From nonconvex optimization to strict saddle optimization

Clément Royer

Mathematics, Artificial Intelligence and Applications

February 23, 2025

Foreword: Nonconvex optimization

Nonconvex?

- Many data science problems are convex: linear classification, logistic regression,...
- Nonconvex instances: Deep learning, matrix/tensor optimization, robust statistics.

Foreword: Nonconvex optimization

Nonconvex?

- Many data science problems are convex: linear classification, logistic regression,...
- Nonconvex instances: Deep learning, matrix/tensor optimization, robust statistics.

Strict saddle?

- Those problems often come with nice structure;
- Guarantees to find global optima using local algorithms.

Nonconvex?

- Many data science problems are convex: linear classification, logistic regression,...
- Nonconvex instances: Deep learning, matrix/tensor optimization, robust statistics.

Strict saddle?

- Those problems often come with nice structure;
- Guarantees to find global optima using local algorithms.

Optimization?

- Provably convergent algorithms for nonconvex problems.
- Provably fast algorithms (in a complexity sense).

The matrix completion example

Matrix completion

$$\min_{X\in\mathbb{R}^{n\times m}, \operatorname{rank}(X)=r} \|\mathcal{P}_{\Omega}(X-M)\|_{F}^{2}, \quad M\in\mathbb{R}^{n\times m}, \ \Omega\subset[n]\times[m].$$

- Ω : Set of entries drawn i.i.d. with probability p.
- $M = U_* V_*^{\mathrm{T}}, U_* \in \mathbb{R}^{n \times r}, V_* \in \mathbb{R}^{m \times r}.$
- Convex objective in X.

The matrix completion example

Matrix completion

$$\min_{X \in \mathbb{R}^{n \times m}, \operatorname{rank}(X) = r} \|\mathcal{P}_{\Omega}(X - M)\|_{F}^{2}, \quad M \in \mathbb{R}^{n \times m}, \ \Omega \subset [n] \times [m].$$

- Ω : Set of entries drawn i.i.d. with probability p.
- $M = U_* V_*^{\mathrm{T}}, U_* \in \mathbb{R}^{n \times r}, V_* \in \mathbb{R}^{m \times r}.$
- Convex objective in X.

Nonconvex factored reformulation (Burer & Monteiro, '03)

$$\min_{U\in\mathbb{R}^{n\times r}, V\in\mathbb{R}^{m\times r}}\left\|\mathcal{P}_{\Omega}(UV^{\mathrm{T}}-M)\right\|_{F}^{2},$$

- Nonconvex problem in U and V...
- but global minima can be characterized.

Numerical illustration

Matrix problem

$$\min_{U,V}\frac{1}{2}\left\|P_{\Omega}(UV^{\top}-M)\right\|_{F}^{2},$$

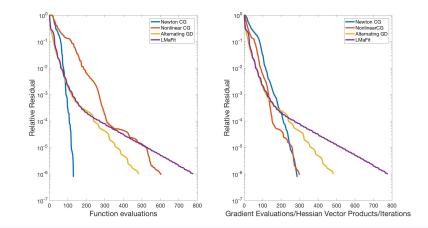
with $M \in \mathbb{R}^{m \times n}$, $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$, $|\Omega| \approx 15\% \times mn$.

• Synthetic data:
$$(n, m) = (500, 499)$$
.

Comparison: A second-order method VS first-order ones

- Newton-CG (us);
- Nonlinear CG (first-order method);
- Dedicated solvers (Alternating methods):
 - Alternated gradient descent (Tanner and Wei 2016);
 - LMaFit (Wen et al. 2012).

Matrix completion (synthetic data, rank 15)



The example

- Particular structure (linked to derivatives).
- Favorable case for second-order schemes.

Our questions

- Can we characterize nice problem structure?
- Can we build an algorithm for such structure?

Nonconvex and strict saddle problems

Optimizing strict saddle functions

1 Nonconvex and strict saddle problems

2 Optimizing strict saddle functions

Problem: $\min_{x \in \mathcal{M}} f(x)$, \mathcal{M} Riemannian manifold.

Examples

- Vector spaces: \mathbb{R}^n , \mathbb{C}^n , \mathbb{S}^{n-1} .
- Matrices: ℝ^{n×m}, Grassmann (subspaces), Stiefel (orthogonal matrices).

Problem: $\min_{x \in \mathcal{M}} f(x)$, \mathcal{M} Riemannian manifold.

Examples

• Vector spaces: \mathbb{R}^n , \mathbb{C}^n , \mathbb{S}^{n-1} .

Matrices: ℝ^{n×m}, Grassmann (subspaces), Stiefel (orthogonal matrices).

