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Foreword: Nonconvex optimization

Nonconvex?
Many data science problems are convex: linear classification, logistic
regression,...
Nonconvex instances: Deep learning, matrix/tensor optimization,
robust statistics.

Strict saddle?
Those problems often come with nice structure;
Guarantees to find global optima using local algorithms.

Optimization?
Provably convergent algorithms for nonconvex problems.
Provably fast algorithms (in a complexity sense).
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The matrix completion example

Matrix completion

min
X∈Rn×m,rank(X )=r

∥PΩ(X −M)∥2
F , M ∈ Rn×m, Ω ⊂ [n]× [m].

Ω: Set of entries drawn i.i.d. with probability p.
M = U∗ V

T
∗ , U∗ ∈ Rn×r , V∗ ∈ Rm×r .

Convex objective in X .

Nonconvex factored reformulation (Burer & Monteiro, ’03)

min
U∈Rn×r ,V∈Rm×r

∥∥PΩ(U VT −M)
∥∥2
F
,

Nonconvex problem in U and V ...
but global minima can be characterized.
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Numerical illustration

Matrix problem

min
U,V

1
2

∥∥∥PΩ(UV
⊤ −M)

∥∥∥2

F
,

with M ∈ Rm×n, U ∈ Rm×r , V ∈ Rn×r , |Ω| ≈ 15%×mn.
Synthetic data: (n,m) = (500, 499).

Comparison: A second-order method VS first-order ones

Newton-CG (us);
Nonlinear CG (first-order method);
Dedicated solvers (Alternating methods):

Alternated gradient descent (Tanner and Wei 2016);
LMaFit (Wen et al. 2012).
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Matrix completion (synthetic data, rank 15)
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Takeaways from the example

The example

Particular structure (linked to derivatives).
Favorable case for second-order schemes.

Our questions
Can we characterize nice problem structure?
Can we build an algorithm for such structure?
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Outline

1 Nonconvex and strict saddle problems

2 Optimizing strict saddle functions
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A class of manifold optimization problems
Problem: minx∈M f (x), M Riemannian manifold.

Examples

Vector spaces: Rn, Cn, Sn−1.
Matrices: Rn×m, Grassmann (subspaces), Stiefel (orthogonal
matrices).

Notations and conventions

Riemannian displacements:

Moves defined over tangent spaces T M
x ≡ Rm.

Retraction that “projects” back onto the manifold.
Norms and inner products (∥ · ∥2 =< ·, · > here for simplicity).

Riemannian derivatives:

Counterparts of gradient and Hessian in Euclidean setting.
Riemannian gradient g(·) = gf ,M(·) seen as a vector.
Riemannian Hessian H(·) = Hf ,M(·) seen as a matrix.

Many formulas are available in modern toolboxes (Manopt).
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General problem and definitions

min
x∈M

f (x)

f ∈ C2 bounded below and nonconvex.
M Riemannian manifold.

Goal: Reach an ϵ-stationary point

∥g(x)∥ ≤ ϵ and λmin (H(x)) ≥ −ϵ1/2.

For convex functions: Second condition always true⇒ Close to a
global minimum!
For nonconvex functions: ?
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Nonconvex optimization and stationary points

Pathological cases

ϵ-stationary points can be close to
Local, non-global minima.
High-order saddle points.

Nice instances

ϵ-stationary points are close to
Strict (non-flat) saddle points
Global minima.

Figures: J. Wright and Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models, 2022.

C. W. Royer Strict saddle optimization MAIA 11



Nonconvex optimization and stationary points

Pathological cases

ϵ-stationary points can be close to
Local, non-global minima.
High-order saddle points.

Nice instances

ϵ-stationary points are close to
Strict (non-flat) saddle points
Global minima.

Figures: J. Wright and Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models, 2022.

C. W. Royer Strict saddle optimization MAIA 11



Strict saddle property on manifold M

Definition
A function f : M → R is (α, β, γ, δ)-strict saddle if for any x ∈ M, one of
these properties holds:

1 ∥g(x)∥ ≥ α;
2 λmin (H(x)) ≤ −β;
3 There exists x∗ local minimum of f such that d(x , x∗) ≤ δ and

λmin (H(y)) ≥ γ for all {y ∈ M : d(x , x∗) ≤ 2δ}.
d(·, ·): Riemannian distance.

Interpretation: 3 regions in the space
1 Large Riemannian gradient.
2 Negative curvature for the Riemannian Hessian.
3 Near minimum+geodesic strong convexity.

N.B. Already studied for special problem classes (Pumir et al ’18, Sun et al ’16).
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Example: Matrix completion

min
U∈Rn×r ,V∈Rm×r

f (U,V ) :=
∥∥PΩ(U VT −M)

∥∥2
F
,

Assumptions
Probability of sampling entries large enough.
M has favorable structure (incoherence).

