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Motivation: data assimilation problem

Strongly constrained 4DVAR formulation

Measurement fit
Background state
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s.t. Z,':M,'(Z,'_l), I':].,...,T.

Governing equations
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Motivation: data assimilation problem

Strongly constrained 4DVAR formulation

Measurement fit
Background state
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s.t. Z,':M,'(Z,'_l), I':].,...,T.

Governing equations

Reformulation (x «+» zo)

min f(x) := (Ix = zbll5-2 + lly = 2 (x)|3-1) -

I\.)\l—l

@ Derivatives expensive to compute;

@ B unknown = Estimated via random samples.
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A framework for nonlinear least squares

@ Derivative-free context;

o Complexity analysis.

Probabilistic versions

@ Randomly accurate models;

@ Random function estimates.

And more recent work

@ Exploit least-squares structure;

@ More general complexity analysis.
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@ Derivative-free least squares
© Introducing randomness

© New complexity results
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@ Derivative-free least squares
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A more general setup

Derivative-free nonlinear least-squares

: . 1 2
min £(x) := 3 Ir(x)]

o r:R"— R™ reClil:
o J(x):= [Vri(x)T] € R™" not available;

@ Values of r only accessed through noisy estimates.
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A more general setup

Derivative-free nonlinear least-squares

: . 1 2
min £(x) := 3 Ir(x)]

o r:R"— R™ reClil:
o J(x):= [Vri(x)T] € R™" not available;

@ Values of r only accessed through noisy estimates.

Classical Levenberg-Marquardt approach

o Gauss-Newton model f(x + s) ~ 3||r(x) + J(x)s||>+2|s|?;

@ Regularization parameter v set adaptively.

C. W. Royer Stochastic Levenberg-Marquardt EUROPT 2021 6



I°

Derivative-free Levenberg-Marquardt for minyern 2| r(x)

Inputs: xg € R"”, o > 0,7 > 0.
Iteration j: Given (x;j, 1)),
o Compute ry, = r(x;), Jm; = J(x;) and

_ willdm
Sj ~ argming mj(s) = %H’mj + ijSH S H H2

Compute r(x;) and r(x; + s;).

1 1
Lir(o) 2= 3 (34592
I w2 T set Xjy1 = x; +5j and w41 = 0.5u;;

@ Otherwise, set x;11 = x; and pj 1 = 2u;.

@ Regularization formula for complexity results.
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I°

Derivative-free Levenberg-Marquardt for minyern 2| r(x)

Inputs: xg € R"”, g > 0,7 > 0.
Iteration j: Given (x;j, i),
o Compute ry, =~ r(x;), Jm; ~ J(x;) and
MJH m; Pl

——lIsl*.

s; ~ argming m;j(s) := %Hrmj + Im;s® +

Compute r? ~ r(x;) and rf = r(x; + s;).

Lir0p2 1\\ |12
If W > m, set Xjt1 = Xj +SJ and Hji+1 = 05/.LJ,

Otherwise, set x;11 = x; and pj11 = 2p;.

Regularization formula for complexity results.

Need accuracy properties for the models/estimates.
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Model and estimates quality

u/\l m; P |

—3—lIsl*.

Recall: mj(s) = 3|[rm + Im,s|> +

First-order accuracy

A model mj(s) is called xp-accurate if

T T % o
[(x;) " r(xj) = || < 7:7 and  [3lrC)I* = 3llrmlI? < =3
J
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Model and estimates quality

u/\l m; P |

—3—lIsl*.

Recall: mj(s) = 3|[rm + Im,s|> +

First-order accuracy

A model mj(s) is called xp-accurate if

T T % o
[(x;) " r(xj) = || < ﬁ and  [3lrC)I* = 3llrmlI? < =3
J

Accurate function estimates

Estimates (rj ,r}) are rg-accurate if

02 2 Kf 2
12 = 3llr(xp)I1?] < — and 131F511% = 2lir(x; + s)II1? !< e
J J

’2”’
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Complexity analysis without derivatives

Goal: Bound the number of iterations to reach an e4-point x such that
IV = [[0x) "r(x)]| < eq

as a function of .
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Complexity analysis without derivatives

Goal: Bound the number of iterations to reach an e4-point x such that
T
IVF(x)[| = [[J(x) r(x)]| < eq
as a function of .

