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Introduction: Numerical optimization

An Optimization Problem

An objective function f (x) to be minimized or maximized.

A set of values for x .

Goal: �nd the value(s) of x giving the best value of f .

Numerical Optimization

Obj: Develop algorithms to solve optimization problems.

Theoretical analysis.

Practical implementation.
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Introduction: Randomness and optimization

Randomness has triggered signi�cant recent advances in numerical
optimization.

Multiple reasons:

Large-scale setting: Classical methods too expensive.

Distributed computing: Data not stored on a single
computer/processor.

Applications: Machine learning.

Concerning randomness

How does it a�ect the analysis of a method ?

Improvement over deterministic ?

Randomness in derivative-free methods ?
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Complexity of optimization algorithms

Complexity Analysis

Estimate the convergence rate of a given criterion.

Provide worst-case bounds on algorithmic behavior.

In presence of randomness: results in expectation.

Using complexity

Guidance provided by complexity ?

Practical relevance ?

Importance for derivative-free methods ?
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Objectives pursued in the thesis

Main track

1 Introduce random aspects in derivative-free frameworks.

2 Provide theoretical guarantees (especially complexity).

3 Compare complexity results with numerical behavior.

4 Treat �rst-order and second-order aspects.

In this talk: focus on direct-search methods;

In the thesis: direct-search and trust-region algorithms.

DFO Methods based on Probabilistic and Deterministic Properties 6 / 46



Objectives pursued in the thesis

Main track

1 Introduce random aspects in derivative-free frameworks.

2 Provide theoretical guarantees (especially complexity).

3 Compare complexity results with numerical behavior.

4 Treat �rst-order and second-order aspects.

In this talk: focus on direct-search methods;

In the thesis: direct-search and trust-region algorithms.

DFO Methods based on Probabilistic and Deterministic Properties 6 / 46



Outline

1 Deterministic direct search

2 Direct search based on probabilistic descent

3 Deterministic and probabilistic second-order methods

4 Summary and conclusions
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Introductory assumptions and de�nitions

We consider an unconstrained smooth problem:

min
x∈Rn

f (x).

Assumptions on f

f bounded from below.

f continuously di�erentiable, ∇f Lipschitz continuous.

Solving the problem using the derivative

At x ∈ Rn, moving along −∇f (x) can decrease the function value !

Basic paradigm of gradient-based methods.

Goal: convergence towards a �rst-order stationary point

lim inf
k→∞

‖∇f (xk)‖ = 0.
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A derivative-free hypothesis

The gradient exists but cannot be used in an algorithm.

Simulation code: gradient too expensive to be computed.

Black-box objective function: no derivative code available.

Automatic di�erentiation: inapplicable.

Examples: Weather forecasting, oil industry, biology,...

Performance indicator: Number of function evaluations.
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Derivative-Free Optimization (DFO) algorithms

Deterministic DFO methods

Model-based methods, e.g. Trust Region.

Directional methods, e.g. Direct Search.

Introduction to Derivative-Free Optimization

A.R. Conn, K. Scheinberg, L.N. Vicente. (2009)

Well-established: convergence theory (to local optima).

Recent advances: complexity bounds/convergence rates.
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Derivative-Free Optimization (DFO) 'ed

Stochastic DFO

Typically global optimization methods:

Ex) Evolution Strategies, Genetic Algorithms.

Often use heuristics ⇒ No general proof of convergence.

No deterministic variant.

This thesis did NOT address those methods.

Distinction: stochastic VS using probabilistic elements.

DFO methods based on probabilistic properties

Developed from deterministic algorithms.

Keep theoretical guarantees from deterministic.

Improve performance with randomness.
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Direct search (DS)

Directional methods ∼ Steepest/Gradient Descent.

Early appearance: 1960s, convergence theory: 1990s.

Attractive: simplicity, parallel potential.

Optimization by direct search: new perspectives on some

classical and modern methods.