Notations and conventions

- Riemannian displacements:
 - Moves defined over tangent spaces $\mathcal{T}_x^{\mathcal{M}} \equiv \mathbb{R}^m$.
 - Retraction that "projects" back onto the manifold.
 - Norms and inner products ($\|\cdot\|^2 = \langle \cdot, \cdot \rangle$ here for simplicity).

Problem: $\min_{x \in \mathcal{M}} f(x)$, \mathcal{M} Riemannian manifold.

Examples

• Vector spaces: \mathbb{R}^n , \mathbb{C}^n , \mathbb{S}^{n-1} .

Matrices: ℝ^{n×m}, Grassmann (subspaces), Stiefel (orthogonal matrices).

Notations and conventions

- Riemannian displacements:
 - Moves defined over tangent spaces $\mathcal{T}_x^{\mathcal{M}} \equiv \mathbb{R}^m$.
 - Retraction that "projects" back onto the manifold.
 - Norms and inner products ($\|\cdot\|^2 = \langle \cdot, \cdot \rangle$ here for simplicity).
- Riemannian derivatives:
 - Counterparts of gradient and Hessian in Euclidean setting.
 - Riemannian gradient $g(\cdot) = g_{f,\mathcal{M}}(\cdot)$ seen as a vector.
 - Riemannian Hessian $\mathcal{H}(\cdot) = H_{f,\mathcal{M}}(\cdot)$ seen as a matrix.

Problem: $\min_{x \in \mathcal{M}} f(x)$, \mathcal{M} Riemannian manifold.

Examples

• Vector spaces: \mathbb{R}^n , \mathbb{C}^n , \mathbb{S}^{n-1} .

Matrices: ℝ^{n×m}, Grassmann (subspaces), Stiefel (orthogonal matrices).

Notations and conventions

- Riemannian displacements:
 - Moves defined over tangent spaces $\mathcal{T}_x^{\mathcal{M}} \equiv \mathbb{R}^m$.
 - Retraction that "projects" back onto the manifold.
 - Norms and inner products ($\|\cdot\|^2 = \langle \cdot, \cdot \rangle$ here for simplicity).
- Riemannian derivatives:
 - Counterparts of gradient and Hessian in Euclidean setting.
 - Riemannian gradient $g(\cdot) = g_{f,\mathcal{M}}(\cdot)$ seen as a vector.
 - Riemannian Hessian $\mathcal{H}(\cdot) = H_{f,\mathcal{M}}(\cdot)$ seen as a matrix.

Many formulas are available in modern toolboxes (Manopt).

General problem and definitions

 $\min_{x\in\mathcal{M}}f(x)$

- $f \in C^2$ bounded below and nonconvex.
- \mathcal{M} Riemannian manifold.

General problem and definitions

 $\min_{x\in\mathcal{M}}f(x)$

• $f \in C^2$ bounded below and nonconvex.

• \mathcal{M} Riemannian manifold.

Goal: Reach an ϵ -stationary point

$$\|g(x)\| \leq \epsilon$$
 and $\lambda_{\min}\left(\mathcal{H}(x)\right) \geq -\epsilon^{1/2}.$

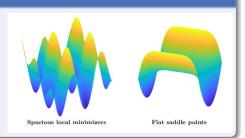
- For convex functions: Second condition always true⇒ Close to a global minimum!
- For nonconvex functions: ?

Nonconvex optimization and stationary points

Pathological cases

 ϵ -stationary points can be close to

- Local, non-global minima.
- High-order saddle points.

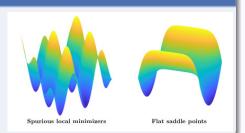


Nonconvex optimization and stationary points

Pathological cases

 ϵ -stationary points can be close to

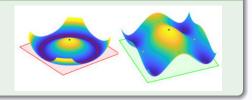
- Local, non-global minima.
- High-order saddle points.



Nice instances

 ϵ -stationary points are close to

- Strict (non-flat) saddle points
- Global minima.



Figures: J. Wright and Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models, 2022.

C. W. Royer

Strict saddle optimization

MAIA 11

Strict saddle property on manifold ${\mathcal M}$

Definition

A function $f : \mathcal{M} \to \mathbb{R}$ is $(\alpha, \beta, \gamma, \delta)$ -strict saddle if for any $x \in \mathcal{M}$, one of these properties holds:

2)
$$\lambda_{\min}(\mathcal{H}(x)) \leq -\beta;$$

- O There exists x^{*} local minimum of f such that d(x, x^{*}) ≤ δ and λ_{min} (H(y)) ≥ γ for all {y ∈ M : d(x, x^{*}) ≤ 2δ}.
- $d(\cdot, \cdot)$: Riemannian distance.