Theorem (BDKR '18)
Suppose that

@ Every model m; is kpy-accurate.
@ Every estimate pair (rj(-)7 r) is kf-accurate.

Then, the method reaches an e4-point in at most

O (526;2)

iterations with £ = max{1, kKm, Kkf}.

o Derivative-based case: O(e;?). J
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© Introducing randomness
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Considering randomness

Recall : Our function estimates are noisy.

Inputs: xg € R”, o > 0.
Iteration j: Given (x;j, 1)),
o Compute ry, =~ r(x;), Jm; ~ J(x;) and

. illd
s ~ argming mj(s) = %Hrmj + ij5H2 — H 2.

o Compute rQ ~ r(x;) and r} ~ r(x; + s;).
If 3112331 > t Xiiq = x: +8; and firq = 0.5u:
(] W Z 1, S€t Xj11 = X Sj and fj11 = V.o,

@ Otherwise, set x;11 = x; and pjr1 = 2u;.

Two sources of randomness (models/estimates);

Accounted for via martingale-type properties.
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Probabilistic models

Accuracy property

For any realization, the model m; is called rny-accurate if

T T b
1(x;) " (%)) = oy [| < /7'1" |31 = 3 lrmlI?] <
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Probabilistic models

Accuracy property

For any realization, the model m; is called rny-accurate if

T T b o
ICx;) r(x}) = I Foml| < /7'1" |Z1rC)I? = 3llrm %] < =5
J

Probabilistic accuracy property

The random model sequence {m;} is called (p, km)-accurate if

Vj, P (mj km-accurate |Fj_1) > p.

o Fi_1=o(mo,...,mj_1,r8,rg,...,r% |, rj?_l) represents the history
of the algorithm up to iteration j.
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Probabilistic function estimates

Accurate function estimates

Estimates (rj ,r7) are r-accurate if

02 2 Kf 2
131P7117 = 3lIr(x;)I1?] < — and 131P511% = 2lir(x; + s)II1? !< o
J J
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Probabilistic function estimates
Accurate function estimates

Estimates (rj-), r) are kr-accurate if

02 2 Kf 2 2 Kf
13177117 = 31r(x)] !S7 and |3||r3l1” — 3llr(x; + s))l ’S?'
J J

Probabilistically accurate estimates

The random estimate sequence {(r%,r$)} is (g, xf)-accurate if

JJ

Vj, P((r},rj) se-accurate |Fi_q1/) > q.

_ , 40 0
© Fi_1/o=0(mo,...,mj_1,mj,rg,rg,..., ri 1, rjs._l) represents the

iteration of the algorithm up to the computation of r? and r;.
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Probabilistic complexity analysis

Goal: Bound the stopping time T, = min{j | [|J(x;)Tr(x;)|| < €q}.
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Probabilistic complexity analysis

Goal: Bound the stopping time T, = min{j | [|J(x;)Tr(x;)|| < €q}.

Theorem (BDKR '18)

If {m;} is (p, im)-accurate and {(r?, re

7:r3)} is (g, Kr)-accurate, then

pq 2_ -2
< PR L S—
Bl = O<pq1/2’€ “ >

k = max{l, Km, kf}.
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Probabilistic accuracy: An example

Theorem (BDKR '20)

If for every iteration j, B is approximated using an ensemble of
L 2 —1(y.
i = O (max { lIxj—zbllg_1 ||B=(x; Zb)“} n) samples to build mj,

Km ) Km

llxj—zpl12 _
o nf=0 <’m‘31 n | samples to compute (r?, rj)

then there exists (p, q) such that {m;} is (p, Km)-accurate, and {(rJQ, r:)}
is (g, kr)-accurate.

