Nonconvex optimization algorithms with complexity guarantees

Clément W. Royer

Soutenance d'Habilitation à Diriger des Recherches

September 22, 2025

Background

- PhD (2016)
 Université de Toulouse.
- Postdoc (2016 2019)
 University of Wisconsin-Madison.
- Faculty (2019-) Université Paris Dauphine-PSL.

2

Collaborators since the PhD

Co-authors (including junior researchers and group members)

- North America Albert S. Berahas, Kwassi Joseph Dzahini, Michael J. O'Neill, Akwum Onwunta, Daniel P. Robinson, Oumaima Sohab, Stephen J. Wright (USA); Youssef Diouane, Warren Hare, Gabriel Jarry-Bolduc (Canada).
- Dauphine Rémi Chan-Renous-Legoubin, Yann Chevaleyre, Denis Cornaz, Florentin Goyens, Sébastien Kerleau, Laurent Meunier.
- France Jérémy Rapin, Olivier Teytaud.
- Europe Vladimir Kunc, Vyacheslav Kungurtsev (Czech Republic);
 Francesco Rinaldi, Damiano Zeffiro (Italy).
- Africa El Houcine Bergou (Morocco).
- Oceania Lindon Roberts (Australia).

Collaborators since the PhD

Co-authors (including junior researchers and group members)

- North America Albert S. Berahas, Kwassi Joseph Dzahini, Michael J. O'Neill, Akwum Onwunta, Daniel P. Robinson, Oumaima Sohab, Stephen J. Wright (USA); Youssef Diouane, Warren Hare, Gabriel Jarry-Bolduc (Canada).
- Dauphine Rémi Chan-Renous-Legoubin, Yann Chevaleyre, Denis Cornaz, Florentin Goyens, Sébastien Kerleau, Laurent Meunier.
- France Jérémy Rapin, Olivier Teytaud.
- Europe Vladimir Kunc, Vyacheslav Kungurtsev (Czech Republic);
 Francesco Rinaldi, Damiano Zeffiro (Italy).
- Africa El Houcine Bergou (Morocco).
- Oceania Lindon Roberts (Australia).

Other collaborations

Alexandre Allauzen, Antonin Chambolle, Irène Waldspurger, Florian Yger.

Special people

The group @ EUROPT 2025

- Bastien Cavarretta (PhD 2024-)
- Sébastien Kerleau (PhD \rightarrow November 2025)
- Iskander Legheraba (PhD \rightarrow September 2025)
- Annette Dumas (Postdoc \rightarrow September 2025).

Special people

The group @ EUROPT 2025

- Bastien Cavarretta (PhD 2024-)
- Sébastien Kerleau (PhD \rightarrow November 2025)
- Iskander Legheraba (PhD \rightarrow September 2025)
- Annette Dumas (Postdoc \rightarrow September 2025).

Other group members

- Gaetano Agazzotti (Master, 2025-)
- Florentin Goyens (Postdoc, 2022 2024)
- Rémi Chan-Renous Legoubin (Master, 2021).
- Thomas Georges, Marc Kaspar, Christian Kayo, Eloi Martin, Luca Solbiati (Master, [2021,2024]).

Funding sources

PaRis Artificial Intelligence Research InstitutE

My research

Numerical optimization

• Design algorithms to minimize a (continuous) function.

- Prove theoretical guarantees.
- Validate practical performance.

My research

Numerical optimization

• Design algorithms to minimize a (continuous) function.

$$\min_{oldsymbol{x} \in \mathbb{R}^n} \operatorname{simize} f(oldsymbol{x}).$$

- Prove theoretical guarantees.
- Validate practical performance.

Recurring theme: Complexity analysis in nonconvex settings.

6

Nonconvex setting

Main problem

$$\mathop{\mathsf{minimize}}_{{\boldsymbol{x}} \in \mathbb{R}^n} f({\boldsymbol{x}})$$

f smooth (\mathcal{C}^1 or \mathcal{C}^2) and nonconvex.

7

Nonconvex setting

Main problem

$$\mathop{\mathsf{minimize}}_{{\boldsymbol{x}} \in \mathbb{R}^n} f({\boldsymbol{x}})$$

f smooth (\mathcal{C}^1 or \mathcal{C}^2) and nonconvex.

- NP-hard to solve, even locally.
- Settle to find approximate stationary points.

Nonconvex setting

Main problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \operatorname{imize} f(\boldsymbol{x})$$

f smooth (\mathcal{C}^1 or \mathcal{C}^2) and nonconvex.

- NP-hard to solve, even locally.
- Settle to find approximate stationary points.

Approximate stationary points

First-order For $\epsilon \in (0,1)$,

$$\|\nabla f(\boldsymbol{x})\| \le \epsilon.$$

Second-order For $\epsilon, \epsilon_H \in (0,1)^2$,

$$\|\nabla f(\boldsymbol{x})\| \le \epsilon, \qquad \nabla^2 f(\boldsymbol{x}) \succeq -\epsilon_H \boldsymbol{I}.$$

Complexity analysis

Problem minimize_{$x \in \mathbb{R}^n$} f(x).

Solving the problem

- Algorithm Iterative process $\{x_0, x_1, \dots\}$.
- ullet Cost Iterations, evaluations of f and derivatives, etc.

Complexity analysis

Problem minimize $x \in \mathbb{R}^n f(x)$.

Solving the problem

- Algorithm Iterative process $\{x_0, x_1, \dots\}$.
- Cost Iterations, evaluations of f and derivatives, etc.

Complexity

Given ϵ, ϵ_H and an algorithm $\{x_j\}_j$, find worst-case cost of the algorithm to reach x_J such that

- $\|\nabla f(\boldsymbol{x}_J)\| \le \epsilon, \quad \nabla^2 f(\boldsymbol{x}_J) \succeq -\epsilon_H \boldsymbol{I}.$

3

Canonical example: Gradient descent

```
Input x_0 \in \mathbb{R}^n.
For j = 0, 1, 2, \dots
```

- Compute $\alpha_j > 0$.
- Set $x_{j+1} = x_j \alpha_j \nabla f(x_j)$.