Theorem (Ge et al. ’17)

Let (U,V ) ∈ Rn×r × Rm×r . Then, there exists ϵ > 0 such that one of
these cases occur

1 ∥∇f (U,V )∥ ≥ ϵ

2 The Hessian at U,V has negative curvature, i.e.

λmin

(
∇2f (U,V )

)
< −O(σmin(M))

3 (U,V ) is at distance at most O( ϵ
σmin(M)) from a global minimum.
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A special case

Phase retrieval (Sun et al ’18)

Given A = [ai ]
m
i=1 ∈ Cm×n, b ∈ Rm, find x ∈ Cn such that

|a∗i x | = bi ∀i = 1, . . . , n.
Assumptions: {ai} Gaussian, m = O(n log3(n)).
Nonconvex formulation: minx∈Cn f (x) = 1

2m
∑m

i=1(b
2
i − |a∗i x |2)2.

There exists c > 0 such that f is(
c

n log(m) , c , c ,
c

n log(m)

)
-strict saddle.
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Other examples (pictures from Wright, Ma ’22)

Strongly convex
functions (!)

λmin(H(x)) ≥ γ ∀x .

Minimum Eigenvalue

min
∥x∥=1

xTAx

Tensor optimization

min
∥x∥=1

T (x , x , x , x)

For more: https://sunju.org/research/nonconvex/
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1 Nonconvex and strict saddle problems

2 Optimizing strict saddle functions
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Solving strict-saddle problems

What we want: Develop a method that explicitly uses the strict saddle
nature of the problem.

Our friends at work (O’Neill and Wright ’23)

Line-search approach for strict saddle functions
Focus on factored formulations low-rank matrix problems.

How we want to stand out
Apply to any strict saddle function.

Newton-type steps.
Trust-region framework.
General manifold constraints.
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Trust-region algorithm

Inputs: x0 ∈ M, ∆0 > 0, η > 0.
For k=0, 1, 2, . . .

1 Define mk(xk + s) :=< g(xk), s > +1
2 < s,H(xk)s > and compute

sk ∈ argmin
s∈T M

xk
∥s∥≤∆k

mk(xk + s).

2 Define xMk as the retraction of xk + sk onto M.

3 Compute ρk =
f (xk )−f (xMk )

mk (xk )−mk (x
M
k )

.

4 If ρk ≥ η, set xk+1 = xMk and ∆k+1 = 2∆k .
5 Otherwise, set xk+1 = xk and ∆k+1 = 0.5∆k .

Suboptimal guarantees for generic, nonconvex f .
Improved guarantees for strict saddle f !
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Our method for strict saddle functions

What happens if the function is strict saddle?

f : Rn → R is (α, β, γ, δ)-strict saddle if for any x ∈ Rn, one of these
properties holds:

1 ∥g(x)∥ ≥ α;
2 λmin (H(x)) ≤ −β;
3 There exists x∗ local minimum of f such that

∥x − x∗∥ ≤ δ and λmin(H(y)) ≥ γ ∀y , ∥y − x∗∥ ≤ 2δ.

One step per strict saddle case
1 ∥g(xk)∥ ≥ α: Descent/Cauchy step.
2 λmin(H(xk)) ≤ −β: Negative curvature step.
3 Otherwise: TR-Newton step without regularization.
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Analysis

Trust-region radius bound

For all iterations, ∆k ≥ O (min{α, β, γ}) .

Decrease guarantees for successful iterations

1 If ∥g(xk)∥ ≥ α,

f (xk)− f (xk+1) ≥ O
(
min{α2, α∆k}

)
.

2 If λmin(H(xk)) ≤ −β:

f (xk)− f (xk+1) ≥ O
(
β∆2

k

)
.

3 Otherwise, either

f (xk)− f (xk+1) ≥ O
(
min

{
γ∆2

k , γ∥g(xk+1)∥
})

or ∥g(xk)∥ ≤ O(min{δγ, γ2}) and we enter a local convergence phase.
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Complexity of strict saddle Newton

Goal: Compute xk such that ∥g(xk)∥ ≤ ϵ and λmin (H(xk)) ≥ −ϵ1/2.

Iteration complexity (Goyens and R., ’23)

Suppose ϵ < min{α, β, γ}2 < 1.
The method reaches an (ϵ, ϵ1/2)-point in at most

O
(
max

{
α−2β−1, α−2γ−1, β−3, γ−3, γ−2δ−1})+ log log

[
O
(
γϵ−1)]

iterations.

Second term vanishes when ϵ ≥ max{α, β}.
Otherwise log log dependency in ϵ (from local phase)!
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Illustration for phase retrieval

Phase retrieval (Sun et al ’18)

min
x∈Cn

1
2m

m∑
i=1

(b2
i − |a∗i x |2)2.

If {ai} are Gaussian and m = O(n log3(n)), the objective is
( c
n log(m) , c , c ,

c
n log(m))-strict saddle for some absolute constant c > 0.