@ p, g depend on variance terms, likely unknown;

@ p,g — 1 as ny, nf — o0.
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© New complexity results
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About the complexity results

Our problem: minyegn |/r(x)]|2

o Used ||[J(x)Tr(x)| as a complexity metric;
@ Oblivious to the least-square structure;

@ May want to stop when residuals are small.
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About the complexity results

Our problem: minyegn |/r(x)]|2

o Used ||[J(x)Tr(x)| as a complexity metric;
@ Oblivious to the least-square structure;

@ May want to stop when residuals are small.

Scaled gradient (Cartis, Gould, Toint '13; Gould, Rees, Scott '19)

otherwise.

g(x) = { ) woor T lr(x)[I >0

@ Stopping criterion for complexity:

lr()l <ep or |g(x)] < ea-
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About the complexity results
Our problem: minyegn |/r(x)]|2

o Used ||[J(x)Tr(x)| as a complexity metric;

@ Oblivious to the least-square structure;

@ May want to stop when residuals are small.

Scaled gradient (Cartis, Gould, Toint '13; Gould, Rees, Scott '19)

g(x) ::{ (”X)(xgﬁx) if [[r(x)|| >0
0

otherwise.

@ Stopping criterion for complexity:

lr()l <ep or |g(x)] < ea-

o Complexity of LM: for any i € NU {—1}, O(e ;26;1/2 ).
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Our metric

New scaled gradient

Given i € NU{-1},

AT it ()] £ 0,

g'(x) =

0 otherwise.

@ Stopping criterion for complexity:

lr()ll < ep or g (x)] < eq-
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Our metric

New scaled gradient

Given i € NU{-1},

ST g (x| # 0,

Ir()f2=27"

g'(x) =

0 otherwise.

@ Stopping criterion for complexity:

lr()ll < ep or g (x)] < eq-

@ i = —1: Classical gradient;
@ i = 0: CGT scaled gradient;

@ i — 0o: Resembles gradient dominance.
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Complexity table

Goal: Find an (ep, €4)-point xj such that

Complexity results (BDKR '20)

i Arbitrary i=-1 i=0 i— 00
i [[JG) r(x)l T [JC)Tr(Oll | 19) T r(x)l]
&' (x)l o=+ [J(x)"r(x)]| IZE3 Tr(x)]2
_ 1—i
Order || €,%e p(4 27 €’ €, o2 6d2€;4.
@ Probabilistic versions (expected stopping time);
@ For the connoisseur: other analyzes get better bounds in terms of
€p/€q but have exponential dependencies in 2.
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Summary

Our contributions

@ Redefined probabilistic property for Levenberg-Marquardt schemes
(analogy with trust region).

e Complexity analysis for stochastic function estimates/stochastic
models.

@ A family of complexity metrics and results.

Derivative-free Levenberg-Marquardt

A stochastic Levenberg-Marquardt method using random models
with complexity results.
E. Bergou, Y. Diouane, V. Kungurstev and C. W. Royer.
https://arXiv.org/abs/1807.02176v3 coming soon!
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https://arXiv.org/abs/1807.02176

A nonmonotone matrix-free algorithm for nonlinear equality-constrained
least-squares problems.
E. Bergou, Y. Diouane, V. Kungurstev and C. W. Royer.
SIAM Journal on Scientific Computing.

@ Addressed (among others) the original 4Dvar formulation:
- T
MiNz, z;,...,.z7€R” %HZO - zb”2 -1+ % Zi:o ly; — H(zi)Hi’,—l

s.t. Z,‘ZM,‘(Z,‘_l), i=1,...,T.

@ Derivative-based approach but inexact.

Going forward

@ Combine random models with constraints;

@ Practical probabilistic approaches.
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PR[AIJRIE

PaRis Artificial Intelligence Research InstitutE

Opening for a postdoc

@ Context: My springboard chair position on optimization;
@ Two years, start date between Sep. 2021-Jan. 2022;

@ Research topics include derivative-free optimization for automated ML!
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PaRis Artificial Intelligence Research InstitutE

Opening for a postdoc

@ Context: My springboard chair position on optimization;
@ Two years, start date between Sep. 2021-Jan. 2022;

@ Research topics include derivative-free optimization for automated ML!

Wanna know more?
Email me! clement.royer@dauphine.psl.eu

Thank you all!
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