Canonical example: Gradient descent

```
Input x_0 \in \mathbb{R}^n.
For j = 0, 1, 2, \dots
```

- Compute $\alpha_j > 0$.
- Set $\boldsymbol{x}_{j+1} = \boldsymbol{x}_j \alpha_j \nabla f(\boldsymbol{x}_j)$.
- Stepsize α_i : Chosen constant or with line search.
- Cost Iterations/Calls to ∇f + Calls to f (Line search).

Complexity of gradient descent

Gradient descent $x_{j+1} = x_j - \alpha_j \nabla f(x_j)$.

Goal $\|\nabla f(\boldsymbol{x})\| \leq \epsilon$.

Complexity theorem

Assume ∇f Lipschitz continuous, f bounded below. Then the method runs in at most

$$\mathcal{O}(\epsilon^{-2})$$

iterations/calls to ∇f .

Complexity of gradient descent

Gradient descent $x_{j+1} = x_j - \alpha_j \nabla f(x_j)$.

Goal $\|\nabla f(\boldsymbol{x})\| \leq \epsilon$.

Complexity theorem

Assume ∇f Lipschitz continuous, f bounded below. Then the method runs in at most

$$\mathcal{O}(\epsilon^{-2})$$

iterations/calls to ∇f .

- Holds for fixed/adaptive α_j choices.
- With line search, cost in calls to f is also $\mathcal{O}(\epsilon^{-2})$.
- ullet Sharp bounds in terms of ϵ .

- Newton-type methods
 - Obtain sharp complexity with Newton steps.
 - Study special classes of nonconvex problems.

- Newton-type methods
 - Obtain sharp complexity with Newton steps.
 - Study special classes of nonconvex problems.
- Conjugate gradient methods
 - Restart conditions in nonlinear case.
 - Checks to detect nonconvex behavior.

- Newton-type methods
 - Obtain sharp complexity with Newton steps.
 - Study special classes of nonconvex problems.
- Conjugate gradient methods
 - Restart conditions in nonlinear case.
 - Checks to detect nonconvex behavior.
- Derivative-free methods
 - Improve complexity with randomness.
 - Use geometry to handle difficult settings.

- Newton-type methods
 - Obtain sharp complexity with Newton steps.
 - Study special classes of nonconvex problems.
- Conjugate gradient methods
 - Restart conditions in nonlinear case.
 - Checks to detect nonconvex behavior.
- Derivative-free methods
 - Improve complexity with randomness.
 - Use geometry to handle difficult settings.

This presentation: Focus on contributions with students/postdocs.

Outline

- Newton-type methods
- Conjugate gradient methods
- Oirect-search methods
- Perspectives

Outline

- Newton-type methods
- Conjugate gradient methods
- Direct-search methods
- 4 Perspectives

Problem setup

$$\mathop{\mathrm{minimize}}_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$$

 $f \in \mathcal{C}^2$ bounded below and nonconvex.

Problem setup

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \operatorname{imize} f(\boldsymbol{x})$$

 $f \in \mathcal{C}^2$ bounded below and nonconvex.

Goal: Reach (ϵ, ϵ_H) -point

$$\|\nabla f(\boldsymbol{x})\| \leq \epsilon$$
 and $\nabla^2 f(\boldsymbol{x}) \succeq -\epsilon_H \boldsymbol{I}$.

- For convex functions: Second condition always true⇒ Close to a global minimum!
- For nonconvex functions: Depends on the function landscape.

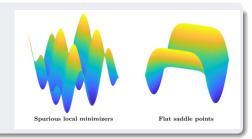
Landscape in nonconvex optimization

Goal Reach (ϵ, ϵ_H) -points

Bad instances

 (ϵ,ϵ_H) -points can be close to

- Local, non-global minima.
- High-order saddle points.



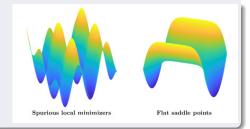
Landscape in nonconvex optimization

Goal Reach (ϵ, ϵ_H) -points

Bad instances

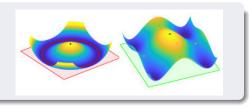
 (ϵ,ϵ_H) -points can be close to

- Local, non-global minima.
- High-order saddle points.



Nice instances

- (ϵ, ϵ_H) -points close to local minima.
- All local minima are global.



Figures: J. Wright and Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models, 2022.

Nicest case in optimization: Strongly convex functions

• $f: \mathbb{R}^n \to \mathbb{R}$ \mathcal{C}^2 is μ -strongly convex if

$$\nabla^2 f(\boldsymbol{x}) \succeq \mu \boldsymbol{I}.$$

• Unique minimum $x^* \in \mathbb{R}^n$.

One consequence of μ -strong convexity

For any $\gamma > 0$,

$$\|\nabla f(\boldsymbol{x})\| \le \gamma \quad \Rightarrow \quad \|\boldsymbol{x} - \boldsymbol{x}^*\| \le \frac{2\gamma}{\mu}.$$

Strict saddle functions

Definition (Adapted from Ge et al '17)

f is $(\gamma, \lambda, \mu, \delta)$ -strict saddle with $\gamma, \lambda, \mu, \delta > 0$ if at any $x \in \mathbb{R}^n$, one of the above holds:

- $\lambda_{\min}\left(\nabla^2 f(\boldsymbol{x})\right) \leq -\beta;$
- 3 There exists x^* local minimum of f such that

$$\|\boldsymbol{x} - \boldsymbol{x}^*\| \le \delta$$
 and $\nabla^2 f(\boldsymbol{y}) \succeq \gamma \boldsymbol{I} \succ 0$ $\forall \boldsymbol{y}, \|\boldsymbol{y} - \boldsymbol{x}^*\| \le 2\delta$.

Strict saddle functions

Definition (Adapted from Ge et al '17)

f is $(\gamma, \lambda, \mu, \delta)$ -strict saddle with $\gamma, \lambda, \mu, \delta > 0$ if at any $x \in \mathbb{R}^n$, one of the above holds:

- $\lambda_{\min}\left(\nabla^2 f(\boldsymbol{x})\right) \leq -\beta;$
- 3 There exists x^* local minimum of f such that

$$\|\boldsymbol{x} - \boldsymbol{x}^*\| \le \delta$$
 and $\nabla^2 f(\boldsymbol{y}) \succeq \gamma \boldsymbol{I} \succ 0 \quad \forall \boldsymbol{y}, \ \|\boldsymbol{y} - \boldsymbol{x}^*\| \le 2\delta$.

