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My research

Numerical optimization
Design algorithms to minimize a (continuous) function.

minimize
x∈Rn

f(x).

Prove theoretical guarantees.
Validate practical performance.

Recurring theme: Complexity analysis in nonconvex settings.
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Nonconvex setting

Main problem
minimize

x∈Rn
f(x)

f smooth (C1 or C2) and nonconvex.

NP-hard to solve, even locally.
Settle to find approximate stationary points.

Approximate stationary points

First-order For ϵ ∈ (0, 1),

∥∇f(x)∥ ≤ ϵ.

Second-order For ϵ, ϵH ∈ (0, 1)2,

∥∇f(x)∥ ≤ ϵ, ∇2f(x) ⪰ −ϵH I.
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Complexity analysis

Problem minimizex∈Rn f(x).

Solving the problem

Algorithm Iterative process {x0,x1, . . . }.
Cost Iterations, evaluations of f and derivatives, etc.

Complexity

Given ϵ, ϵH and an algorithm {xj}j , find worst-case cost of the algorithm
to reach xJ such that

1 ∥∇f(xJ)∥ ≤ ϵ, or
2 ∥∇f(xJ)∥ ≤ ϵ, ∇2f(xJ) ⪰ −ϵH I.
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Canonical example: Gradient descent

Input x0 ∈ Rn.
For j = 0, 1, 2, . . .

Compute αj > 0.
Set xj+1 = xj − αj∇f(xj).

Stepsize αj : Chosen constant or with line search.
Cost Iterations/Calls to ∇f + Calls to f (Line search).
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Complexity of gradient descent

Gradient descent xj+1 = xj − αj ∇f(xj).

Goal ∥∇f(x)∥ ≤ ϵ.

Complexity theorem
Assume ∇f Lipschitz continuous, f bounded below. Then the method
runs in at most

O(ϵ−2)

iterations/calls to ∇f .

Holds for fixed/adaptive αj choices.
With line search, cost in calls to f is also O(ϵ−2).
Sharp bounds in terms of ϵ.
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Three axes of my research

Newton-type methods
Obtain sharp complexity with Newton steps.
Study special classes of nonconvex problems.

Conjugate gradient methods

Restart conditions in nonlinear case.
Checks to detect nonconvex behavior.

Derivative-free methods

Improve complexity with randomness.
Use geometry to handle difficult settings.

This presentation: Focus on contributions with students/postdocs.
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Outline

1 Newton-type methods

2 Conjugate gradient methods

3 Direct-search methods

4 Perspectives
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Problem setup

minimize
x∈Rn

f(x)

f ∈ C2 bounded below and nonconvex.

Goal: Reach (ϵ, ϵH)-point

∥∇f(x)∥ ≤ ϵ and ∇2f(x) ⪰ −ϵH I.

For convex functions: Second condition always true⇒ Close to a
global minimum!
For nonconvex functions: Depends on the function landscape.
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Landscape in nonconvex optimization

Goal Reach (ϵ, ϵH)-points

Bad instances
(ϵ, ϵH)-points can be close to

Local, non-global minima.
High-order saddle points.

Nice instances
(ϵ, ϵH)-points close to local
minima.
All local minima are global.

Figures: J. Wright and Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models, 2022.
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Nicest case in optimization: Strongly convex functions

f : Rn → R C2 is µ-strongly convex if

∇2f(x) ⪰ µ I.

Unique minimum x∗ ∈ Rn.

One consequence of µ-strong convexity
For any γ > 0,

∥∇f(x)∥ ≤ γ ⇒ ∥x− x∗∥ ≤ 2γ

µ
.
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Strict saddle functions

Definition (Adapted from Ge et al ’17)

f is (γ, λ, µ, δ)-strict saddle with γ, λ, µ, δ > 0 if at any x ∈ Rn, one of
the above holds:

1 ∥∇f(x)∥ ≥ γ;
2 λmin

(
∇2f(x)

)
≤ −β;

3 There exists x∗ local minimum of f such that

∥x− x∗∥ ≤ δ and ∇2f(y) ⪰ γI ≻ 0 ∀y, ∥y − x∗∥ ≤ 2δ.