Kolda, Lewis and Torczon (SIAM Review, 2003).
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A basic framework for direct-search algorithms

1 Initialization: Set x0 ∈ Rn, α0 > 0, 0 < θ < 1 ≤ γ.
2 For k = 0, 1, 2, ...

Choose a set Dk of m vectors.
If it exists dk ∈ Dk so that

f (xk + αk dk) < f (xk)− α2k ,

then declare k successful, set xk+1 := xk + αk dk and update
αk+1 := γ αk .
Otherwise declare k unsuccessful, set xk+1 := xk and update
αk+1 := θ αk .
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Polling choice in deterministic direct search

We would like to choose directions/polling sets Dk su�ciently good to
ensure convergence.

A measure of set quality

For a set of vectors D, the cosine measure of D is

cm(D) = min
v∈Rn\{0}

max
d∈D

d> v

‖d‖ ‖v‖
.

When cm(D) > 0, any v makes an acute angle with some d ∈ D.

If v = −∇f (x) 6= 0, D contains a descent direction for f at x .
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Set quality

We would like to have cm(D) > 0.

Positive Spanning Sets (PSS)

D is a PSS if it generates Rn by nonnegative linear combinations.

D is a PSS i� cm(D) > 0.

A PSS contains at least n + 1 vectors.

Example

D⊕ = {e1, . . . , en, -e1, . . . , -en} is a PSS with

cm (D⊕) =
1√
n
.
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Convergence for deterministic direct search

Lemma

Independently of {Dk},
lim
k→∞

αk = 0.

Lemma

If the k-th iteration is unsuccessful and cm(Dk) ≥ κ > 0, then

κ ‖∇f (xk)‖ ≤ O (αk) .

Convergence Theorem

If ∀k , cm(Dk) ≥ κ, we have

lim inf
k→∞

‖∇f (xk)‖ = 0.
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Worst-case complexity in deterministic direct search

Theorem (Vicente 2013)

Let ε ∈ (0, 1) and Nε be the number of function evaluations needed to
reach an point such that inf0≤l≤k ‖∇f (xl )‖ < ε. Then,

Nε ≤ O
(
m (κ ε)−2

)
.

Choosing Dk = D⊕, one has κ = 1/
√
n,m = 2n, and the bound becomes

Nε ≤ O
(
n2 ε−2

)
.
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Outline

1 Deterministic direct search

2 Direct search based on probabilistic descent
Probabilistic descent
Convergence and complexity analysis
Probabilistic descent in practice

3 Deterministic and probabilistic second-order methods

4 Summary and conclusions
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Introducing randomness

Idea from Gratton and Vicente (2013)

Randomly independently generate polling sets, possibly of
less than n + 1 vectors!

From PSS...

...to random sets
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Numerical motivations

Convergence test: f (xk) < flow + 10−3 (f (x0)− flow);

Budget: 2000 n evaluations.

Problem D⊕ Q D⊕ 2 n n + 1 n/2 2 1

Deterministic Probabilistic

arglina 3.42 16.67 10.30 6.01 3.21 1.00 �

arglinb 20.50 11.38 7.38 2.81 2.35 1.00 2.04

broydn3d 4.33 11.22 6.54 3.59 2.04 1.00 �

dqrtic 7.16 19.50 9.10 4.56 2.77 1.00 �

engval1 10.53 23.96 11.90 6.48 3.55 1.00 2.08

freuroth 56.00 1.33 1.00 1.67 1.33 1.00 4.00

integreq 16.04 18.85 12.44 6.76 3.52 1.00 �

nondquar 6.90 17.36 7.56 4.23 2.76 1.00 �

sinquad � 2.12 1.31 1.00 1.60 1.23 �

vardim 1.00 3.30 1.80 2.40 2.30 1.80 4.30

Table : Relative number of function evaluations for di�erent types of polling
(mean on 10 runs,n = 40)
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A probabilistic direct-search algorithm

From deterministic to probabilistic notations

Polling sets/directions: Dk = Dk(ω), dk = dk(ω);

Iterates: xk = Xk(ω);

Step sizes: αk = Ak(ω).