- Similar in spirit to phase/regional complexity frameworks.
- Includes strongly convex as a special case.

Trust region for minimize $_{m{x} \in \mathbb{R}^n} f(m{x})$

Inputs ${\boldsymbol x}_0 \in \mathbb{R}^n$, $\Delta_0 > 0$, $\eta > 0$.

Trust region for minimize $_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$

Inputs $\boldsymbol{x}_0 \in \mathbb{R}^n$, $\Delta_0 > 0$, $\eta > 0$.

For j = 0, 1, 2, ...

① Define $m_j({m x}_j+{m s}):=
abla f({m x}_j)^{\mathrm T}{m s}+rac{1}{2}{m s}^{\mathrm T}
abla^2 f({m x}_j){m s}$ and compute

$$s_j \in \operatorname*{argmin} m_j(x_j + s).$$
 $\|s\| \le \Delta_j$

Trust region for minimize $_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$

Inputs $\boldsymbol{x}_0 \in \mathbb{R}^n$, $\Delta_0 > 0$, $\eta > 0$.

For j = 0, 1, 2, ...

① Define $m_j({m x}_j+{m s}):=
abla f({m x}_j)^{
m T}{m s}+rac{1}{2}{m s}^{
m T}
abla^2 f({m x}_j){m s}$ and compute

$$s_j \in \operatorname*{argmin} m_j(x_j + s).$$
 $\|s\| \le \Delta_j$

2 Compute $\rho_j = \frac{f(\boldsymbol{x}_j) - f(\boldsymbol{x}_j + \boldsymbol{s}_j)}{m_j(\boldsymbol{x}_j) - m_j(\boldsymbol{x}_j + \boldsymbol{s}_j)}$.

Trust region for minimize $_{oldsymbol{x} \in \mathbb{R}^n} f(oldsymbol{x})$

Inputs $\boldsymbol{x}_0 \in \mathbb{R}^n$, $\Delta_0 > 0$, $\eta > 0$.

For j = 0, 1, 2, ...

 $\bullet \ \, \mathsf{Define} \,\, m_j({\bm x}_j+{\bm s}) := \nabla f({\bm x}_j)^{\mathrm T} {\bm s} + \tfrac12 {\bm s}^{\mathrm T} \nabla^2 f({\bm x}_j) {\bm s} \,\, \mathsf{and} \,\, \mathsf{compute}$

$$s_j \in \operatorname*{argmin} m_j(x_j + s).$$
 $\|s\| \le \Delta_j$

- 2 Compute $\rho_j = \frac{f(\boldsymbol{x}_j) f(\boldsymbol{x}_j + \boldsymbol{s}_j)}{m_j(\boldsymbol{x}_j) m_j(\boldsymbol{x}_j + \boldsymbol{s}_j)}$.
- ullet If $ho_j \geq \eta$, set $oldsymbol{x}_{j+1} = oldsymbol{x}_j + oldsymbol{s}_j$ and $\Delta_{j+1} = 2\Delta_j$.
- **①** Otherwise, set $x_{j+1} = x_j$ and $\Delta_{j+1} = 0.5\Delta_j$.

Trust region for minimize $_{m{x} \in \mathbb{R}^n} f(m{x})$

Inputs $\boldsymbol{x}_0 \in \mathbb{R}^n$, $\Delta_0 > 0$, $\eta > 0$.

For j = 0, 1, 2, ...

 $\bullet \ \, \mathsf{Define} \,\, m_j({\bm x}_j+{\bm s}) := \nabla f({\bm x}_j)^{\mathrm T} {\bm s} + \tfrac12 {\bm s}^{\mathrm T} \nabla^2 f({\bm x}_j) {\bm s} \,\, \mathsf{and} \,\, \mathsf{compute}$

$$s_j \in \operatorname*{argmin} m_j(x_j + s).$$
 $\|s\| \le \Delta_j$

- $\text{ Compute } \rho_j = \frac{f(\boldsymbol{x}_j) f(\boldsymbol{x}_j + \boldsymbol{s}_j)}{m_j(\boldsymbol{x}_j) m_j(\boldsymbol{x}_j + \boldsymbol{s}_j)}.$
- ullet If $ho_j \geq \eta$, set $oldsymbol{x}_{j+1} = oldsymbol{x}_j + oldsymbol{s}_j$ and $\Delta_{j+1} = 2\Delta_j$.
- **①** Otherwise, set $x_{j+1} = x_j$ and $\Delta_{j+1} = 0.5\Delta_j$.
 - No Hessian term in m_j : Gradient descent.
 - Cost Iterations.

Complexity results for trust region

Goal
$$\|\nabla f(\boldsymbol{x}_J)\| \leq \epsilon$$
 and $\nabla^2 f(\boldsymbol{x}_J) \succeq -\epsilon_H \boldsymbol{I}$.

General nonconvex f

$$J = \mathcal{O}\left(\max\{\epsilon^{-2}, \epsilon_H^{-3}\}\right).$$

Strict saddle f (w/ Florentin Goyens)

If f is $(\gamma, \lambda, \mu, \delta)$ -strict saddle,

$$J = J_f + J_{\epsilon}, \qquad \left\{ \begin{array}{rcl} J_f & = & \mathcal{O}\left(\max\left\{\gamma^{-2}\lambda^{-1}, \gamma^{-2}\mu^{-1}, \lambda^{-3}, \mu^{-3}, \mu^{-2}\delta^{-1}\right\}\right) \\ J_{\epsilon} & = & \log\log\left[\mathcal{O}\left(\mu\epsilon^{-1}\right)\right]. \end{array} \right.$$

Complexity results for trust region

Goal
$$\|\nabla f(\boldsymbol{x}_J)\| \leq \epsilon$$
 and $\nabla^2 f(\boldsymbol{x}_J) \succeq -\epsilon_H \boldsymbol{I}$.