Strict saddle property on manifold ${\cal M}$

Definition

A function $f : \mathcal{M} \to \mathbb{R}$ is $(\alpha, \beta, \gamma, \delta)$ -strict saddle if for any $x \in \mathcal{M}$, one of these properties holds:

 $\|g(x)\| \geq \alpha;$

$$2 \lambda_{\min} \left(\mathcal{H}(x) \right) \leq -\beta;$$

So There exists x^{*} local minimum of f such that d(x, x^{*}) ≤ δ and λ_{min} (H(y)) ≥ γ for all {y ∈ M : d(x, x^{*}) ≤ 2δ}.

$d(\cdot, \cdot)$: Riemannian distance.

Strict saddle property on manifold ${\mathcal M}$

Definition

A function $f : \mathcal{M} \to \mathbb{R}$ is $(\alpha, \beta, \gamma, \delta)$ -strict saddle if for any $x \in \mathcal{M}$, one of these properties holds:

- $2 \lambda_{\min} \left(\mathcal{H}(x) \right) \leq -\beta;$
- So There exists x^{*} local minimum of f such that d(x, x^{*}) ≤ δ and λ_{min} (H(y)) ≥ γ for all {y ∈ M : d(x, x^{*}) ≤ 2δ}.
- $d(\cdot, \cdot)$: Riemannian distance.

Interpretation: 3 regions in the space

- Large Riemannian gradient.
- **2** Negative curvature for the Riemannian Hessian.
- Sear minimum+geodesic strong convexity.

N.B. Already studied for special problem classes (Pumir et al '18, Sun et al '16).

Example: Matrix completion

$$\min_{U\in\mathbb{R}^{n\times r}, V\in\mathbb{R}^{m\times r}}f(U,V):=\left\|\mathcal{P}_{\Omega}(UV^{\mathrm{T}}-M)\right\|_{F}^{2},$$

Assumptions

- Probability of sampling entries large enough.
- *M* has favorable structure (incoherence).

Theorem (Ge et al. '17)

Let $(U, V) \in \mathbb{R}^{n \times r} \times \mathbb{R}^{m \times r}$. Then, there exists $\epsilon > 0$ such that one of these cases occur

$$\|\nabla f(U,V)\| \geq \epsilon$$

2 The Hessian at U, V has negative curvature, i.e.

$$\lambda_{\min}\left(
abla^2 f(U,V)
ight) < -\mathcal{O}(\sigma_{\min}(M))$$

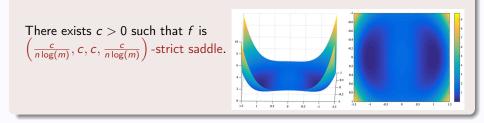
3 (U, V) is at distance at most $\mathcal{O}(\frac{\epsilon}{\sigma_{\min}(M)})$ from a global minimum.

Phase retrieval (Sun et al '18)

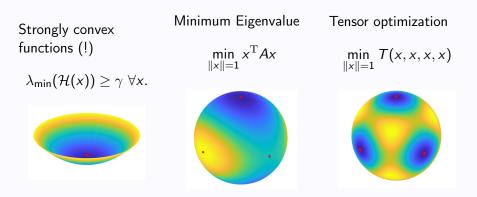
- Given $A = [a_i]_{i=1}^m \in \mathbb{C}^{m \times n}$, $b \in \mathbb{R}^m$, find $x \in \mathbb{C}^n$ such that $|a_i^*x| = b_i \quad \forall i = 1, \dots, n$.
- Assumptions: $\{a_i\}$ Gaussian, $m = O(n \log^3(n))$.
- Nonconvex formulation: $\min_{x \in \mathbb{C}^n} f(x) = \frac{1}{2m} \sum_{i=1}^m (b_i^2 |a_i^* x|^2)^2$.

Phase retrieval (Sun et al '18)

- Given $A = [a_i]_{i=1}^m \in \mathbb{C}^{m \times n}$, $b \in \mathbb{R}^m$, find $x \in \mathbb{C}^n$ such that $|a_i^*x| = b_i \quad \forall i = 1, \dots, n$.
- Assumptions: $\{a_i\}$ Gaussian, $m = O(n \log^3(n))$.
- Nonconvex formulation: $\min_{x \in \mathbb{C}^n} f(x) = \frac{1}{2m} \sum_{i=1}^m (b_i^2 |a_i^* x|^2)^2$.



Other examples (pictures from Wright, Ma '22)



For more: https://sunju.org/research/nonconvex/

Nonconvex and strict saddle problems

Optimizing strict saddle functions

What we want: Develop a method that explicitly uses the strict saddle nature of the problem.