1 Initialization: Set x0 ∈ Rn, α0 > 0, 0 < θ < 1 ≤ γ.
2 For k = 0, 1, 2, ...,

Choose a set Dk of m independent random vectors.
If it exists dk ∈ Dk so that

f (Xk +Ak dk) < f (Xk)−A2

k
,

then declare k successful, set Xk+1 := Xk +Ak dk and update
Ak+1 := γAk .
Otherwise, declare k unsuccessful, set Xk+1 := Xk and update
Ak+1 := θAk .
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First step: What is a good random polling set ?

D

D is not a PSS...

...D⊕ is...

D⊕

−∇f (x)

...but here −∇f (x) is closer to D!

Is being close to the negative gradient a sign of quality ?
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A new measure of set quality

Set assumption in the deterministic case

We required

cm(Dk) = min
v 6=0

max
d∈Dk

d> v

‖d‖ ‖v‖
≥ κ.

What we really need is

cm (Dk ,−∇f (xk)) = max
d∈Dk

d>(−∇f (xk))
‖d‖‖∇f (xk)‖

≥ κ.

In the random case, the second one might happen with some
probability.

Can we �nd adequate probabilistic tools to express this fact ?
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Probabilistic analysis

Several types of results

Deterministic/For all realizations
⇓

With probability 1/Almost-sure
⇓

With a given probability.

Submartingale

A submartingale is a sequence of random variables {Vk} such that
E [|Vk |] <∞ and

E (Vk |σ (V0,V1, . . . ,Vk−1)) ≥ Vk−1.
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(p, κ)-descent sets

We want to look at

P (cm (Dk ,−∇f (Xk)) ≥ κ) .

where Xk depends on D0, . . . ,Dk−1 but not on Dk .

A solution is to use conditional probabilities/conditioning to the past.

Probabilistic descent property

A random set sequence {Dk} is said to be (p, κ)-descent if:

P (cm (D0,−∇f (x0)) ≥ κ) ≥ p

∀k ≥ 1, P
(
cm (Dk ,−∇f (Xk)) ≥ κ

∣∣∣ SD
k−1

)
≥ p,

where SD
k−1 = σ(D0, . . . ,Dk−1).
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Convergence results

Lemma

For all realizations {αk} of {Ak}, independently of {Dk},

lim
k→∞

αk = 0.

Lemma

If k is an unsuccessful iteration; then

{cm (Dk ,−∇f (Xk)) ≥ κ} ⊂ {κ ‖∇f (Xk)‖ ≤ O (Ak)} .

We need to show that {cm (Dk ,−∇f (Xk)) ≥ κ} happens su�ciently often.
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Convergence results (2)

Let {Dk} (p, κ)-descent and Zk = 1 (cm (Dk ,−∇f (Xk)) ≥ κ).

Proposition

Consider

Sk =
k−1∑
i=0

[Zi − p0] , p0 =
ln θ

ln(θ/γ)
.

1 If lim infk ‖∇f (Xk)‖ > 0, then Sk → −∞.

2 If p > p0, {Sk} is a submartingale and P (lim sup Sk =∞) = 1.

Almost-sure Convergence Theorem

If {Dk} is (p, κ)-descent with p > p0, then

P
(

lim inf
k→∞

‖∇f (Xk)‖ = 0

)
= 1.
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Probabilistic complexity bound

Probabilistic worst-case complexity

Let {Dk} be (p, κ)-descent, ε ∈ (0, 1) and Nε the number of function
evaluations needed to have inf0≤l≤k ‖∇f (Xl )‖ ≤ ε. Then

P
(
Nε ≤ O

(
m (κε)−2

p − p0

))
≥ 1− exp

(
−O

(
p − p0

p
(κ ε)−2

))
.

Deterministic: O(n2 ε−2).
Probabilistic: O(mn ε−2) in probability
⇒ O(n ε−2) when m = 2 !