General nonconvex f

$$J = \mathcal{O}\left(\max\{\epsilon^{-2}, \epsilon_H^{-3}\}\right).$$

Strict saddle f (w/ Florentin Goyens)

If f is $(\gamma, \lambda, \mu, \delta)$ -strict saddle,

$$J = J_f + J_{\epsilon}, \qquad \left\{ \begin{array}{rcl} J_f & = & \mathcal{O}\left(\max\left\{\gamma^{-2}\lambda^{-1}, \gamma^{-2}\mu^{-1}, \lambda^{-3}, \mu^{-3}, \mu^{-2}\delta^{-1}\right\}\right) \\ J_{\epsilon} & = & \log\log\left[\mathcal{O}\left(\mu\epsilon^{-1}\right)\right]. \end{array} \right.$$

Complexity results for trust region

Goal
$$\|\nabla f(\boldsymbol{x}_J)\| \leq \epsilon$$
 and $\nabla^2 f(\boldsymbol{x}_J) \succeq -\epsilon_H \boldsymbol{I}$.

General nonconvex f

$$J = \mathcal{O}\left(\max\{\epsilon^{-2}, \epsilon_H^{-3}\}\right).$$

Strict saddle f (w/ Florentin Goyens)

If f is $(\gamma, \lambda, \mu, \delta)$ -strict saddle,

$$J = J_f + J_{\epsilon}, \qquad \left\{ \begin{array}{rcl} J_f & = & \mathcal{O}\left(\max\left\{\gamma^{-2}\lambda^{-1}, \gamma^{-2}\mu^{-1}, \lambda^{-3}, \mu^{-3}, \mu^{-2}\delta^{-1}\right\}\right) \\ J_{\epsilon} & = & \log\log\left[\mathcal{O}\left(\mu\epsilon^{-1}\right)\right]. \end{array} \right.$$

- Second term vanishes for large ϵ .
- $\log \log \deg$ dependency in ϵ not on ϵ_H (\sim strongly convex case)!

Improved complexity using Newton steps

Improved complexity using Newton steps

For generic nonconvex f, regularize trust-region models!
 (w/ F. E. Curtis, D. P. Robinson, S. J. Wright).

$$\mathcal{O}\left(\max\{\epsilon^{-2}, \epsilon_H^{-3}\}\right) \longrightarrow \mathcal{O}\left(\max\{\epsilon^{-2}\epsilon_H, \epsilon_H^{-3}\}\right).$$

Improved complexity using Newton steps

For generic nonconvex f, regularize trust-region models!
 (w/ F. E. Curtis, D. P. Robinson, S. J. Wright).

$$\mathcal{O}\left(\max\{\epsilon^{-2}, \epsilon_H^{-3}\}\right) \longrightarrow \mathcal{O}\left(\max\{\epsilon^{-2}\epsilon_H, \epsilon_H^{-3}\}\right).$$

• Line-search variants (w/ M. O'Neill, S. J. Wright).

Improved complexity using Newton steps

For generic nonconvex f, regularize trust-region models!
 (w/ F. E. Curtis, D. P. Robinson, S. J. Wright).

$$\mathcal{O}\left(\max\{\epsilon^{-2}, \epsilon_H^{-3}\}\right) \longrightarrow \mathcal{O}\left(\max\{\epsilon^{-2}\epsilon_H, \epsilon_H^{-3}\}\right).$$

• Line-search variants (w/ M. O'Neill, S. J. Wright).

Structured nonconvex problems

Improved complexity using Newton steps

For generic nonconvex f, regularize trust-region models!
 (w/ F. E. Curtis, D. P. Robinson, S. J. Wright).

$$\mathcal{O}\left(\max\{\epsilon^{-2}, \epsilon_H^{-3}\}\right) \longrightarrow \mathcal{O}\left(\max\{\epsilon^{-2}\epsilon_H, \epsilon_H^{-3}\}\right).$$

Line-search variants (w/ M. O'Neill, S. J. Wright).

Structured nonconvex problems

• Manifold constraints: minimize $_{x \in \mathcal{M}} f(x)$, $\mathcal{M} = \mathbb{S}^{n-1}, \mathbb{C}^n, \dots$ (w/ Florentin Goyens)

Improved complexity using Newton steps

For generic nonconvex f, regularize trust-region models!
 (w/ F. E. Curtis, D. P. Robinson, S. J. Wright).

$$\mathcal{O}\left(\max\{\epsilon^{-2}, \epsilon_H^{-3}\}\right) \longrightarrow \mathcal{O}\left(\max\{\epsilon^{-2}\epsilon_H, \epsilon_H^{-3}\}\right).$$

Line-search variants (w/ M. O'Neill, S. J. Wright).

Structured nonconvex problems

- Manifold constraints: minimize $_{x \in \mathcal{M}} f(x)$, $\mathcal{M} = \mathbb{S}^{n-1}, \mathbb{C}^n, \dots$ (w/ Florentin Goyens)
- Least-squares problems: minimize $_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{r}(\boldsymbol{x})\|^2$. (PhD Iskander Legheraba).

Outline

- Newton-type methods
- Conjugate gradient methods
- 3 Direct-search methods
- Perspectives

Setup

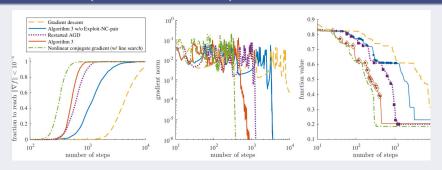
Problem minimize $_{{\boldsymbol x}\in \mathbb{R}^n} f({\boldsymbol x})$, f \mathcal{C}^1 nonconvex.

Goal $\|\nabla f(\boldsymbol{x})\| \leq \epsilon$.

Problem minimize $\mathbf{x} \in \mathbb{R}^n f(\mathbf{x})$, $f \mathcal{C}^1$ nonconvex.

Goal $\|\nabla f(\boldsymbol{x})\| \leq \epsilon$.

An observation (from Carmon et al '17)



- Gradient descent (for $f \mathcal{C}^1$): $\mathcal{O}(\epsilon^{-2})$ calls to ∇f .
- Algorithm 3/AGD (for f C^2): $\tilde{\mathcal{O}}(\epsilon^{-7/4})$ calls to ∇f .
- All outperformed by standard nonlinear CG on a nonconvex regression task!

