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Numerical optimization

@ Design algorithms to minimize a (continuous) function.
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@ Design algorithms to minimize a (continuous) function.

mla?el@!zef(w).

o Prove theoretical guarantees.

o Validate practical performance.

Recurring theme: Complexity analysis in nonconvex settings. J
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Nonconvex setting

Main problem

minimize f(x
rered(@)

f smooth (C! or C?) and nonconvex.
o NP-hard to solve, even locally. / v

o Settle to find approximate stationary points.

Approximate stationary points

First-order For € € (0,1),

IVf(@)] <e.

Second-order For ¢,eg € (0,1)2,

IVf(@)|<e,  Vf(®) = —enl.




Complexity analysis

Problem minimizegzecrn f(x).
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o Algorithm lterative process {xg, 1, ... }.
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Complexity analysis

Problem minimizegzecrn f(x).

Solving the problem

o Algorithm lterative process {xg, 1, ... }.

o Cost lterations, evaluations of f and derivatives, etc.

Given €, e and an algorithm {z;};, find worst-case cost of the algorithm
to reach @ such that

Q [[Vf(ms)ll <e or
Q |[Vf(xs)ll<e, VAf(zy) = —enl.
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For j =0,1,2,...

o Compute a; > 0.
o Set Tjy1 = Tj — ozij(mj).




Canonical example: Gradient descent

Input xy € R”.
For j =0,1,2,...

o Compute a; > 0.
o Set Tjy1 = Tj — ozij(mj).

o Stepsize aj: Chosen constant or with line search.
o Cost lterations/Calls to Vf + Calls to f (Line search).



Complexity of gradient descent

Gradient descent x; 1 = z; — a; V f(x;).

Goal |[Vf(z)| <e.

Complexity theorem

Assume V f Lipschitz continuous, f bounded below. Then the method
runs in at most

O(e7?)

iterations/calls to V f.




Complexity of gradient descent

Gradient descent x; 1 = z; — a; V f(x;).

Goal |[Vf(z)| <e.

Complexity theorem

Assume V f Lipschitz continuous, f bounded below. Then the method
runs in at most

O(e7?)

iterations/calls to V f.

.

@ Holds for fixed/adaptive a; choices.
@ With line search, cost in calls to f is also O(e72).

@ Sharp bounds in terms of e.

.
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Three axes of my research

o Newton-type methods

o Obtain sharp complexity with Newton steps.
o Study special classes of nonconvex problems.

o Conjugate gradient methods

o Restart conditions in nonlinear case.
o Checks to detect nonconvex behavior.

@ Derivative-free methods

o Improve complexity with randomness.
o Use geometry to handle difficult settings.

This presentation: Focus on contributions with students/postdocs. J




@ Newton-type methods
@ Conjugate gradient methods
© Direct-search methods

@ Perspectives



@ Newton-type methods
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Problem setup

minimize f(x
e 1(2)

f € C? bounded below and nonconvex.

Goal: Reach (e, ep)-point

IVf(@)|| <e and V2f(x)>= —ey L.

@ For convex functions: Second condition always true= Close to a
global minimum!

@ For nonconvex functions: Depends on the function landscape.

‘

1



Landscape in nonconvex optimization

Goal Reach (¢, ex)-points

Bad instances
(e, err)-points can be close to

@ Local, non-global minima.

\ Y

Spurious local minimizers Flat saddle peints

o High-order saddle points.
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Landscape in nonconvex optimization

Goal Reach (¢, ex)-points

Bad instances
(e, err)-points can be close to

@ Local, non-global minima.

\ Y

Spurious local minimizers Flat saddle points

o High-order saddle points.

Nice instances

o (€, em)-points close to local
minima.

@ All local minima are global.

Figures: J. Wright and Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models, 2022.
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Nicest case in optimization: Strongly convex functions

o f:R" — R C?is u-strongly convex if
Vif(x) = pl.

o Unique minimum z* € R".

One consequence of p-strong convexity

For any v > 0,

L2
IVf@) <y = |z—a <=

7




Strict saddle functions

Definition (Adapted from Ge et al '17)
fis (7, A, w, 9)-strict saddle with v, A\, u,§ > 0 if at any € R", one of
the above holds:

Q (Vi) =

Q >\min (VQf(m)) < _B;

© There exists z* local minimum of f such that

|e—a*|| <6 and V2f(y) =7I>=0 Vy, |y—a*| <20




Strict saddle functions

Definition (Adapted from Ge et al '17)
fis (v, A\, p, 0)-strict saddle with v, A\, 4, > 0 if at any € R", one of
the above holds:

Q (Vi) =

Q >\min (VQf(m)) < _B;

© There exists z* local minimum of f such that

|e—a*|| <6 and V2f(y) =7I>=0 Vy, |y—a*| <20

@ Similar in spirit to phase/regional complexity frameworks.