What we want: Develop a method that explicitly uses the strict saddle nature of the problem.

Our friends at work (O'Neill and Wright '23)

- Line-search approach for strict saddle functions
- Focus on factored formulations low-rank matrix problems.

What we want: Develop a method that explicitly uses the strict saddle nature of the problem.

Our friends at work (O'Neill and Wright '23)

- Line-search approach for strict saddle functions
- Focus on factored formulations low-rank matrix problems.

How we want to stand out

Apply to any strict saddle function.

- Newton-type steps.
- Trust-region framework.
- General manifold constraints.

Trust-region algorithm

Inputs: $x_0 \in \mathcal{M}, \Delta_0 > 0, \eta > 0$. For k=0, 1, 2, ...Define $m_k(x_k + s) := \langle g(x_k), s \rangle + \frac{1}{2} \langle s, \mathcal{H}(x_k)s \rangle$ and compute $s_k \in \underset{\substack{s \in \mathcal{T}_{x_k}^{\mathcal{M}} \\ ||s|| \leq \Delta_k}}{\operatorname{argmin}} m_k(x_k + s).$

2 Define x_k^M as the retraction of x_k + s_k onto M.
3 Compute ρ_k = f(x_k)-f(x_k^M)/m_k(x_k)-m_k(x_k^M).
3 If ρ_k ≥ η, set x_{k+1} = x_k^M and Δ_{k+1} = 2Δ_k.
3 Otherwise, set x_{k+1} = x_k and Δ_{k+1} = 0.5Δ_k.

Trust-region algorithm

Inputs: $x_0 \in \mathcal{M}, \Delta_0 > 0, \eta > 0$. For k=0,1,2,... Define $m_k(x_k + s) := \langle g(x_k), s \rangle + \frac{1}{2} \langle s, \mathcal{H}(x_k)s \rangle$ and compute $s_k \in \underset{\substack{s \in \mathcal{T}_{x_k}^{\mathcal{M}} \\ ||s|| \leq \Delta_k}}{\operatorname{argmin}} m_k(x_k + s).$

Oefine x_k^M as the retraction of x_k + s_k onto M.
Compute ρ_k = f(x_k)-f(x_k^M)/m_k(x_k)-m_k(x_k^M).
If ρ_k ≥ η, set x_{k+1} = x_k^M and Δ_{k+1} = 2Δ_k.
Otherwise, set x_{k+1} = x_k and Δ_{k+1} = 0.5Δ_k.

• Suboptimal guarantees for generic, nonconvex f.

Trust-region algorithm

Inputs: $x_0 \in \mathcal{M}, \Delta_0 > 0, \eta > 0$. For k=0,1,2,... Define $m_k(x_k + s) := \langle g(x_k), s \rangle + \frac{1}{2} \langle s, \mathcal{H}(x_k)s \rangle$ and compute $s_k \in \underset{\substack{s \in \mathcal{T}_{x_k}^{\mathcal{M}} \\ ||s|| \leq \Delta_k}}{\operatorname{scmm}} m_k(x_k + s).$

- Obefine x_k^M as the retraction of x_k + s_k onto M.
 Compute ρ_k = f(x_k)-f(x_k^M)/m_k(x_k)-m_k(x_k^M).
 If ρ_k ≥ η, set x_{k+1} = x_k^M and Δ_{k+1} = 2Δ_k.
 Otherwise, set x_{k+1} = x_k and Δ_{k+1} = 0.5Δ_k.
 - Suboptimal guarantees for generic, nonconvex f.
 - Improved guarantees for strict saddle f!

Our method for strict saddle functions

What happens if the function is strict saddle?

 $f : \mathbb{R}^n \to \mathbb{R}$ is $(\alpha, \beta, \gamma, \delta)$ -strict saddle if for any $x \in \mathbb{R}^n$, one of these properties holds:

- $\|g(x)\| \geq \alpha;$
- $(\lambda_{\min} (\mathcal{H}(x)) \leq -\beta;$

There exists x* local minimum of f such that

 $\|x - x^*\| \leq \delta$ and $\lambda_{\min}(\mathcal{H}(y)) \geq \gamma \quad \forall y, \ \|y - x^*\| \leq 2\delta.$

Our method for strict saddle functions

What happens if the function is strict saddle?