Init $x_0 \in \mathbb{R}^n$, $(\eta, \theta) \in (0, 1)^2$, $d_0 = -\nabla f(x_0)$. For $j = 0, 1, 2, \dots$

Init $x_0 \in \mathbb{R}^n$, $(\eta, \theta) \in (0, 1)^2$, $d_0 = -\nabla f(x_0)$.

For j = 0, 1, 2, ...

$$f(\boldsymbol{x}_j + \alpha_j \boldsymbol{d}_j) < f(\boldsymbol{x}_j) + \eta \alpha_j \nabla f(\boldsymbol{x}_j)^{\mathrm{T}} \boldsymbol{d}_j.$$

Init $x_0 \in \mathbb{R}^n$, $(\eta, \theta) \in (0, 1)^2$, $d_0 = -\nabla f(x_0)$.

For j = 0, 1, 2, ...

• Compute $\alpha_j \in \{1, \theta, \theta^2, \dots\}$ such that

$$f(\boldsymbol{x}_j + \alpha_j \boldsymbol{d}_j) < f(\boldsymbol{x}_j) + \eta \alpha_j \nabla f(\boldsymbol{x}_j)^{\mathrm{T}} \boldsymbol{d}_j.$$

Init $x_0 \in \mathbb{R}^n$, $(\eta, \theta) \in (0, 1)^2$, $d_0 = -\nabla f(x_0)$.

For j = 0, 1, 2, ...

$$f(\boldsymbol{x}_j + \alpha_j \boldsymbol{d}_j) < f(\boldsymbol{x}_j) + \eta \alpha_j \nabla f(\boldsymbol{x}_j)^{\mathrm{T}} \boldsymbol{d}_j.$$

- **3** Set $d_{j+1} = -\nabla f(x_{j+1}) + \beta_{j+1} d_j$.

Init $x_0 \in \mathbb{R}^n$, $(\eta, \theta) \in (0, 1)^2$, $d_0 = -\nabla f(x_0)$.

For j = 0, 1, 2, ...

$$f(\boldsymbol{x}_j + \alpha_j \boldsymbol{d}_j) < f(\boldsymbol{x}_j) + \eta \alpha_j \nabla f(\boldsymbol{x}_j)^{\mathrm{T}} \boldsymbol{d}_j.$$

- **3** Set $d_{j+1} = -\nabla f(x_{j+1}) + \beta_{j+1} d_j$.
- $\bullet \quad \text{If } \nabla f(\boldsymbol{x}_{j+1})^{\mathrm{T}}\boldsymbol{d}_{j+1} \geq 0 \text{, set } \boldsymbol{d}_{j+1} = -\nabla f(\boldsymbol{x}_{j+1}).$

Init
$$x_0 \in \mathbb{R}^n$$
, $(\eta, \theta) \in (0, 1)^2$, $d_0 = -\nabla f(x_0)$.

For j = 0, 1, 2, ...

$$f(\boldsymbol{x}_j + \alpha_j \boldsymbol{d}_j) < f(\boldsymbol{x}_j) + \eta \alpha_j \nabla f(\boldsymbol{x}_j)^{\mathrm{T}} \boldsymbol{d}_j.$$

- **3** Set $d_{j+1} = -\nabla f(x_{j+1}) + \beta_{j+1} d_j$.
- $\bullet \quad \text{If } \nabla f(\boldsymbol{x}_{j+1})^{\mathrm{T}}\boldsymbol{d}_{j+1} \geq 0, \text{ set } \boldsymbol{d}_{j+1} = -\nabla f(\boldsymbol{x}_{j+1}).$
- β_{j+1} chosen using standard formulas (PRP+), restart condition practical.
 - No complexity guarantees!

Init
$$x_0 \in \mathbb{R}^n$$
, $(\eta, \theta) \in (0, 1)^2$, $d_0 = -\nabla f(x_0)$.
For $j = 0, 1, 2, ...$

$$f(\boldsymbol{x}_j + \alpha_j \boldsymbol{d}_j) < f(\boldsymbol{x}_j) + \eta \alpha_j \nabla f(\boldsymbol{x}_j)^{\mathrm{T}} \boldsymbol{d}_j.$$

- **3** Set $d_{j+1} = -\nabla f(x_{j+1}) + \beta_{j+1} d_j$.
- **1** If $\nabla f(x_{j+1})^{\mathrm{T}} d_{j+1} \geq 0$, set $d_{j+1} = -\nabla f(x_{j+1})$.
- β_{j+1} chosen using standard formulas (PRP+), restart condition practical.
 - No complexity guarantees!
- Our approach Change restart condition!

Nonlinear CG with restart conditions

Init $x_0 \in \mathbb{R}^n$, $(\eta, \theta) \in (0, 1)^2$, $d_0 = -\nabla f(x_0)$.

For j = 0, 1, 2, ...

$$f(\boldsymbol{x}_j + \alpha_j \boldsymbol{d}_j) < f(\boldsymbol{x}_j) + \eta \alpha_j \nabla f(\boldsymbol{x}_j)^{\mathrm{T}} \boldsymbol{d}_j.$$

- **3** Set $d_{j+1} = -\nabla f(x_{j+1}) + \beta_{j+1} d_j$.

Nonlinear CG with restart conditions

Init $x_0 \in \mathbb{R}^n$, $(\eta, \theta) \in (0, 1)^2$, $d_0 = -\nabla f(x_0)$, $p \ge 0$, $\kappa \in (0, 1)$. For $j = 0, 1, 2, \dots$

$$f(\boldsymbol{x}_j + \alpha_j \boldsymbol{d}_j) < f(\boldsymbol{x}_j) + \eta \alpha_j \nabla f(\boldsymbol{x}_j)^{\mathrm{T}} \boldsymbol{d}_j.$$

- **3** Set $d_{j+1} = -\nabla f(x_{j+1}) + \beta_{j+1} d_j$.
- $\text{ If } \nabla f(\boldsymbol{x}_{j+1})^{\mathrm{T}} \boldsymbol{d}_{j+1} \geq -\kappa \|\nabla f(\boldsymbol{x}_{j+1})\|^{1+p} \text{ or } \|\boldsymbol{d}_{j+1}\| \geq \kappa \|\nabla f(\boldsymbol{x}_{j+1})\|^{\frac{1+p}{2}},$ set $\boldsymbol{d}_{j+1} = -\nabla f(\boldsymbol{x}_{j+1}).$