Similar in spirit to phase/regional complexity frameworks.
Includes strongly convex as a special case.
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Trust region for minimizex∈Rn f(x)

Inputs x0 ∈ Rn, ∆0 > 0, η > 0.
For j = 0, 1, 2, . . .

1 Define mj(xj + s) := ∇f(xj)
Ts+ 1

2s
T∇2f(xj)s and compute

sj ∈ argmin
∥s∥≤∆j

mj(xj + s).

2 Compute ρj =
f(xj)−f(xj+sj)

mj(xj)−mj(xj+sj)
.

3 If ρj ≥ η, set xj+1 = xj + sj and ∆j+1 = 2∆j .
4 Otherwise, set xj+1 = xj and ∆j+1 = 0.5∆j .

No Hessian term in mj : Gradient descent.
Cost Iterations.
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Complexity results for trust region

Goal ∥∇f(xJ)∥ ≤ ϵ and ∇2f(xJ) ⪰ −ϵH I.

General nonconvex f

J = O
(
max{ϵ−2, ϵ−3

H }
)
.

Strict saddle f (w/ Florentin Goyens)
If f is (γ, λ, µ, δ)-strict saddle,

J = Jf + Jϵ,

 Jf = O
(
max

{
γ−2λ−1, γ−2µ−1, λ−3, µ−3, µ−2δ−1

})
Jϵ = log log

[
O
(
µϵ−1

)]
.

Second term vanishes for large ϵ.
log log dependency in ϵ not on ϵH (∼ strongly convex case)!
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More contributions on Newton-type methods

Improved complexity using Newton steps

For generic nonconvex f , regularize trust-region models!
(w/ F. E. Curtis, D. P. Robinson, S. J. Wright).

O
(
max{ϵ−2, ϵ−3

H }
)

−→ O
(
max{ϵ−2ϵH , ϵ−3

H }
)
.

Line-search variants (w/ M. O’Neill, S. J. Wright).

Structured nonconvex problems

Manifold constraints: minimizex∈M f(x), M = Sn−1,Cn, . . .
(w/ Florentin Goyens)

Least-squares problems: minimizex∈Rn f(x) = 1
2∥r(x)∥

2.
(PhD Iskander Legheraba).
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Setup
Problem minimizex∈Rn f(x), f C1 nonconvex. Goal ∥∇f(x)∥ ≤ ϵ.

An observation (from Carmon et al ’17)

Gradient descent (for f C1): O(ϵ−2) calls to ∇f .
Algorithm 3/AGD (for f C2): Õ(ϵ−7/4) calls to ∇f .
All outperformed by standard nonlinear CG on a nonconvex
regression task!
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Basic nonlinear CG framework

Init x0 ∈ Rn, (η, θ) ∈ (0, 1)2, d0 = −∇f(x0).
For j = 0, 1, 2, . . .

1 Compute αj ∈ {1, θ, θ2, . . . } such that

f(xj + αjdj) < f(xj) + ηαj∇f(xj)
Tdj .

2 Set xj+1 = xj + αjdj .
3 Set dj+1 = −∇f(xj+1) + βj+1dj .
4 If ∇f(xj+1)

Tdj+1 ≥ 0, set dj+1 = −∇f(xj+1).

βj+1 chosen using standard formulas (PRP+), restart condition
practical.
No complexity guarantees!
Our approach Change restart condition!
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βj+1 chosen using standard formulas (PRP+), restart condition
practical.
No complexity guarantees!
Our approach Change restart condition!
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Nonlinear CG with restart conditions

Init x0 ∈ Rn, (η, θ) ∈ (0, 1)2, d0 = −∇f(x0).
For j = 0, 1, 2, . . .

1 Compute αj ∈ {1, θ, θ2, . . . } such that

f(xj + αjdj) < f(xj) + ηαj∇f(xj)
Tdj .

2 Set xj+1 = xj + αjdj .
3 Set dj+1 = −∇f(xj+1) + βj+1dj .

4 If ∇f(xj+1)
Tdj+1 ≥ −κ∥∇f(xj+1)∥1+p or ∥dj+1∥ ≥ κ∥∇f(xj+1)∥

1+p
2 ,

set dj+1 = −∇f(xj+1).