Improvement with high probability using few directions ?
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A practical (p, κ)-descent sequence

We must ensure

p > p0 =
ln(θ)

ln(θ/γ)

with the minimum m = |Dk | possible.

A practical example: uniform distribution over the unit sphere

If

m > log2

(
1− ln θ

ln γ

)
,

then there exist p and τ independent of n such that the sequence Dk is
(p, τ/

√
n)-descent, with p > p0.

If γ = θ−1 = 2, it su�ces to choose m ≥ 2 to have p > 1

2
.

DFO Methods based on Probabilistic and Deterministic Properties 33 / 46



Two uniform directions are enough, one is not

g

d1 ∼ U(S1)⇒ ∀κ ∈ (0, 1), P
(
cm (d1, g) = d>1 g ≥ κ

)
< 1/2.

d1, d2 ∼ U(S1)⇒ ∃κ∗ ∈ (0, 1), P (cm ({d1, d2} , g) ≥ κ∗) > 1/2.
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Exploiting second-order derivatives

Previous analysis was concerned with �rst-order aspects.

We improved the deterministic case and saved function values.

Second-order considerations can come into play.

Usually at a higher expense in evaluations, especially in DFO.
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Second-order optimality

Assumption

f twice continuously di�erentiable, ∇f and ∇2f Lipschitz continuous.

f typically nonconvex.

Second-order methods

Exploit (negative) curvature information given by ∇2f .

Converge towards second-order stationary points:

lim inf
k

max
{
‖∇f (x)‖,−λmin

(
∇2f (x)

)}
= 0.
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A new deterministic second-order direct search

Objective

Introduce second order in our framework.

Guarantees at the iteration level.

Complexity analysis.

Key features

A PSS Dk , as before.

A linear basis Bk used to gather curvature information.

Polling sets are of size O(n2).
Function decrease: α3

k .
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Second-order convergence

Arguments

We still have αk → 0.

On unsuccessful iterations:

Dk is a PSS ⇒ ‖∇f (xk)‖ ≤ O(αk)
Bk well conditioned ⇒ −λmin

(
∇2f (xk)

)
≤ O (αk).

Theorem

If there exist κ, σ ∈ (0, 1) such that

∀k , cm(Dk) ≥ κ & σmin(Bk) ≥ σ,

then
lim inf
k→∞

max
{
‖∇f (xk)‖,−λmin

(
∇2f (xk)

)}
= 0.
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Complexity of second-order direct search

Theorem

For (εg , εH) ∈ (0, 1)2, the number of evaluations of f needed to achieve
inf0≤l≤k ‖∇f (xk)‖ < εg

sup0≤l≤k λmin

(
∇2f (xk)

)
> −εH

is of order
O
(
n5 max

{
ε−3g , ε−3H

})
.

Second-order expense (much) higher than �rst-order:
Power of tolerances + O(n2) evaluations per iteration.
Re�ects on practice:

Second order more robust...
...but more expensive.
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inf0≤l≤k ‖∇f (xk)‖ < εg

sup0≤l≤k λmin

(
∇2f (xk)

)
> −εH

is of order
O
(
n5 max

{
ε−3g , ε−3H

})
.
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From deterministic to probabilistic second-order methods

What we have

Second-order convergent deterministic method.

First-order convergent probabilistic method.

What we would like

Incorporate randomness in the second-order method.

Improve its worst-case cost.
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Two ways of introducing randomness

On the ��rst-order" directions

We can satisfy cm(Dk ,−∇f (xk)) ≥ κ in probability...

...with deterministic Bk !

On the �second-order" directions

Focus on ensuring P (σmin(Bk) ≥ σ);
Use results from random linear algebra.

Both converge almost surely.

Still O(n2) evaluations per iteration.
Challenge: Get rid of Bk in probability.
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Outline

1 Deterministic direct search

2 Direct search based on probabilistic descent

3 Deterministic and probabilistic second-order methods

4 Summary and conclusions
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Main conclusions and contributions

Derivative-free optimization can be combined with probabilistic tools.