Nonlinear CG with restart conditions

Init $x_0 \in \mathbb{R}^n$, $(\eta, \theta) \in (0, 1)^2$, $d_0 = -\nabla f(x_0)$, $p \ge 0$, $\kappa \in (0, 1)$. For $j = 0, 1, 2, \dots$

$$f(\boldsymbol{x}_j + \alpha_j \boldsymbol{d}_j) < f(\boldsymbol{x}_j) + \eta \alpha_j \nabla f(\boldsymbol{x}_j)^{\mathrm{T}} \boldsymbol{d}_j.$$

- **3** Set $d_{j+1} = -\nabla f(x_{j+1}) + \beta_{j+1} d_j$.
- $\text{ If } \nabla f(\boldsymbol{x}_{j+1})^{\mathrm{T}} \boldsymbol{d}_{j+1} \geq -\kappa \|\nabla f(\boldsymbol{x}_{j+1})\|^{1+p} \text{ or } \|\boldsymbol{d}_{j+1}\| \geq \kappa \|\nabla f(\boldsymbol{x}_{j+1})\|^{\frac{1+p}{2}},$ set $\boldsymbol{d}_{j+1} = -\nabla f(\boldsymbol{x}_{j+1}).$
 - Restarted iterations: Take gradient steps.
 - Non-restarted: Guarantees on step quality.

Main result

Goal $\|\nabla f(\boldsymbol{x}_J)\| \leq \epsilon$.

Theorem (w/ Rémi Chan-Renous-Legoubin)

For restarted NCG, J is at most

$$\underbrace{\mathcal{O}(\epsilon^{-2})}_{\text{restarted}} + \underbrace{\mathcal{O}(\epsilon^{-(1+p)})}_{\text{non restarted}}$$

Main result

Goal $\|\nabla f(\boldsymbol{x}_J)\| \leq \epsilon$.

Theorem (w/ Rémi Chan-Renous-Legoubin)

For restarted NCG, J is at most

$$\underbrace{\mathcal{O}(\epsilon^{-2})}_{\text{restarted}} + \underbrace{\mathcal{O}(\epsilon^{-(1+p)})}_{\text{non restarted}}$$

- The bound is still $\mathcal{O}(\epsilon^{-2})$ (like gradient descent)
- But better results for non-restarted iterations for $p \in [0,1)!$

Main result

Goal $\|\nabla f(\boldsymbol{x}_J)\| \leq \epsilon$.

Theorem (w/ Rémi Chan-Renous-Legoubin)

For restarted NCG, J is at most

$$\underbrace{\mathcal{O}(\epsilon^{-2})}_{\text{restarted}} + \underbrace{\mathcal{O}(\epsilon^{-(1+p)})}_{\text{non restarted}}$$

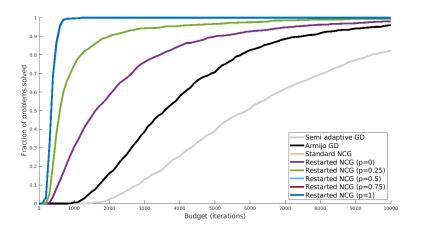
- The bound is still $\mathcal{O}(\epsilon^{-2})$ (like gradient descent)
- But better results for non-restarted iterations for $p \in [0,1)!$

How do restarted methods behave in practice?

Data profiles

Comparison

- Two gradient-based methods, Standard linear CG, restarted variants.
- Nonconvex regression instances from (Carmon et al '17).



More contributions on conjugate gradient methods

Restarted methodology (w/ A. S. Berahas, M. O'Neill)

- Applied to quasi-Newton schemes.
- Adapted to noisy optimization.
- → Restarting can be applied to yield complexity guarantees without harming the practical performance!

More contributions on conjugate gradient methods

Restarted methodology (w/ A. S. Berahas, M. O'Neill)

- Applied to quasi-Newton schemes.
- Adapted to noisy optimization.
- → Restarting can be applied to yield complexity guarantees without harming the practical performance!

Special case: quadratic functions (w/ M. O'Neill, S. J. Wright)

- Nonconvex quadratics from Newton-type methods.
- Can get complexity for linear conjugate gradient applied to those problems.
- → Extra checks in algorithms allow to detect and exploit nonconvexity!

Outline

- Newton-type methods
- Conjugate gradient methods
- 3 Direct-search methods
- Perspectives

Derivative-free paradigm

Blackbox/Derivative-free optimization

- Derivatives unavailable for algorithmic use.
- ullet Only access to values of f.
- Those can take a long time to compute!

Derivative-free paradigm

minimize
$$f(x)$$
, $f C^1$ nonconvex.

Blackbox/Derivative-free optimization

- Derivatives unavailable for algorithmic use.
- ullet Only access to values of f.
- Those can take a long time to compute!

Complexity aspects

- Goal Find x_k such that $\|\nabla f(x_k)\| \leq \epsilon$.
- Cost Number of function evaluations.

Inputs $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$. For $j = 0, 1, \dots$

• Choose $\mathcal{D}_j \subset \mathbb{R}^n$.

Inputs $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$. For $j = 0, 1, \dots$

- Choose $\mathcal{D}_i \subset \mathbb{R}^n$.
- ullet If $\exists \ oldsymbol{d}_j \in \mathcal{D}_j$ such that

$$f(\boldsymbol{x}_j + \alpha_j \, \boldsymbol{d}_j) < f(\boldsymbol{x}_j) - \alpha_j^2 \|\boldsymbol{d}_j\|^2$$

set
$$x_{j+1} := x_j + \alpha_j d_j$$
, $\alpha_{j+1} := 2\alpha_j$.

Inputs $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$. For j = 0, 1, ...

- Choose $\mathcal{D}_i \subset \mathbb{R}^n$.
- ullet If $\exists \ oldsymbol{d}_j \in \mathcal{D}_j$ such that

$$f(\boldsymbol{x}_j + \alpha_j \, \boldsymbol{d}_j) < f(\boldsymbol{x}_j) - \alpha_j^2 \|\boldsymbol{d}_j\|^2$$

set
$$x_{j+1} := x_j + \alpha_j d_j$$
, $\alpha_{j+1} := 2\alpha_j$.

ullet Otherwise, set $m{x}_{j+1} := m{x}_j$, $lpha_{j+1} := 0.5 lpha_j$.

