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First and foremost

Associate professor @ Dauphine-PSL;
Researcher @ LAMSADE and PRAIRIE.
Research: Nonlinear optimization and
applications to data science;
Focus:

Nonconvex problems;
Derivative-free algorithms.
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What is this lecture about?

Derivative-free optimization (DFO)?
Black-box optimization?
Surrogate-based optimization?
Response surface methodology/Design of experiments?
Automated machine learning?
Hyperparameter tuning?

All of the above provided no derivatives are used;
More of the first two (my background);
A bit of the last two (this summer school).
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A modern challenge

Say you want to train a neural
network...

What is your architecture?
(Convolutional, Recurrent,etc)
What is your training algorithm?
(Adam, RMSProp, SG,etc)
How do you choose your learning
rate?

Hyperparameter optimization
Each change of hyperparameter involves another round of training
(hours, days of CPU time + money!);
Integer/Categorical/Continuous variables.

Goal: Reach automated ML!
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Meanwhile...

Scientific computing
Extensive use of computer simulation in physics-based applications
(aerospace engineering, chemical processes, climate);
Very expensive runs;
Need for parameter calibration.

Simulation-based optimization
Stemmed from the need to optimize with very expensive evaluations;
Relied partly on standard optimization techniques.
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Classical example: Rotor helicopter design (Booker et al.
1998)

About 30 parameters;
1 simulation: 2 weeks of
computational fluid dynamics
simulation;
A simulation failed 60% of the
time.

Ubiquitous in multidisciplinary optimization:
Several codes interfaced;
Numerical simulations;
Large amount of calculation, possible failures.
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The problems we want to look at

Common features in automated ML and simulation-based optimization

Require significant amount of
computing power;
Choosing the best parameters is
not easy;
The application people want the
best value possible in order to
build/deploy the system in
real-world settings!

Our setup
Selecting the best parameters can be posed as an optimization
problem;
The objective function in this problem is very expensive.
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A definition of DFO

Derivative-free optimization problem
Some derivatives are unavailable for optimization purposes.

Optimization is really connected
to derivatives (gradient descent,
optimality conditions);
Some: It only takes one missing
derivative!
Unavailable: They may or may
not exist!
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A warning

If you can afford derivatives you should use them!

Handcoding still exists;
Finite differences can sometimes by used;
Automatic differentiation is very powerful these days.

Most derivative-based solvers work with inexact derivatives.

Derivatives not affordable
Complex phenomena ⇒ Programming prone to errors;
Costly/noisy evaluations ⇒ Problem for finite differences;
Source code not available, company-owned ⇒ No hope for AD.
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Problem

Our focus

minimizex∈Rn f (x) s.t. x ∈ F

x : variables;
f : objective function;
F : set of feasible points.

Our assumptions

f is bounded from below on F : f (x) ≥ flow;
f is evaluated as a result of complex/long calculations:

Training a neural network/a language model;
Running a market simulation;
Taking a blood sample from a patient.
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What do we want to do?

Find the optimal parameters?
What does that even mean to be optimal without derivatives?
Global optimality only possible under some assumptions (convexity) or
if you wait forever.

Find better parameters

Any improvement can be valuable (and translate into
efficiency/money);
Initial configurations can be pretty good if designed by experts.

Get provable guarantees
Certifies that a method is worth using, serves as comparison;
A popular metric these days: worst-case complexity.
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Worst-case complexity (for this lecture)

Definition
Given

A convergence criterion;
A tolerance ε > 0;
An iterative algorithm;

bound the worst-case number of function calls required to satisfy the
convergence criterion up to a tolerance ε.
The bound as a function of ε is called the worst-case complexity of the
algorithm.

Convergence criteria

Differentiable f : ‖∇f (xk)‖ ≤ ε;
Convex f : f (xk)− f ∗ ≤ ε.
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Grid/Random search

Goal: Solve minimizex∈F f (x) where only accesses to evaluations of f are
available.

Basic search algorithm

Start with: x̂0 = x0 ∈ F , f = f (x0), k = 0.
1 Compute a new point xk+1 and f (xk+1).
2 If f (xk+1) < f (x̂k) set x̂k+1 = xk+1, otherwise set x̂k+1 = x̂k .
3 If evaluation budget exceeded stop, otherwise increment k by one.