@ Includes strongly convex as a special case.

.
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Q Ifpj>n, setxji1 =x;+s;and A =2A;.

Q@ Compute p; =

Q Otherwise, set ;11 = x; and A1 = 0.5A;.




Trust region for minimizegzern f(x)

Inputs g € R™, Ayg >0, n > 0.
For 7 =0,1,2,...
O Define mj(z; + s) := Vf(x;)Ts + 35TV f(z;)s and compute

s; € argminm;(x; + s).
llsll<a;

f=j)—f(x;+s;)
m;(z;)—m;(x;+s;)

Q Ifpj >m, set xj1 =x; + 55 and Ay = 24

@ Compute p; =

Q Otherwise, set ;11 = x; and A1 = 0.5A;.

@ No Hessian term in m;: Gradient descent.

@ Cost lterations.




Complexity results for trust region

Goal ||V f(xs)|| <eand V2f(xs) = —en I.
General nonconvex f

J =0 (max{e ?,e;’}).

Strict saddle f (w/ Florentin Goyens)
If fis (7, A, u, 9)-strict saddle,

Jp = O(max{y2A\71y 2~ A3, u73, p7267 1Y)
J=Jr+ Je,
J. = loglog [O (ue_l)] .




Complexity results for trust region

Goal ||V f(xs)|| <eand V2f(xs) = —en I.
General nonconvex f

J =0 (max{e ?,e;’}).

Strict saddle f (w/ Florentin Goyens)
If fis (7, A, u, 9)-strict saddle,

Jp = O(max{y2A\71y 2~ A3, u73, p7267 1Y)
J=Jr+ Je,
J. = loglog [O (ue_l)] .




Complexity results for trust region

Goal ||V f(xs)|| <eand V2f(xs) = —en I.
General nonconvex f

J =0 (max{e ?,e;’}).

Strict saddle f (w/ Florentin Goyens)
If fis (7, A, u, 9)-strict saddle,
Jp = O(max{y2A\71y 2~ A3, u73, p7267 1Y)

J=Jg+ J,
J. = loglog [O (ue_l)] .

@ Second term vanishes for large e.

@ loglog dependency in € not on ey (~ strongly convex case)!
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More contributions on Newton-type methods

Improved complexity using Newton steps

@ For generic nonconvex f, regularize trust-region models!
(w/ F. E. Curtis, D. P. Robinson, S. J. Wright).

O (max{e 2, e;°}) — O (max{e ey, e;’}).

@ Line-search variants (w/ M. O'Neill, S. J. Wright).

Structured nonconvex problems

@ Manifold constraints: minimizezerq f(x), M =S""1.C", ...

(w/ Florentin Goyens)
@ Least-squares problems: minimizeger» f(x) = 1||r(x)|?.
(PhD lIskander Legheraba).




@ Conjugate gradient methods



Problem minimizegecrn f(z), f C' nonconvex. Goal |V f(z)| <.



Setup

Problem minimizegecrn f(z), f C' nonconvex. Goal |V f(z)| <.

An observation (from Carmon et al '17)

Gradient descent 10
Algorithm 3 w/o Exploit-NC-pair

-------- Restarted AGD

Algorithm 3

— - — - Nonlinear conjugate gradient (w/ line search)

10° 10* 10 10? 10° 10 10* 10°
number of steps number of steps number of steps

o Gradient descent (for f C1): O(e72) calls to V.

o Algorithm 3/AGD (for f C?): O(e~"/*) calls to Vf.

o All outperformed by standard nonlinear CG on a nonconvex
regression task!
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Basic nonlinear CG framework

Init ¢y € R", (n,0) € (0,1)%, dg = —V f(x0).
For 5=0,1,2,...
© Compute a; € {1,6,6% ...} such that
f(xj + ajdy) < f(x5) +noyV f(x))T d;.

Q Set x; 1 = x; + aj;d;.
Q Set dji1 = —Vf(zjt1) + Bj+1d;.
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Basic nonlinear CG framework

Init ¢y € R", (n,0) € (0,1)%, dg = —V f(x0).
For 5=0,1,2,...
© Compute a; € {1,6,6% ...} such that

flaj + a5d;) < f(5) + noyV f ()" dj.

Q Set i1 =x; + Oéjdj.
Q Set dji1 = —Vf(xjt1) + Bjad;.
Q If Vf(wj+1>de+1 >0,setdjiq = —V,f'(:nj+1).

® (341 chosen using standard formulas (PRP+), restart condition
practical.
No complexity guarantees!

@ Our approach Change restart condition!




Nonlinear CG with restart conditions

Init <y € R", (n,0) € (0,1)2, dg = —V f(x0).
For j=0,1,2,...
© Compute a; € {1,0,60% ...} such that

flaj + a5d;) < f(5) + noyV f(x;) " dj.