Convergence can be maintained.

Practical performance is enhanced in the direct-search case.

Complexity con�rms the numerical observations.

Direct search based on probabilistic descent

Gratton, Royer, Vicente and Zhang, SIAM J. Optim., 2015.

Second-order convergence can be ensured in the deterministic case.

First complexity result for second order in DFO.

Reveals worst-case cost of such guarantees.

A second-order globally convergent direct-search method and its

worst-case complexity

Gratton, Royer and Vicente, Optimization, 2016.
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Current and future work

Short-term perspectives of the manuscript

MATLAB implementation of direct search using probabilistic descent
Probabilistic treatment of bounds and linear constraints.

De-coupled techniques for second-order convergent methods
Ease the introduction of random aspects.

Challenges

Probabilistic second-order properties in DFO.

Probabilistic second-order derivative-based methods.
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Thank you for your attention !
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WCC for probabilistic descent

Intuitive idea

Let Gk = ∇f (Xk), so Zk = 1 (cm(Dk ,−Gk) ≥ κ).
If Zk = 1 and k unsuccessful, then κ ‖Gk‖ < O(Ak)...

...so if inf0≤l≤k ‖Gl‖ has not decreased much,
∑k

l=0
Zl should not be

too high.

A useful bound

For all realizations of the algorithm, one has

k∑
l=0

zl ≤ O
(

1

κ2 ‖g̃k‖2

)
+ p0 k ,

with ‖g̃k‖ = inf0≤l≤k ‖gl‖.
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WCC for probabilistic descent

We use again Zl = 1 (cm(Dl ,−∇f (Xl ) ≥ κ).

An inclusion argument{
inf

0≤l≤k
‖∇f (Xk)‖ ≥ ε

}
⊂

{
k∑

l=0

Zl ≤ λ k

}
with λ = O

(
1

k κ2 ε−2

)
+ p0.

A Cherno�-type probability result

For any λ ∈ (0, p),

P

(
k−1∑
l=0

Zl ≤ λ k

)
≤ exp

[
−(p − λ)2

2 p
k

]
.
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WCC for probabilistic descent (3)

Probabilistic worst-case complexity

Let {Dk} be (p, κ)-descent, ε ∈ (0, 1) and Nε the number of function
evaluations needed to have inf0≤l≤k ‖∇f (Xl )‖ ≤ ε. Then

P
(
Nε ≤ O

(
m (κε)−2

p − p0

))
≥ 1− exp

(
−O

(
p − p0

p
κ−2ε−2

))
.

Corollary

Using 2 uniformly distributed directions at every iteration, with
γ = θ−1 = 2, one has

P
(
Nε ≤ 32

3

(
f (x0)− flow +

α20
2

)
(2+ν)2

(2p−1)τ2 nε
−2
)

≥ 1− exp
[
−1

6

(
f (x0)− flow +

α20
2

)
(2p−1)(2+ν)2

pτ2
nε−2

]
.
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Looking at the second-order Taylor model

Let x such that ‖∇f (x)‖ 6= 0, λmin

(
∇2f (x)

)
< 0, and α > 0.

Problem

Characterize the directions d ∈ Rn, ‖d‖ = 1 for which the quadratic Taylor
expansion

α∇f (x)> d +
α2

2
d>∇2f (x) d

gives information on λ = λmin

(
∇2f (x)

)
.
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A generic good direction when λ < 0

Looking for d satisfying:

P
(
c1 α∇f (x)> d +

α2

2
d>∇2f (x) d ≤ c2

α2

2
λ+ c3 α

3

)
≥ p.

c1 = c3 = 0, c2 ∈ (0, 1) (Negative curvature direction)
Gets harder as λ↗ 0.

c1 = 0, c2 ∈ (0, 1), c3 > 0 (Approx. Negative curvature direction)
Ok but expensive.

c1, c2 ∈ (0, 1), c3 > 0 (Approx. second-order direction)

Cheap but depends on α.
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