Grid search: Predefined set of
values;
Random search: Draw xk+1 at
random.
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Guarantees for random search

Theorem
Let x̂K = argmink=1,...,K f (xk) the best point obtained by random search,
and f ∗ = minx∈F f (x). Then

P (f (x̂K ) ≤ f ∗ + ε) ≥ p

if
K ≥ ln(p)

ln
[
µ({x∈F|f (x)>f ∗+ε})

µ(F)

] .
Very generic result;
Can require a lot of iterations/evaluations of f ;
All focus on exploration.
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Direct search (DS)

Going beyond grid/random search

Work well in small dimensions;
Fully exploratory algorithms;
Only asymptotic guarantees.

Direct search
Early appearance: 1960s, convergence theory: 1990s.
Attractive: simplicity, parallel potential;
One method (Nelder-Mead, 1965) has more than 125000 citations and
is still the default DFO method in MATLAB!
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An example of DS : Coordinate Search
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Basic direct-search framework

1 Initialization: Set x0 ∈ Rn, α0 > 0.
2 For k = 0, 1, 2, ...

Choose a set Dk ⊂ Rn of r directions.

If it exists d k ∈ Dk so that

f (xk + αk d k) < f (xk)− α2
k ,

then set xk+1 := xk + αk d k and αk+1 ≥ αk (successful iteration).
Otherwise set xk+1 := xk and αk+1 := 0.5αk (unsuccessful iteration).

Key aspects
Sufficient decrease condition;
Choice of Dk , value of r .
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Cosine measure and PSS

A measure of set quality

For a set D ⊂ Rn and v ∈ Rn \ {0}, the cosine measure of D at v is

cm(D, v) = max
d∈D

d> v
‖d‖ ‖v‖

When cm(D, v) > 0, v makes an acute angle with some d ∈ D.
Ensuring cm(D, v) > 0 ∀v 6= 0 requires D to be a Positive Spanning
Set ⇒ |D| ≥ n + 1 vectors.

Example

Coordinate set: D⊕ = {e1, . . . , en, -e1, . . . , -en}.
|D⊕| = 2n.
∀v , cm (D⊕, v) ≥ 1√

n
.
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Worst-case complexity in deterministic direct search

Assumption: It exists κ ∈ (0, 1) such that ∀k, cm(Dk , v) ≥ κ ∀v ∈ Rn,
with |Dk | = r .

Theorem
Let ε ∈ (0, 1) and Nε be the number of function evaluations needed to
satisfy ‖∇f (xk)‖ < ε. Then,

Nε ≤ O
(
r (κ ε)−2) .

Choosing Dk = D⊕, one has κ = 1/
√
n, r = 2n, and the bound

becomes
Nε ≤ O

(
n2 ε−2) .

The n2 cannot be improved deterministically.
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Randomized direct-search techniques

Deterministic direct search
Using fixed sets of directions gives limited exploration;
Strong dependency on the dimension (O(n2ε−2) complexity).

Randomized techniques

Randomized direct search: Use a random set of directions Dk such
that

∀v ,P(cm(Dk , v) ≥ κ|D0, . . . ,Dk−1) ≥ p.

Nesterov’s random search (inspired by Gaussian smoothing): Draw
uk ∼ N (0, I ) and use

f (x + µu)− f (x)

µ
u or

f (x + µu)− f (x − µu)

µ
u

For both: Complexity improved to O(nε−2)!
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Stochastic derivative-free optimization

min
x∈F

f (x)

New assumptions

f only available through a stochastic oracle f̃ (x ; ξ);
The vector ξ is a random quantity lying in a compact set Ξ;
Typical : f̃ (·; ξ) convex in x for every realization of ξ.
Minimum of f attained at x∗.