Inputs $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$.

For j = 0, 1, ...

- Choose a PSS $\mathcal{D}_i \subset \mathbb{R}^n$.
- ullet If \exists $oldsymbol{d}_{i}\in\mathcal{D}_{i}$ such that

$$f(\boldsymbol{x}_j + \alpha_j \, \boldsymbol{d}_j) < f(\boldsymbol{x}_j) - \alpha_j^2 \|\boldsymbol{d}_j\|^2$$

set
$$\boldsymbol{x}_{j+1} := \boldsymbol{x}_j + \alpha_j \boldsymbol{d}_j$$
, $\alpha_{j+1} := 2\alpha_j$.

• Otherwise, set $x_{j+1} := x_j$, $\alpha_{j+1} := 0.5\alpha_j$.

Positive Spanning Set (PSS)

$$\mathcal{D} \subset \mathbb{R}^n \text{ PSS} \qquad \Longleftrightarrow \qquad \operatorname{cm}(\mathcal{D}) = \max_{\boldsymbol{d} \in \mathcal{D}} \min_{\|\boldsymbol{v}\| = 1} \frac{\boldsymbol{d}^{\mathrm{T}} \boldsymbol{v}}{\|\boldsymbol{d}\|} > 0.$$

 $cm(\mathcal{D})$: Cosine measure.

Complexity of deterministic direct search

Goal
$$\|\nabla f(\boldsymbol{x}_J)\| \leq \epsilon$$
.

Theorem

If $\mathcal{D}_j = \mathcal{D} \ \forall j$, the method takes at most

$$\mathcal{O}\left(|\mathcal{D}|\operatorname{cm}(\mathcal{D})^{-2}\epsilon^{-2}\right)$$

calls to f.

Complexity of deterministic direct search

Goal
$$\|\nabla f(\boldsymbol{x}_J)\| \leq \epsilon$$
.

Theorem

If $\mathcal{D}_j = \mathcal{D} \ \forall j$, the method takes at most

$$\mathcal{O}\left(|\mathcal{D}|\operatorname{cm}(\mathcal{D})^{-2}\epsilon^{-2}\right)$$

calls to f.

- $|\mathcal{D}|$ and $\operatorname{cm}(\mathcal{D})$ depend on dimension n!
- Best known bound: $\mathcal{O}(n^2 \epsilon^{-2})$.

Complexity of deterministic direct search

Goal $\|\nabla f(\boldsymbol{x}_J)\| \leq \epsilon$.

Theorem

If $\mathcal{D}_j = \mathcal{D} \ \forall j$, the method takes at most

$$\mathcal{O}\left(|\mathcal{D}|\operatorname{cm}(\mathcal{D})^{-2}\epsilon^{-2}\right)$$

calls to f.

- $|\mathcal{D}|$ and $\operatorname{cm}(\mathcal{D})$ depend on dimension n!
- Best known bound: $\mathcal{O}(n^2 \epsilon^{-2})$.

What if certain calls to f take too long to compute?

Direct search with stragglers

Inputs $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$.

For j = 0, 1, ...

- Choose $\mathcal{D}_i \subset \mathbb{R}^n$.
- ullet If \exists $d_j \in \mathcal{D}_j \setminus \mathcal{S}_j$ such that

$$f(\boldsymbol{x}_j + \alpha_j \, \boldsymbol{d}_j) < f(\boldsymbol{x}_j) - \alpha_j^2 \|\boldsymbol{d}_j\|^2$$

set
$$\boldsymbol{x}_{j+1} := \boldsymbol{x}_j + \alpha_j \boldsymbol{d}_j$$
, $\alpha_{j+1} := 2\alpha_j$.

- Otherwise, set $x_{j+1} := x_j$, $\alpha_{j+1} := 0.5\alpha_j$.
- S_j Unknown straggler evaluations (at most k).

Direct search with stragglers

Inputs $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$.

For j = 0, 1, ...

- Choose a PkSS $\mathcal{D}_i \subset \mathbb{R}^n$.
- ullet If \exists $d_j \in \mathcal{D}_j \setminus \mathcal{S}_j$ such that

$$f(\boldsymbol{x}_j + \alpha_j \, \boldsymbol{d}_j) < f(\boldsymbol{x}_j) - \alpha_j^2 \|\boldsymbol{d}_j\|^2$$

set
$$x_{j+1} := x_j + \alpha_j d_j$$
, $\alpha_{j+1} := 2\alpha_j$.

- Otherwise, set $x_{j+1} := x_j$, $\alpha_{j+1} := 0.5\alpha_j$.
- S_j Unknown straggler evaluations (at most k).
- Fix: Use richer \mathcal{D}_i s!

Positive k-spanning sets (PkSS)

Definition

 $\mathcal{D} \subset \mathbb{R}^n$ is a PkSS with k > 1 if

- Any $\mathcal{N} \subset \mathcal{D}$ with $|\mathcal{N}| = |\mathcal{D}| k + 1$ is a PSS.
- ullet Removing k-1 vectors from ${\mathcal D}$ does not change its PSS nature.

Positive k-spanning sets (PkSS)

Definition

 $\mathcal{D} \subset \mathbb{R}^n$ is a PkSS with $k \geq 1$ if

- Any $\mathcal{N} \subset \mathcal{D}$ with $|\mathcal{N}| = |\mathcal{D}| k + 1$ is a PSS.
- Removing k-1 vectors from $\mathcal D$ does not change its PSS nature.

The k-cosine measure (w/ W. Hare, G. Jarry-Bolduc, Sébastien Kerleau)

ullet For any $\mathcal{D}\subset\mathbb{R}^n$, the k-cosine measure of \mathcal{D} is

$$\operatorname{cm}_k(\mathcal{D}) = \min_{\substack{\mathcal{N} \subset \mathcal{D} \\ |\mathcal{N}| = |\mathcal{D}| - k + 1}} \operatorname{cm}(\mathcal{N}).$$

• $\mathcal{D} \ \mathsf{P}k\mathsf{SS} \Longleftrightarrow \mathrm{cm}_k(\mathcal{D}) > 0.$

Complexity of direct search with PkSSs

Goal $\|\nabla f(\boldsymbol{x}_J)\| \leq \epsilon$.