 $f : \mathbb{R}^n \to \mathbb{R}$ is $(\alpha, \beta, \gamma, \delta)$ -strict saddle if for any $x \in \mathbb{R}^n$, one of these properties holds:

- $\|g(x)\| \geq \alpha;$
- $\ 2 \ \ \lambda_{\min}\left(\mathcal{H}(x)\right) \leq -\beta;$

(3) There exists x^* local minimum of f such that

 $\|x - x^*\| \leq \delta$ and $\lambda_{\min}(\mathcal{H}(y)) \geq \gamma \quad \forall y, \ \|y - x^*\| \leq 2\delta.$

One step per strict saddle case

- $||g(x_k)|| \ge \alpha$: Descent/Cauchy step.
- **2** $\lambda_{\min}(\mathcal{H}(x_k)) \leq -\beta$: Negative curvature step.
- **Otherwise:** TR-Newton step without regularization.

Trust-region radius bound

For all iterations, $\Delta_k \geq \mathcal{O}(\min\{\alpha, \beta, \gamma\})$.

Analysis

Trust-region radius bound

For all iterations, $\Delta_k \geq \mathcal{O}\left(\min\{\alpha, \beta, \gamma\}\right)$.

Decrease guarantees for successful iterations

• If $||g(x_k)|| \ge \alpha$,

$$f(x_k) - f(x_{k+1}) \ge \mathcal{O}\left(\min\{\alpha^2, \alpha \Delta_k\}\right).$$

Analysis

Trust-region radius bound

For all iterations, $\Delta_k \geq \mathcal{O}\left(\min\{\alpha, \beta, \gamma\}\right)$.

Decrease guarantees for successful iterations

• If $\|g(x_k)\| \ge \alpha$,

$$f(x_k) - f(x_{k+1}) \ge \mathcal{O}\left(\min\{\alpha^2, \alpha \Delta_k\}\right).$$

 $lf \lambda_{\min}(\mathcal{H}(x_k)) \leq -\beta:$

$$f(x_k) - f(x_{k+1}) \geq \mathcal{O}\left(\beta \Delta_k^2\right).$$

Analysis

Trust-region radius bound

For all iterations, $\Delta_k \geq \mathcal{O}(\min\{\alpha, \beta, \gamma\})$.

Decrease guarantees for successful iterations

• If $\|g(x_k)\| \ge \alpha$,

$$f(x_k) - f(x_{k+1}) \ge \mathcal{O}\left(\min\{\alpha^2, \alpha \Delta_k\}\right).$$

$$If \lambda_{\min}(\mathcal{H}(x_k)) \leq -\beta:$$

$$f(x_k) - f(x_{k+1}) \geq \mathcal{O}\left(\beta \Delta_k^2\right).$$

Otherwise, either

$$f(x_k) - f(x_{k+1}) \geq \mathcal{O}\left(\min\left\{\gamma \Delta_k^2, \gamma \| g(x_{k+1}) \|\right\}\right)$$

or $\|g(x_k)\| \leq \mathcal{O}(\min\{\delta\gamma, \gamma^2\})$ and we enter a local convergence phase.

Goal: Compute x_k such that $||g(x_k)|| \le \epsilon$ and $\lambda_{\min}(\mathcal{H}(x_k)) \ge -\epsilon^{1/2}$.

Iteration complexity (Goyens and R., '23)

Suppose $\epsilon < \min\{\alpha, \beta, \gamma\}^2 < 1$. The method reaches an $(\epsilon, \epsilon^{1/2})$ -point in at most

$$\mathcal{O}\left(\max\left\{\alpha^{-2}\beta^{-1},\alpha^{-2}\gamma^{-1},\beta^{-3},\gamma^{-3},\gamma^{-2}\delta^{-1}\right\}\right)+\log\log\left[\mathcal{O}\left(\gamma\epsilon^{-1}\right)\right]$$

iterations.

Goal: Compute x_k such that $||g(x_k)|| \le \epsilon$ and $\lambda_{\min}(\mathcal{H}(x_k)) \ge -\epsilon^{1/2}$.

Iteration complexity (Goyens and R., '23)

Suppose $\epsilon < \min\{\alpha, \beta, \gamma\}^2 < 1$. The method reaches an $(\epsilon, \epsilon^{1/2})$ -point in at most

$$\mathcal{O}\left(\max\left\{\alpha^{-2}\beta^{-1},\alpha^{-2}\gamma^{-1},\beta^{-3},\gamma^{-3},\gamma^{-2}\delta^{-1}\right\}\right)+\log\log\left[\mathcal{O}\left(\gamma\epsilon^{-1}\right)\right]$$

iterations.

- Second term vanishes when $\epsilon \geq \max\{\alpha, \beta\}$.
- Otherwise log log dependency in ϵ (from local phase)!

Phase retrieval (Sun et al '18)

$$\min_{x \in \mathbb{C}^n} \frac{1}{2m} \sum_{i=1}^m (b_i^2 - |a_i^* x|^2)^2.$$

If $\{a_i\}$ are Gaussian and $m = O(n \log^3(n))$, the objective is $(\frac{c}{n \log(m)}, c, c, \frac{c}{n \log(m)})$ -strict saddle for some absolute constant c > 0.