Stochastic oracle ↔ Bandit feedback;
Interesting connections with bandit/online optimization literature.
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DFO and Bandit feedback methods

Multi-armed bandit classical setting

Discrete set of arms {1, . . . ,A};
At every iteration k , a player plays an arm xk , nature draws ξk ,
yielding a reward f (xk ; ξk);
Expected cumulative regret:

E

[
K−1∑
k=0

f (xk ; ξk)

]
− Kf (x∗),

Infinite-armed bandits (Auer, 2002)
1 Player plays xk , nature draws ξk from Ξ compact set;
2 Player observes f (xk ; ξk).

Goal (for complexity): f (x̄K )− f (x∗) ≤ ε, x̄K = 1
K

∑K−1
k=0 xk .
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Bandit feedback methods

One-point methods

Draw uk ∼ U(Sn−1) and use

f̃ (xk + µuk ; ξk)

µ
uk or

f̃ (xk + µuk ; ξ+k )− f̃ (xk − µuk ; ξ−k )

µ
uk

Best known complexity: O(nε−3) for convex problems.

Two/Multi-point methods

Assumption: Can use the same ξ to perform several evaluations.
Draw uk ∼ U(Sn−1) and use

f̃ (xk + µkuk ; ξk)

µk
uk or

f̃ (xk + µkuk ; ξk)− f̃ (xk − µkuk ; ξk)

µk
uk

Best known-complexity: O(nε−2) for convex problems.
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Direct search: Summarizing

My point of view
Direct-search methods sample but do not seek to construct a gradient;
Decreasing the objective is the main goal;
Classical methods have evolved closer to random search via
randomization.

Interesting connections
Geometry: Positive spanning sets;
Bandit/Online optimization: For stochastic settings in particular.
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Software suggestions

NOMAD/HyperNOMAD: https://github.com/bbopt/HyperNOMAD

Developed at Polytechnique Montréal (Canada) since 2009;
C++/Matlab versions;
Multiple features: categorical, constraints, etc;
HyperNOMAD (2019): Extension applied to optimize architectures
and hyperparameters of neural networks.

Bandit-based optimization methods

Hyperband (Jamieson et al 2016), BOHB (Falkner et al 2018):
combine bandit approaches with other tools from Bayesian
optimization;
In both cases, doing more than just sampling is helpful...
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Beyond the direct-search approach

What we saw before
Direct-search techniques do exploration...
...with a bit of local exploitation.
Typically re-sample (especially for randomized methods), do not re-use
information from the past.

Model-based DFO
Uses past evaluations to construct a model of the objective function;
Can re-use points and be significantly cheaper than finite differences.
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Trust-region DFO algorithm

Goal: minimizex∈Rn f (x);
Evaluations of f available but expensive, f smooth.

Inputs: x0 ∈ Rn, η ∈ (0, 1), δ0 > 0.
For k = 0, 1, 2, . . .

Compute a model s 7→ mk(xk + s) of f at xk ;

Compute a step sk ≈ argmin‖s‖≤δk mk(xk + s);

Evaluate ρk = f (xk )−f (xk+sk )
mk (xk )−mk (xk+sk )

.

If ρk ≥ η, set xk+1 = xk + sk and δk+1 ≥ δk .
Otherwise, set xk+1 = xk and δk+1 = δk/2.
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Inputs: x0 ∈ Rn, η ∈ (0, 1), δ0 > 0.
For k = 0, 1, 2, . . .

Compute a model s 7→ mk(xk + s) of f at xk ;
Compute a step sk ≈ argmin‖s‖≤δk mk(xk + s);

Evaluate ρk = f (xk )−f (xk+sk )
mk (xk )−mk (xk+sk )

.

If ρk ≥ η, set xk+1 = xk + sk and δk+1 ≥ δk .
Otherwise, set xk+1 = xk and δk+1 = δk/2.
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Deterministic analysis

Model quality
Goal: Approximate a smooth function f with a model m.

Taylor-like error bounds on the approximation;
Local: will hold over a ball (≈ trust region).