Q Set Tjt1 =x; + Cdej-
Q Setdji1 = —Vf(xjr1) + Bjrd;.




Nonlinear CG with restart conditions

Init g € R, (n,0) € (0,1)2, dg = —V f(xo), p >0, s € (0,1).
For j=0,1,2,...
© Compute a; € {1,0,60% ...} such that

f(x; + ajdj) < f(x;) + na;Vf(x;) " d;.
Q Set Tjt1 =x; + ajdj.
© Set dji1 = —Vf(zjt1) + Bjtd;.
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set dj+1 = —Vf(.’.lfj+1).




Nonlinear CG with restart conditions

Init g € R, (n,0) € (0,1)2, dg = —V f(xo), p >0, s € (0,1).
For j=0,1,2,...
© Compute a; € {1,0,60% ...} such that

f(x; + ajdj) < f(x;) + na;Vf(x;) " d;.
Q Set Tjt1 =x; + ajdj.
© Set dji1 = —Vf(zjt1) + Bjtd;.

Lip
Q If Vi(xj11)Tdjr1 > —klVf(zi)I'*? or [|djal > sV f(xj40)] 72,
set dj+1 = —Vf(.’.lfj+1).

@ Restarted iterations: Take gradient steps.

@ Non-restarted: Guarantees on step quality.




Main result

Goal |[Vf(zJ)| <e.

Theorem (w/ Rémi Chan—Renous-Legoubin)

For restarted NCG, J is at most

O(e?) + O(e+P)
—— ———
restarted non restarted
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Theorem (w/ Rémi Chan—Renous-Legoubin)

For restarted NCG, J is at most
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—— ———
restarted non restarted

@ The bound is still O(e~2) (like gradient descent)

@ But better results for non-restarted iterations for p € [0, 1)!

.




Main result

Goal |[Vf(zJ)| <e.

Theorem (w/ Rémi Chan—Renous-Legoubin)
For restarted NCG, J is at most
O(e?) + (’)(6_(1""’))

—— ———
restarted non restarted

@ The bound is still O(e~2) (like gradient descent)

@ But better results for non-restarted iterations for p € [0, 1)!

.

How do restarted methods behave in practice? J




Data profiles

Comparison
@ Two gradient-based methods, Standard linear CG, restarted variants.

o Nonconvex regression instances from (Carmon et al '17).

h

Semi adaptive GD
— ArMijO GD

Standard NCG
=——=Restarted NCG (p=0)
——— Restarted NCG (p=0.25)

Restarted NCG (p=0.5)
== Restarted NCG (p=0.75)
= Restarted NCG (p=1)

T T

Fraction of problems solved
T

I I I I I |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Budget (iterations)

26



More contributions on conjugate gradient methods

Restarted methodology (w/ A. S. Berahas, M. O’Neill)
@ Applied to quasi-Newton schemes.
o Adapted to noisy optimization.

— Restarting can be applied to yield complexity guarantees without
harming the practical performance!




More contributions on conjugate gradient methods

Restarted methodology (w/ A. S. Berahas, M. O’Neill)
@ Applied to quasi-Newton schemes.
o Adapted to noisy optimization.

— Restarting can be applied to yield complexity guarantees without
harming the practical performance!

Special case: quadratic functions (w/ M. O'Neill, S. J. Wright)
@ Nonconvex quadratics from Newton-type methods.

@ Can get complexity for linear conjugate gradient applied to those
problems.

— Extra checks in algorithms allow to detect and exploit nonconvexity!




Q Direct-search methods



Derivative-free paradigm

minimize f(x), fCt  nonconvex.
xrcR"

Blackbox/Derivative-free optimization

o Derivatives unavailable for algorithmic use.
@ Only access to values of f.

@ Those can take a long time to compute!




Derivative-free paradigm

minimize f(x), fCt  nonconvex.
xrcR"

Blackbox/Derivative-free optimization

o Derivatives unavailable for algorithmic use.

@ Only access to values of f.
@ Those can take a long time to compute!

Complexity aspects
o Goal Find o, such that ||V f(z)| <.

o Cost Number of function evaluations. )




Basic direct-search framework

Inputs g € R", ag > 0.
For 7 =0,1,...
o Choose D; C R™.
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Basic direct-search framework

Inputs g € R", ag > 0.

For 7 =0,1,...
@ Choose a PSS D; C R"™.
o If 3d; € D; such that

flaj+ajdj) < f(z)) - oflld;])?

set ;11 (= x; + ijdj, Qjy1 = 204]'.

o Otherwise, set x4 := x;, o1 := 0.50.

Positive Spanning Set (PSS)

dT
D c R™ PSS = cm(D) = max min Y.
deD |lv]=1 ||

cm(D): Cosine measure.