Impact on the complexity

• For generic Newton, get $\mathcal{O}(\epsilon^{-3/2})$ complexity.

• For strict saddle Newton, we obtain

$$\tilde{\mathcal{O}}\left(n^{2}
ight) + \log \log(\mathcal{O}(\epsilon^{-1}))
ight).$$

What we have so far

- Newton-type method with good complexity;
- Three kinds of steps;
- Require exact step computation.

Inexactness

- Solve linear systems;
- Compute negative curvature directions.

Trust-region subproblem

$$\min_{s \in \mathcal{T}_{x_k}^{\mathcal{M}}} < g(x_k), s > +\frac{1}{2} < s, \mathcal{H}(x_k)s > \quad \text{s.t.} \quad \|s\| \leq \Delta_k.$$

- Apply conjugate gradient (CG) to the linear system $\mathcal{H}(x_k)s = -g(x_k)$;
- Stop when residual $\|\mathcal{H}(x_k)s + g(x_k)\|$ is small enough or the $\|s\| = \Delta_k$;
- For H(x_k) ≥ 0: if negative curvature is encountered, take a negative curvature step such that ||s|| = Δ_k.

Trust-region subproblem

$$\min_{s \in \mathcal{T}_{x_k}^{\mathcal{M}}} < g(x_k), s > + rac{1}{2} < s, \mathcal{H}(x_k)s > \quad ext{s.t.} \quad \|s\| \leq \Delta_k.$$

- Apply conjugate gradient (CG) to the linear system $\mathcal{H}(x_k)s = -g(x_k)$;
- Stop when residual ||*H*(x_k)s + g(x_k)|| is small enough or the ||s|| = Δ_k;
- For H(x_k) ≥ 0: if negative curvature is encountered, take a negative curvature step such that ||s|| = Δ_k.

Changes (for complexity)

- Add a cap on the number of CG iterations.
- Guarantee negative curvature detection.

Our method: Capped conjugate gradient

Goal: $\min_{s \in \mathcal{T}_{x_k}^{\mathcal{M}}} < g(x_k), s > +\frac{1}{2} < s, (\mathcal{H}(x_k) + 2\gamma I)s > \text{ s.t. } \|s\| \leq \Delta.$

Theorem (Curtis, Robinson, R., Wright '21)

Suppose that we run CG for at most $J^{CG} = \min\{n, \tilde{O}(\gamma^{-1/2})\}$ iterations/Hessian-vector products. Then,

- Either we compute a good enough step using CG...
- ... or we find a negative curvature direction for H...
- ...or we know that it exists and we can call a minimum eigenvalue oracle to find it.

Our method: Capped conjugate gradient

Goal: $\min_{s \in \mathcal{T}_{x_k}^{\mathcal{M}}} < g(x_k), s > +\frac{1}{2} < s, (\mathcal{H}(x_k) + 2\gamma I)s > \text{ s.t. } \|s\| \leq \Delta.$

Theorem (Curtis, Robinson, R., Wright '21)

Suppose that we run CG for at most $J^{CG} = \min\{n, \tilde{O}(\gamma^{-1/2})\}$ iterations/Hessian-vector products. Then,

- Either we compute a good enough step using CG...
- ... or we find a negative curvature direction for H...
- ...or we know that it exists and we can call a minimum eigenvalue oracle to find it.

Strict saddle setting

Suppose that $||g(x_k)|| \leq \alpha$ and run CG for J^{CG} iterations. Then,

- Either the step is accurate enough
- or we know that $\lambda_{\min}(\mathcal{H}(x_k)) \leq -\beta I$ and we call a minimum eigenvalue oracle to find negative curvature.

Minimum eigenvalue oracle (MEO)

Given $\mathcal{H}(x_k) \in \mathbb{R}^{n \times n}$, $\beta \in (0, 1)$, and $\xi \in (0, 1)$, output A vector s such that

$$s^{\mathrm{T}}\mathcal{H}(x_k)s\leq -rac{eta}{2}\|s\|^2.$$

OR a certificate that $\mathcal{H}(x_k) \succ -\beta I$, valid with probability $1 - \xi$.

Minimum eigenvalue oracle (MEO)

Given $\mathcal{H}(x_k) \in \mathbb{R}^{n \times n}$, $\beta \in (0, 1)$, and $\xi \in (0, 1)$, output • A vector *s* such that

$$s^{\mathrm{T}}\mathcal{H}(x_k)s\leq -rac{eta}{2}\|s\|^2.$$

OR a certificate that $\mathcal{H}(x_k) \succ -\beta I$, valid with probability $1 - \xi$.