Restarted iterations: Take gradient steps.
Non-restarted: Guarantees on step quality.
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Main result

Goal ∥∇f(xJ)∥ ≤ ϵ.

Theorem (w/ Rémi Chan–Renous-Legoubin)

For restarted NCG, J is at most

O(ϵ−2)︸ ︷︷ ︸
restarted

+ O(ϵ−(1+p))︸ ︷︷ ︸
non restarted

The bound is still O(ϵ−2) (like gradient descent)
But better results for non-restarted iterations for p ∈ [0, 1)!

How do restarted methods behave in practice?
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Data profiles

Comparison
Two gradient-based methods, Standard linear CG, restarted variants.
Nonconvex regression instances from (Carmon et al ’17).

Iteration plots for p ≥ 0.5 overlap with standard NCG!
Less than 1% restarted iterations on average.
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More contributions on conjugate gradient methods

Restarted methodology (w/ A. S. Berahas, M. O’Neill)
Applied to quasi-Newton schemes.
Adapted to noisy optimization.

→ Restarting can be applied to yield complexity guarantees without
harming the practical performance!

Special case: quadratic functions (w/ M. O’Neill, S. J. Wright)
Nonconvex quadratics from Newton-type methods.
Can get complexity for linear conjugate gradient applied to those
problems.

→ Extra checks in algorithms allow to detect and exploit nonconvexity!
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Outline

1 Newton-type methods

2 Conjugate gradient methods

3 Direct-search methods

4 Perspectives
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Derivative-free paradigm

minimize
x∈Rn

f(x), f C1 nonconvex.

Blackbox/Derivative-free optimization

Derivatives unavailable for algorithmic use.
Only access to values of f .
Those can take a long time to compute!

Complexity aspects

Goal Find xk such that ∥∇f(xk)∥ ≤ ϵ.
Cost Number of function evaluations.
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Basic direct-search framework

Inputs x0 ∈ Rn, α0 > 0.
For j = 0, 1, . . .

Choose Dj ⊂ Rn.

If ∃ dj ∈ Dj such that

f(xj + αj dj) < f(xj)− α2
j∥dj∥2

set xj+1 := xj + αjdj , αj+1 := 2αj .
Otherwise, set xj+1 := xj , αj+1 := 0.5αj .

Positive Spanning Set (PSS)

D ⊂ Rn PSS ⇐⇒ cm(D) = max
d∈D

min
∥v∥=1

dTv

∥d∥
> 0.

cm(D): Cosine measure.
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Basic direct-search framework
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Complexity of deterministic direct search

Goal ∥∇f(xJ)∥ ≤ ϵ.

Theorem
If Dj = D ∀j, the method takes at most

O
(
|D| cm(D)−2 ϵ−2

)
calls to f .

|D| and cm(D) depend on dimension n!
Best known bound: O(n2 ϵ−2).

What if certain calls to f take too long to compute?
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Direct search with stragglers

Inputs x0 ∈ Rn, α0 > 0.
For j = 0, 1, . . .

Choose Dj ⊂ Rn.
If ∃ dj ∈ Dj \ Sj such that

f(xj + αj dj) < f(xj)− α2
j∥dj∥2

set xj+1 := xj + αjdj , αj+1 := 2αj .
Otherwise, set xj+1 := xj , αj+1 := 0.5αj .

Sj Unknown straggler evaluations (at most k).

Fix: Use richer Djs!

32



Direct search with stragglers

Inputs x0 ∈ Rn, α0 > 0.
For j = 0, 1, . . .

Choose a PkSS Dj ⊂ Rn.
If ∃ dj ∈ Dj \ Sj such that

f(xj + αj dj) < f(xj)− α2
j∥dj∥2

set xj+1 := xj + αjdj , αj+1 := 2αj .
Otherwise, set xj+1 := xj , αj+1 := 0.5αj .