Fully linear models (Conn, Scheinberg, Vicente ’08)

The model m is a κ-fully linear model of f at (x , δ) if for any y ∈ B(x , δ),

|m(y)− f (y)| ≤ κδ2

‖∇m(y)−∇f (y)‖ ≤ κδ.
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Building fully linear models

Pd
n : space of polynomial functions on Rn of degree ≤ d ,

dimPd
n = q + 1;

Φ = {φ0(·), . . . , φq(·)}: basis of Pd
n ;

Y = {y0, . . . , yp}: interpolation set, p + 1 points in Rn;

Goal: model m(x) =
∑q

i=0 αiφi (x) such that

∀j = 0, . . . , p, m(y j) ≈ f (y j).

Reformulated as M(Φ,Y)α ≈ f (Y), with

M(Φ,Y) =

 φ0(y0) · · · φq(y0)
...

...
...

φ0(yp) · · · φq(yp)

 , f (Y) =

 f (y0)
...

f (yp)

 .
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Building fully linear models (2)

Polynomial regression models
Compute α∗ solution of

min
α∈Rq+1

‖M(Φ,Y)α− f (Y)‖2.

and set m(x) =
∑q

i=0 α
∗
i φi (x).

Main result

If Y ⊂ B(y0, δ) is poised, then m is fully linear in B(y0, δ).

Ex)
Linear interpolation/regression case p = q = n;
Y =

{
y0, y1, . . . , yn

}
vertices of a simplex in Rn.
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Complexity analysis

Key assumptions
For every iteration k ,

mk is κ-fully linear with κ > 0;
mk is built using at most r new evaluations of f in B(xk , δk).

Complexity result

To achieve inf0≤`≤k ‖∇f (x`)‖ < ε, the method requires at most
O(κ2ε−2) iterations;
O(r κ2ε−2) function evaluations.

Ex) Linear interpolation/regression: r = O(n), κ = O(
√
n)

⇒ Evaluation complexity in O(n2ε−2).
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Deterministic analysis

Model quality
Goal: Approximate a smooth function f with a model m.

Taylor-like error bounds on the approximation;
Local: will hold over a ball (≈ trust region).

Fully quadratic models (Conn, Scheinberg, Vicente ’08)

The model mk is a κ-fully quadratic model of f at (xk , δk) if for any
y ∈ B(xk , δk),

|mk(y)− f (y)| ≤ κδ3k

‖∇mk(y)−∇f (y)‖ ≤ κδ2k

‖∇2mk(y)−∇2f (y)‖ ≤ κδk .
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Building fully quadratic models in practice

Popular choices

Model mk built using values of f at Yk = {xk , y1, . . . , y r}:
Interpolation/Regression polynomials;
Radial basis functions (Gaussian kernels).

Main argument

Good geometry of Yk ⇒ mk fully quadratic in B(xk , δk).

Ex) Quadratic interpolation with r = O(n2) samples
Yk =

{
xk , {xk ± δke i}ni=1, {xk + δk

e i+e j

2 }1≤i<j≤n}
}
.

In practice
Reuse previous points;
Control geometry with criticality step;
May still require r new samples per iteration.
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Complexnalysis

Key assumptions
For every iteration k ,

mk is κ-fully quadratic with κ > 0;
mk is built using at most r new evaluations of f in B(xk , δk).

Key results
δk → 0;
If xk not stationary and δk small enough, the step is accepted.
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Complexity analysis

Assumption: Steps chosen to yield best iteration complexity (O(ε
−3/2
g )).

Complexity result

To achieve ‖∇f (xk)‖ ≤ εg and ∇2f (xk) � −ε1/2g I , the method requires at
most
O(κ3ε

−3/2
g ) iterations;

O(r κ3ε
−3/2
g ) function evaluations.

Example: Quadratic interpolation/regression

r = O(n2), κ = O(n);

Evaluation complexity in O(n5ε
−3/2
g ).
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Note: Exploiting structure

Behind the black box
For simplicity, we focused on expensive objectives;
In many cases, part of the objective actually has gradients;
In general, always better to exploit any known structure of the model!

Example: Least squares

minimizex∈Rn f (x) =
1
2
‖r(x)‖2 r : Rn → Rm.

Derivatives of r unknown but derivatives of f partially known:

∇f (x) = J r (x)Tr(x).