An example of MEO

Run CG on $\mathcal{H}(x_k)s = b$, b uniform on the unit sphere. produces output in $J^{MEO} = \min\{n, \tilde{\mathcal{O}}(\beta^{-1/2})\}$ iterations/Hessian-vector products!

Minimum eigenvalue oracle (MEO)

Given $\mathcal{H}(x_k) \in \mathbb{R}^{n \times n}$, $\beta \in (0, 1)$, and $\xi \in (0, 1)$, output • A vector *s* such that

$$s^{\mathrm{T}}\mathcal{H}(x_k)s\leq -rac{eta}{2}\|s\|^2.$$

OR a certificate that $\mathcal{H}(x_k) \succ -\beta I$, valid with probability $1 - \xi$.

An example of MEO

Run CG on $\mathcal{H}(x_k)s = b$, *b* uniform on the unit sphere. produces output in $J^{MEO} = \min\{n, \tilde{\mathcal{O}}(\beta^{-1/2})\}$ iterations/Hessian-vector products!

Strict saddle version: Identical, but we know that negative curvature exists!

Inexact algorithm for $\min_{x \in \mathcal{M}} f(x)$

Inputs: $x_0 \in \mathcal{M}, \ \Delta_0 > 0, \ \eta > 0$. For k=0, 1, 2, . . .

O Define

$$m_k(x_k+s) = \left\{ egin{array}{ll} < g(x_k), s > & ext{if } \|g(x_k)\| \ge lpha \ < g(x_k), s > + rac{1}{2} < s, \mathcal{H}(x_k)s > & ext{otherwise.} \end{array}
ight.$$

2 Compute $s_k \approx \operatorname{argmin}_{s \in \mathcal{T}_{x_k}^{\mathcal{M}}} m_k(x_k + s)$ by CG(+MEO) when $||g(x_k)|| < \alpha$. $||s|| \leq \Delta_k$

③ Define $x_k^{\mathcal{M}}$ as the retraction of $x_k + s_k$ onto \mathcal{M} .

Sompute
$$\rho_k = \frac{f(x_k) - f(x_k^{\mathcal{M}})}{m_k(x_k) - m_k(x_k^{\mathcal{M}})}$$
.

$$If \ \rho_k \geq \eta, \ set \ x_{k+1} = x_k^{\mathcal{M}} \ and \ \Delta_{k+1} = 2\Delta_k.$$

• Otherwise, set $x_{k+1} = x_k$ and $\Delta_{k+1} = 0.5\Delta_k$.

Goal: Compute x_k such that $||g(x_k)|| \le \epsilon$ and $\mathcal{H}(x_k) \succeq -\epsilon^{1/2}I$.

Operation complexity (Goyens and R., '23)

$$\begin{split} & \text{Suppose } \epsilon < \min\{\alpha,\beta,\gamma\}^2 < 1. \\ & \text{The method reaches an } (\epsilon,\epsilon^{1/2})\text{-point in} \end{split}$$

$$\begin{split} \mathcal{N}_{\epsilon} &= \tilde{\mathcal{O}}\left(\min\left\{n, \max\{\beta^{-1/2}, \gamma^{-1/2}\}\right\}\right) \\ &\times \left(\max\left\{\alpha^{-2}\beta^{-1}, \alpha^{-2}\gamma^{-1}, \beta^{-3}, \gamma^{-3}, \gamma^{-2}\delta^{-1}\right\} + \log\log\left[\mathcal{O}\left(\gamma\epsilon^{-1}\right)\right]\right) \end{split}$$

gradient/Hessian-vector products with probability $(1 - \xi)^{N_{\epsilon}}$.

Goal: Compute x_k such that $||g(x_k)|| \le \epsilon$ and $\mathcal{H}(x_k) \succeq -\epsilon^{1/2}I$.

Operation complexity (Goyens and R., '23)

$$\begin{split} & \text{Suppose } \epsilon < \min\{\alpha,\beta,\gamma\}^2 < 1. \\ & \text{The method reaches an } (\epsilon,\epsilon^{1/2})\text{-point in} \end{split}$$

$$\begin{split} \mathcal{N}_{\epsilon} &= \tilde{\mathcal{O}}\left(\min\left\{n, \max\{\beta^{-1/2}, \gamma^{-1/2}\}\right\}\right) \\ &\times \left(\max\left\{\alpha^{-2}\beta^{-1}, \alpha^{-2}\gamma^{-1}, \beta^{-3}, \gamma^{-3}, \gamma^{-2}\delta^{-1}\right\} + \log\log\left[\mathcal{O}\left(\gamma\epsilon^{-1}\right)\right]\right) \end{split}$$

gradient/Hessian-vector products with probability $(1-\xi)^{N_{\epsilon}}$.