Complexity of deterministic direct search

Goal [V f(z,)|| <.

If D; = D Vj, the method takes at most
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calls to f.
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Goal [V f(z,)|| <.
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o |D| and cm(D) depend on dimension n!
@ Best known bound: O(n?e2).
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Complexity of deterministic direct search

Goal [V f(z,)|| <.

If D; = D Vj, the method takes at most
O (|D| cm(D) 2 2 )

calls to f. |

o |D| and cm(D) depend on dimension n!
@ Best known bound: O(n?e2).

A

What if certain calls to f take too long to compute? )




Direct search with stragglers

Inputs g € R, ag > 0.
Forj=0,1,...

o Choose D; C R™.

o If3d; € D;\ S; such that

flxj + oy dj) < f(=z;) — of||d;]?

set 1 == x; + Oéjdj, Qjt] = 20éj.

o Otherwise, set ;41 := x;, a1 := 0.5¢;.

@ §; Unknown straggler evaluations (at most k).




Direct search with stragglers

Inputs g € R, ag > 0.
Forj=0,1,...
@ Choose a PkSS D; C R".
o If3d; € D;\ S; such that

flxj + oy dj) < f(=z;) — of||d;]?

set 1 == x; + Oéjdj, Qjt] = 20éj.

o Otherwise, set ;41 := x;, a1 := 0.5¢;.

@ §; Unknown straggler evaluations (at most k).

o Fix: Use richer Djs!




Positive k-spanning sets (PkSS)

Definition

D C R" is a PESS with £ > 1 if
e Any N C D with [N| = |D| — k+1is a PSS.

@ Removing k — 1 vectors from D does not change its PSS nature.




Positive k-spanning sets (PkSS)

Definition

D C R" is a PESS with £ > 1 if
e Any N C D with [N| = |D| — k+1is a PSS.
@ Removing k — 1 vectors from D does not change its PSS nature.

The k-cosine measure (w/ W. Hare, G. Jarry-Bolduc, Sébastien Kerleau)

@ For any D C R", the k-cosine measure of D is

cmy (D) = J\IPCI% cm(N).
WISIDI— k41

@ D PkSS <= cm(D) > 0.




Complexity of direct search with PkSSs

Goal |V f(z,)| < .

Theorem (PhD Sébastien Kerleau)
Suppose D; =D PkSS for all j. Then, the method takes at most

O (|D| ka(D)_2e_2)

calls to f.




Complexity of direct search with PkSSs

Goal [|[Vf(zj)| <e.

Theorem (PhD Sébastien Kerleau)
Suppose D; =D PkSS for all j. Then, the method takes at most

O (|D| ka(D)_2e_2)

calls to f.

.

@ |D| and cmy (D) depend on k and n.
@ Best found bound: O(kn%e~2).
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More contributions on direct-search methods

Complexity and direct search
e Randomized subspace variant (Roberts & Royer '23)

. Olivier Teytaud

' Admin - 23 janvier - @
In progress: adding https:/github.com/lindonroberts/
directsearch inside Nevergrad.
In particular there is an excellent stochastic direct
search method. | don't know exactly the algorithm (yet).
Thanks guys for this excellent code!

@ Surveyed the area (Dzahini et al '25)

— Dimension dependencies can be improved through randomization!

Geometrical structures in direct search

@ Decomposition of PSSs along subspaces through graph theory
arguments (Cornaz et al '25).

@ Generation of PkSSs through polytopes (Kerleau '25).

— Discrete structures matter for direct search! )
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o Obtain sharp complexity with Newton steps.

o Study special classes of nonconvex problems.

o Conjugate gradient methods
o Restart conditions in nonlinear case.

o Checks to detect nonconvex behavior.

e Derivative-free methods
o Improve complexity with randomness.

o Use geometry to handle difficult settings.
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Research overview

Complexity — Structures

o Newton-type methods
o Obtain sharp complexity with Newton steps.
Optimal bounds within the class of second-order methods
o Study special classes of nonconvex problems.
Structured nonconvexity
o Conjugate gradient methods
o Restart conditions in nonlinear case.
Complexity obtained without hurting performance
o Checks to detect nonconvex behavior.
Leverage algorithmic structure
o Derivative-free methods
o Improve complexity with randomness.
Subspace variants with complexity
o Use geometry to handle difficult settings.
Graph/Polytope structures
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Goal: Optimize moves during renovation
(with S. Airiau, L. Galand, J. Lang, S. Toubaline)

o Linear Program (simplicity)— Other models are nonconvex!
@ Continuous LP solvers struggle— Revisit algorithms!

@ Model parameters to tune— Derivative-free methods!

Complexity and structure key to practical efficiency |




Thank you for your attention!
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