Can help build more accurate models by leveraging the problem
structure.
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Outline

1 The derivative-free setup
What is DFO?
Mathematically speaking

2 Direct-search methods
From random to direct search
From direct search to randomized direct search

3 Model-based methods
Introduction to model-based methods
Towards random models
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Challenges with the deterministic approach

Using fully linear models

In practice, reuse function values/using less than n + 1 works well;
In theory, need O(n) function evaluations to certify fully linearity
(Scheinberg and Toint ’09).

Idea (Bandeira et al, ’14)

Suppose that models are only fully linear with some probability.
Generates random processes;
Analyzed with martingale-type arguments.
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A probabilistic property

Recall: The model mk is κ-fully linear at (xk , δk) if for all y ∈ B(xk , δk):

|mk(y)− f (y)| ≤ κδ2k , ‖∇mk(y)−∇f (y)‖ ≤ κδk

Probabilistic models
A random model sequence {mk} is said to be (p, κ)-fully linear if:

P (m0 κ-fully linear ) ≥ p

∀k ≥ 1, P (mk κ-fully linear | m0, . . . ,mk−1) ≥ p,
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Probabilistic complexity

Key assumptions
For every iteration k ,

{mk}k is (p, κ)-fully linear with p > 1/2;
mk is built using at most r new evaluations of f in B(xk , δk).

Theorem (Gratton, R., Vicente, Zhang ’18)

Let ε ∈ (0, 1) and Nε the number of evaluations needed to have
‖∇f (xk)‖ ≤ ε. Then, Nε = O(rκ2ε−2) with high probability.
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Probabilistic models in practice

Subsampling case

f (x) =
1
m

m∑
i=1

fi (x),∇fi available but not ∇f

Generate S ⊂ {1, . . . ,N} at random;
Form m(x + x) = f (x) + 1

|S |
∑

i∈S ∇fi (x)>s;

With |S | = O(δ−2), the model is probabilistically fully linear on
B(x , δ).

Probabilistic fully quadratic models

Deterministically, requires O(n2) evaluations;
If objective Hessian is sparse, achieved (w. h. p.) in
O
(
n(log n)4) evaluations using techniques from compressed sensing.
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Bayesian optimization and models

Bayesian optimization paradigm
1 At every iteration, fit a posterior distribution to the existing

observations;
2 Find next point by maximizing an acquisition function;
3 Repeat until the evaluation budget is exhausted.

Popular among statisticians, great for uncertainty quantification;
Does not scale up well to high-dimension, must be able to maximize
the acquisition function;
In spirit, a model-based paradigm based on radial basis functions:

mk(xk + s) =

|Y|∑
i=1

exp(−‖y i − s‖2)

⇒ Those are fully linear models!
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Model based: Summarizing

Building models
Exploits the history of the algorithm;
Efficient implementations much cheaper than finite differences;
The best variants exploit as much structure as they can.

Are those popular?

Metamodels/Surrogates are ubiquitous in scientific computing;
Bayesian optimization builds models too!
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Model-based software

Michael Powell’s codes
Originally written in Fortran, still some of the most robust codes to
date;
PDFO (https://www.pdfo.net/) provides Python and MATLAB
interfaces;
Use explored in adversarial training.

Other software
POUNDERS: Derivative-free least-squares (structure);
ORBIT: Radial basis function trust region;
Numerous packages in Python/R for surrogate/Bayesian optimization.
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A quick summary

Derivative-free optimization
When derivatives not available;
Many names these days;
Focus: Use as few evaluations as possible;
These problems are important (and cool)!

DFO for ML and ML for DFO
Randomized DFO techniques use ML-like techniques;
Automated ML efficient with principled approaches (like DFO).
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Things I left out

Discrete variables
Most implementations handle them in some fashion, even categorical;
Theory is spread over communities.

Genetic/Evolutionary algorithms

Popular in practice, can be quite efficient in small dimension;
But require many evaluations (not quite our setup);

Notable method: CMA-ES (ask Eric Benhamou!).

Black-box constraints
Taxonomy of constraints in DFO (ex: relaxable);
Many paradigms from optimization theory implemented. One classical
approach is to use an extreme barrier f (x) =∞ if x /∈ F .
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That’s all!

Thank you for your attention!
clement.royer@dauphine.psl.eu
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