Theorem (PhD Sébastien Kerleau)

Suppose $\mathcal{D}_j = \mathcal{D}$ PkSS for all j. Then, the method takes at most

$$\mathcal{O}\left(|\mathcal{D}| \operatorname{cm}_k(\mathcal{D})^{-2} \epsilon^{-2}\right)$$

calls to f.

Complexity of direct search with PkSSs

Goal $\|\nabla f(\boldsymbol{x}_J)\| \leq \epsilon$.

Theorem (PhD Sébastien Kerleau)

Suppose $\mathcal{D}_j = \mathcal{D}$ PkSS for all j. Then, the method takes at most

$$\mathcal{O}\left(|\mathcal{D}| \ \operatorname{cm}_k(\mathcal{D})^{-2} \epsilon^{-2}\right)$$

calls to f.

- $|\mathcal{D}|$ and $\operatorname{cm}_k(\mathcal{D})$ depend on k and n.
- Best found bound: $\mathcal{O}(kn^2\epsilon^{-2})$.

Complexity and direct search

Randomized subspace variant (Roberts & Royer '23)

In progress: adding https://github.com/lindonroberts/directsearch inside Nevergrad.

In particular there is an excellent stochastic direct search method. I don't know exactly the algorithm (yet). Thanks guys for this excellent code!

Complexity and direct search

Randomized subspace variant (Roberts & Royer '23)

- Surveyed the area (Dzahini et al '25)
- ightarrow Dimension dependencies can be improved through randomization!

Complexity and direct search

Randomized subspace variant (Roberts & Royer '23)

- Surveyed the area (Dzahini et al '25)
- ightarrow Dimension dependencies can be improved through randomization!

Geometrical structures in direct search

Complexity and direct search

Randomized subspace variant (Roberts & Royer '23)

- Surveyed the area (Dzahini et al '25)
- → Dimension dependencies can be improved through randomization!

Geometrical structures in direct search

• Decomposition of PSSs along subspaces through graph theory arguments (Cornaz et al '25).

Complexity and direct search

Randomized subspace variant (Roberts & Royer '23)

- Surveyed the area (Dzahini et al '25)
- → Dimension dependencies can be improved through randomization!

Geometrical structures in direct search

- Decomposition of PSSs along subspaces through graph theory arguments (Cornaz et al '25).
- Generation of PkSSs through polytopes (Kerleau '25).

Complexity and direct search

Randomized subspace variant (Roberts & Royer '23)

- Surveyed the area (Dzahini et al '25)
- → Dimension dependencies can be improved through randomization!

Geometrical structures in direct search

- Decomposition of PSSs along subspaces through graph theory arguments (Cornaz et al '25).
- Generation of PkSSs through polytopes (Kerleau '25).
- → Discrete structures matter for direct search!

Outline

- Newton-type methods
- Conjugate gradient methods
- Oirect-search methods
- Perspectives

 ${\color{red}\textbf{Complexity}} \longrightarrow {\color{red}\textbf{Structures}}$

- Newton-type methods
 - Obtain sharp complexity with Newton steps.
 - Study special classes of nonconvex problems.
- Conjugate gradient methods
 - Restart conditions in nonlinear case.
 - Checks to detect nonconvex behavior.
- Derivative-free methods
 - Improve complexity with randomness.
 - Use geometry to handle difficult settings.

- Newton-type methods
 - Obtain sharp complexity with Newton steps.
 Optimal bounds within the class of second-order methods
 - Study special classes of nonconvex problems.
 Structured nonconvexity
- Conjugate gradient methods
 - Restart conditions in nonlinear case.
 - Checks to detect nonconvex behavior.
- Derivative-free methods
 - Improve complexity with randomness.
 - Use geometry to handle difficult settings.

- Newton-type methods
 - Obtain sharp complexity with Newton steps.
 Optimal bounds within the class of second-order methods
 - Study special classes of nonconvex problems.
 Structured nonconvexity
- Conjugate gradient methods
 - Restart conditions in nonlinear case.
 Complexity obtained without hurting performance
 - Checks to detect nonconvex behavior.
 Leverage algorithmic structure
- Derivative-free methods
 - Improve complexity with randomness.
 - Use geometry to handle difficult settings.

- Newton-type methods
 - Obtain sharp complexity with Newton steps.
 Optimal bounds within the class of second-order methods
 - Study special classes of nonconvex problems.
 Structured nonconvexity
- Conjugate gradient methods
 - Restart conditions in nonlinear case.
 Complexity obtained without hurting performance
 - Checks to detect nonconvex behavior.
 Leverage algorithmic structure
- Derivative-free methods
 - Improve complexity with randomness.
 Subspace variants with complexity
 - Use geometry to handle difficult settings.
 Graph/Polytope structures

Goal: Optimize moves during renovation (with S. Airiau, L. Galand, J. Lang, S. Toubaline)

Goal: Optimize moves during renovation (with S. Airiau, L. Galand, J. Lang, S. Toubaline)

Linear Program (simplicity)→ Other models are nonconvex!

Goal: Optimize moves during renovation (with S. Airiau, L. Galand, J. Lang, S. Toubaline)

- Linear Program (simplicity) → Other models are nonconvex!
- Continuous LP solvers struggle→ Revisit algorithms!

Goal: Optimize moves during renovation (with S. Airiau, L. Galand, J. Lang, S. Toubaline)

- Linear Program (simplicity)→ Other models are nonconvex!
- Continuous LP solvers struggle→ Revisit algorithms!
- Model parameters to tune→ Derivative-free methods!

Goal: Optimize moves during renovation (with S. Airiau, L. Galand, J. Lang, S. Toubaline)

- Linear Program (simplicity) → Other models are nonconvex!
- Continuous LP solvers struggle→ Revisit algorithms!
- Model parameters to tune→ Derivative-free methods!

Complexity and structure key to practical efficiency

Thank you for your attention!