- Probability holds for second-order guarantee;
- Per-iteration cost does not depend on $\epsilon!$

Phase retrieval (Sun et al '18)

$$\min_{x \in \mathbb{C}^n} \frac{1}{2m} \sum_{i=1}^m (b_i^2 - |a_i^* x|^2)^2.$$

If $\{a_i\}$ are Gaussian and $m = O(n \log^3(n))$, the objective is $(\frac{c}{n \log(m)}, c, c, \frac{c}{n \log(m)})$ -strict saddle for some absolute constant c > 0.

Impact on the complexity

- For generic Newton, get $\mathcal{O}(\epsilon^{-7/4})$ complexity.
- For strict saddle Newton, we obtain

$$ilde{\mathcal{O}}\left(\mathit{n}^{5/2}
ight) + ilde{\mathcal{O}}(\mathit{n}^{1/2}) \log \log(\mathcal{O}(\epsilon^{-1})).$$

Strict saddle optimization

- A wide class of nonconvex problems.
- Favorable landscape.
- Room for efficient algorithms!

Strict saddle optimization

- A wide class of nonconvex problems.
- Favorable landscape.
- Room for efficient algorithms!

Our proposal

- Trust-region framework (good for nonconvex).
- Inexact variant tailored to strict saddle problems.
- Ongoing implementation.

References

- S. Bhojanapalli, B. Neyshabur and N. Srebro, Global optimality of local search for low-rank matrix recovery, Neural Information Processing Systems, 2016.
- S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization, Mathematical Programming, 2003.
- C. Cartis, N. I. M. Gould and Ph. L. Toint, Evaluation complexity of algorithms for nonconvex optimization: Theory, computation and perspectives, SIAM, 2022.
- F. E. Curtis, D. P. Robinson, C. W. Royer and S. J. Wright. Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization, SIAM Journal on Optimization, 2021.
- R. Ge, C. Jin and Y. Zheng, No spurious local minima in nonconvex low rank problems: A unified geometric analysis, International Conference on Machine Learning, 2017.
- R. Ge and T. Ma, On the optimization landscape of tensor decompositions, Advances in Neural Information Processing Systems, 2017.
- F. Goyens and C. W. Royer. Riemannian trust-region methods for strict saddle functions with complexity guarantees, Mathematical Programming, 2024.
- M. O'Neill and S. J. Wright. A line-search descent algorithm for strict saddle functions with complexity guarantees, Journal of Machine Learning Research, 2023.
- J. Sun, Q. Qu and J. Wright. A geometric analysis of phase retrieval, Found. Comput. Math., 2018.
- J. Tanner and K. Wei. Low rank matrix completion by alternating steepest descent methods, Applied and Computational Harmonic Analysis, 2016.
- Z. Wen, W. Yin and Y. Zhang. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm, Mathematical Programming, 2012.
- J. Wright and Y. Ma. High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications, Cambridge University Press, 2022.

References

- S. Bhojanapalli, B. Neyshabur and N. Srebro, Global optimality of local search for low-rank matrix recovery, Neural Information Processing Systems, 2016.
- S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization, Mathematical Programming, 2003.
- C. Cartis, N. I. M. Gould and Ph. L. Toint, Evaluation complexity of algorithms for nonconvex optimization: Theory, computation and perspectives, SIAM, 2022.
- F. E. Curtis, D. P. Robinson, C. W. Royer and S. J. Wright. Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization, SIAM Journal on Optimization, 2021.
- R. Ge, C. Jin and Y. Zheng, No spurious local minima in nonconvex low rank problems: A unified geometric analysis, International Conference on Machine Learning, 2017.
- R. Ge and T. Ma, On the optimization landscape of tensor decompositions, Advances in Neural Information Processing Systems, 2017.
- F. Goyens and C. W. Royer. Riemannian trust-region methods for strict saddle functions with complexity guarantees, Mathematical Programming, 2024.
- M. O'Neill and S. J. Wright. A line-search descent algorithm for strict saddle functions with complexity guarantees, Journal of Machine Learning Research, 2023.
- J. Sun, Q. Qu and J. Wright. A geometric analysis of phase retrieval, Found. Comput. Math., 2018.
- J. Tanner and K. Wei. Low rank matrix completion by alternating steepest descent methods, Applied and Computational Harmonic Analysis, 2016.
- Z. Wen, W. Yin and Y. Zhang. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm, Mathematical Programming, 2012.
- J. Wright and Y. Ma. High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications, Cambridge University Press, 2022.

Thank you!

clement.royer@lamsade.dauphine.fr