Impact on the complexity

For generic Newton, get O(ϵ−3/2) complexity.
For strict saddle Newton, we obtain

Õ
(
n2) + log log(O(ϵ−1))

)
.
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Adding inexact steps

What we have so far
Newton-type method with good complexity;
Three kinds of steps;
Require exact step computation.

Inexactness
Solve linear systems;
Compute negative curvature directions.
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Inexact steps in trust region

Trust-region subproblem

min
s∈T M

xk

< g(xk), s > +1
2 < s,H(xk)s > s.t. ∥s∥ ≤ ∆k .

Apply conjugate gradient (CG) to the linear system H(xk)s = −g(xk);
Stop when residual ∥H(xk)s + g(xk)∥ is small enough or the
∥s∥ = ∆k ;
For H(xk) ̸⪰ 0: if negative curvature is encountered, take a negative
curvature step such that ∥s∥ = ∆k .

Changes (for complexity)

Add a cap on the number of CG iterations.
Guarantee negative curvature detection.
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Our method: Capped conjugate gradient
Goal: mins∈T M

xk
< g(xk), s > +1

2 < s, (H(xk) + 2γI )s > s.t. ∥s∥ ≤ ∆.

Theorem (Curtis, Robinson, R., Wright ’21)

Suppose that we run CG for at most JCG = min{n, Õ(γ−1/2)}
iterations/Hessian-vector products. Then,

Either we compute a good enough step using CG...
...or we find a negative curvature direction for H...
...or we know that it exists and we can call a minimum eigenvalue
oracle to find it.

Strict saddle setting

Suppose that ∥g(xk)∥ ≤ α and run CG for JCG iterations. Then,
Either the step is accurate enough
or we know that λmin(H(xk)) ≤ −βI and we call a minimum
eigenvalue oracle to find negative curvature.
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Either the step is accurate enough
or we know that λmin(H(xk)) ≤ −βI and we call a minimum
eigenvalue oracle to find negative curvature.
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Minimum eigenvalue oracle (MEO)

Given H(xk) ∈ Rn×n, β ∈ (0, 1), and ξ ∈ (0, 1), output
1 A vector s such that

sTH(xk)s ≤ −β

2
∥s∥2.

2 OR a certificate that H(xk) ≻ −βI , valid with probability 1 − ξ.

An example of MEO

Run CG on H(xk)s = b, b uniform on the unit sphere. produces
output in JMEO = min{n, Õ(β−1/2)} iterations/Hessian-vector products!

Strict saddle version: Identical, but we know that negative curvature
exists!
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Inexact algorithm for minx∈M f (x)

Inputs: x0 ∈ M, ∆0 > 0, η > 0.
For k=0, 1, 2, . . .

1 Define

mk(xk + s) =


< g(xk), s > if ∥g(xk)∥ ≥ α

< g(xk), s > + 1
2 < s,H(xk)s > otherwise.

2 Compute sk≈ argmin s∈T M
xk

∥s∥≤∆k

mk(xk + s) by CG(+MEO) when ∥g(xk)∥ < α.

3 Define xMk as the retraction of xk + sk onto M.

4 Compute ρk =
f (xk )−f (xM

k )

mk (xk )−mk (xM
k )

.

5 If ρk ≥ η, set xk+1 = xMk and ∆k+1 = 2∆k .

6 Otherwise, set xk+1 = xk and ∆k+1 = 0.5∆k .
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Operation complexity

Goal: Compute xk such that ∥g(xk)∥ ≤ ϵ and H(xk) ⪰ −ϵ1/2I .

Operation complexity (Goyens and R., ’23)

Suppose ϵ < min{α, β, γ}2 < 1.
The method reaches an (ϵ, ϵ1/2)-point in

Nϵ = Õ
(
min

{
n,max{β−1/2, γ−1/2}

})
×
(
max

{
α−2β−1, α−2γ−1, β−3, γ−3, γ−2δ−1}+ log log

[
O
(
γϵ−1)])

gradient/Hessian-vector products with probability (1 − ξ)Nϵ .

Probability holds for second-order guarantee;
Per-iteration cost does not depend on ϵ!
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Illustration for phase retrieval

Phase retrieval (Sun et al ’18)

min
x∈Cn

1
2m

m∑
i=1

(b2
i − |a∗i x |2)2.

If {ai} are Gaussian and m = O(n log3(n)), the objective is
( c
n log(m) , c , c ,

c
n log(m))-strict saddle for some absolute constant c > 0.

Impact on the complexity

For generic Newton, get O(ϵ−7/4) complexity.
For strict saddle Newton, we obtain

Õ
(
n5/2

)
+ Õ(n1/2) log log(O(ϵ−1)).
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Summary

Strict saddle optimization
A wide class of nonconvex problems.
Favorable landscape.
Room for efficient algorithms!

Our proposal

Trust-region framework (good for nonconvex).
Inexact variant tailored to strict saddle problems.
Ongoing implementation.
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