given H = HT, find d such that d"Hd < 0 if H # —eyl.
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CG and minimum eigenvalues

Estimating eigenvalues

Task: Given H = HT, find d such that d"Hd < 0 if H # —eyl.
@ Even Capped CG does not necessarily detect negative curvature!
o We would like to know whether Amin(V2f(x)) > —ey (for complexity).
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CG and minimum eigenvalues

Estimating eigenvalues

Task: Given H = HT, find d such that d"Hd < 0 if H # —eyl.
@ Even Capped CG does not necessarily detect negative curvature!
o We would like to know whether Amin(V2f(x)) > —ey (for complexity).

Approach

Run CG on a linear system with a random right-hand side uniformly
distributed on the unit sphere.

@ Guarantees approximation of Amin(H) with high probability (Kuczynski
and Wozniakowski 1992) for Lanczos' method;

@ Lanczos and CG generate the same Krylov subspaces!
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CG and minimum eigenvalues (2)

Theorem (Royer, O'Neill, Wright 2020)

Let H € R"™*" symmetric with ||H|| < M, § € [0,1), and CG be applied to

(H+ %) y=>b with b~US"M).

Then, after

n(3n/5? o
J = min {n, [m;” :\Z-‘ } = min{n,O(eH1/2)}.

iterations,
o Either CG finds negative curvature explicitly: pj (H 4 %’/) py <0;
@ Or it certifies with probability at least 1 — § that H = —epl.
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© Newton-CG framework
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Line-Search Newton-Capped CG

Inputs: xo € R", 6, € (0,1), n > 0,¢g,en € (0,1),6 € [0,1).
For k=0,1,2,...
Q If |VF(xk)|| > €g, compute dj via Capped CG applied to

(V2f(xk) + 2enl) d = =V F(x).

© Otherwise, use CG as an eigenvalue oracle with probability §. If it
certifies that V2f(x) = —ey/ terminate, otherwise use its output as
d.

© Perform a backtracking line search to compute o = 6 such that
U
Fxk + andi) < Fx) — éwi“dk\ﬁ

Q Set Xk+1 = Xk + o d.
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Capped Conjugate Gradient for Newton steps

Key result
Apply Capped CG to

(V2f(xk) + 2enl) d = —VF(xk).
Then, after at most min {n, @(6;1/2)} iterations/Hessian-vector

products, the methods outputs
© a regularized Newton step dj with

1(V2F () + 2eml)dic + V(x| < €IVl

@ Or a direction of curvature < ey for V2f(xx) + 2epl.
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Capped Conjugate Gradient for Newton steps

Key result
Apply Capped CG to

(V2f(xk) + 2enl) d = —VF(xk).
Then, after at most min {n, @(6;1/2)} iterations/Hessian-vector

products, the methods outputs
© a regularized Newton step dj with

[(V2F(xk) + 2eml)di + V()| < €IV

© Or a direction of negative curvature < —epy for V2£(x)!
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CG as minimum eigenvalue oracle

For the matrix V2f(x), consider CG applied to
(VZf(xk) n %”/) d = b, with b~S"L

Then, for every 6 € [0, 1), we obtain one of the two outcomes below:

Q a direction of negative curvature < —¢y/2,

Q a certificate that V2f(xy) = —epl,
using at most O (min{n, 6;1/2}> gradients/Hessian-vector products, with
probability at least 1 — 4.
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Complexity results

First-order deterministic complexity

With ey = 62/2, reaches x such that ||V f(xx)|| < ez in at most

° 0(6;3/2) iterations;

e O (min{ne;3/2,c;7/4}) gradients/Hessian-vector products.
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Complexity results

First-order deterministic complexity

With ey = 62/2, reaches x such that ||V f(xx)|| < ez in at most
° 0(6;3/2) iterations;

o O (min{ne;3/2,c;7/4}) gradients/Hessian-vector products.

Second-order high probability result

In addition to the results above, we also have

Amin(V2F (i) > —e/?

with probability at least (1 — 5)0(‘;3/2).
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Complexity results

First-order deterministic complexity

With ey = 62/2, reaches x such that ||V f(xx)|| < ez in at most
° 0(6;3/2) iterations;

o O (min{ne;3/2,6;7/4}) gradients/Hessian-vector products.

Second-order high probability result

In addition to the results above, we also have

Amin(V2F (i) > —e/?

—3/2

with probability at least (1 — 6)( 7).

@ Sharp in terms of iteration complexity (Cartis, Gould, Toint 2018);

@ Best know computational complexity for second-order methods.
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Numerical illustration
Back to our low-rank matrix problem

. 1 . 2
min - ’PQ(UV —M)H :
UERmxr \/cRnxr 2 F

with M € R™*" Q| ~ {5%,15%} x mn.
@ Synthetic data: (n, m) = (500, 499).

Comparison

@ First-order Newton-Capped CG;

@ Nonlinear CG (Polak-Ribiére);
o Dedicated solvers (Alternating methods):

o Alternated gradient descent (Tanner and Wei 2016);
o LMaFit (Wen et al. 2012).
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Matrix completion (synthetic data, rank 5)

Relative Residual

C. W. Royer
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Matrix completion (synthetic data, rank 15)

——Newton CG —Newton CG
——Nonlinear CG ——NonlinearCG
Alternating GD Alternating GD

= LMaFit = LMaFit

Relative Residual
Relative Residual

7 7
10 10
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700

Function evaluations Gradient Evaluations/Hessian Vector Products/Iterations
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Conclusion

CG and nonconvex quadratics

@ Can detect negative curvature in probability;
@ Can detect nonconvexity!

o Keys: Regularization+Extra checks.

Newton-CG methods
@ Best known complexity guarantees;

@ Works with line search/trust region framework.

+ Extensions to constraints.
+ Specialization to matrix problems.
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Follow-ups

Other practical variants

@ Nonlinear CG;
@ Other linear algebra routines (Newton-MR);

@ Key: Dealing with negative curvature.

Better algorithms

e Can we do even better than ¢ 7/4?

@ With something that we can implement?
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That's alll

C. W. Royer

Thank you for your attention!
clement.royer@dauphine.psl.eu

https://www.lamsade.dauphine.fr/~croyer/
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