Sj Unknown straggler evaluations (at most k).
Fix: Use richer Djs!
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Positive k-spanning sets (PkSS)

Definition
D ⊂ Rn is a PkSS with k ≥ 1 if

Any N ⊂ D with |N | = |D| − k + 1 is a PSS.
Removing k − 1 vectors from D does not change its PSS nature.

The k-cosine measure (w/ W. Hare, G. Jarry-Bolduc, Sébastien Kerleau)

For any D ⊂ Rn, the k-cosine measure of D is

cmk(D) = min
N⊂D

|N|=|D|−k+1

cm(N ).

D PkSS ⇐⇒ cmk(D) > 0.
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Complexity of direct search with PkSSs

Goal ∥∇f(xJ)∥ ≤ ϵ.

Theorem (PhD Sébastien Kerleau)

Suppose Dj = D PkSS for all j. Then, the method takes at most

O
(
|D| cmk(D)−2ϵ−2

)
calls to f .

|D| and cmk(D) depend on k and n.
Best found bound: O(kn2ϵ−2).
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More contributions on direct-search methods

Complexity and direct search
Randomized subspace variant (Roberts & Royer ’23)

Surveyed the area (Dzahini et al ’25)
→ Dimension dependencies can be improved through randomization!

Geometrical structures in direct search

Decomposition of PSSs along subspaces through graph theory
arguments (Cornaz et al ’25).
Generation of PkSSs through polytopes (Kerleau ’25).

→ Discrete structures matter for direct search!
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1 Newton-type methods
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Research overview

Complexity −→ Structures

Newton-type methods
Obtain sharp complexity with Newton steps.

Optimal bounds within the class of second-order methods

Study special classes of nonconvex problems.

Structured nonconvexity

Conjugate gradient methods
Restart conditions in nonlinear case.

Complexity obtained without hurting performance
Checks to detect nonconvex behavior.

Leverage algorithmic structure

Derivative-free methods
Improve complexity with randomness.

Subspace variants with complexity

Use geometry to handle difficult settings.

Graph/Polytope structures
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Research structures

Goal: Optimize moves during renovation
(with S. Airiau, L. Galand, J. Lang, S. Toubaline)

Linear Program (simplicity)→ Other models are nonconvex!
Continuous LP solvers struggle→ Revisit algorithms!
Model parameters to tune→ Derivative-free methods!

Complexity and structure key to practical efficiency

38



Research structures

Goal: Optimize moves during renovation
(with S. Airiau, L. Galand, J. Lang, S. Toubaline)

Linear Program (simplicity)→ Other models are nonconvex!
Continuous LP solvers struggle→ Revisit algorithms!
Model parameters to tune→ Derivative-free methods!

Complexity and structure key to practical efficiency

38



Research structures

Goal: Optimize moves during renovation
(with S. Airiau, L. Galand, J. Lang, S. Toubaline)

Linear Program (simplicity)→ Other models are nonconvex!

Continuous LP solvers struggle→ Revisit algorithms!
Model parameters to tune→ Derivative-free methods!

Complexity and structure key to practical efficiency

38



Research structures

Goal: Optimize moves during renovation
(with S. Airiau, L. Galand, J. Lang, S. Toubaline)

Linear Program (simplicity)→ Other models are nonconvex!
Continuous LP solvers struggle→ Revisit algorithms!

Model parameters to tune→ Derivative-free methods!

Complexity and structure key to practical efficiency

38



Research structures

Goal: Optimize moves during renovation
(with S. Airiau, L. Galand, J. Lang, S. Toubaline)

Linear Program (simplicity)→ Other models are nonconvex!
Continuous LP solvers struggle→ Revisit algorithms!
Model parameters to tune→ Derivative-free methods!

Complexity and structure key to practical efficiency

38



Research structures

Goal: Optimize moves during renovation
(with S. Airiau, L. Galand, J. Lang, S. Toubaline)

Linear Program (simplicity)→ Other models are nonconvex!
Continuous LP solvers struggle→ Revisit algorithms!
Model parameters to tune→ Derivative-free methods!

Complexity and structure key to practical efficiency

38



The end

Thank you for your attention!
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