Derivative-Free Optimization

Clément W. Royer

Machine Learning and AI for Economics and Finance Summer School

June 9, 2021

First and foremost

- Associate professor @ Dauphine-PSL;
- Researcher @ LAMSADE and PRAIRIE.
- Research: Nonlinear optimization and applications to data science;
- Focus:
 - Nonconvex problems;
 - Derivative-free algorithms.

What is this lecture about?

- Derivative-free optimization (DFO)?
- Black-box optimization?
- Surrogate-based optimization?
- Response surface methodology/Design of experiments?
- Automated machine learning?
- Hyperparameter tuning?

What is this lecture about?

- Derivative-free optimization (DFO)?
- Black-box optimization?
- Surrogate-based optimization?
- Response surface methodology/Design of experiments?
- Automated machine learning?
- Hyperparameter tuning?
- All of the above provided no derivatives are used;
- More of the first two (my background);
- A bit of the last two (this summer school).

- 1 The derivative-free setup
- 2 Direct-search methods
- Model-based methods

- 1 The derivative-free setup
- 2 Direct-search methods
- Model-based methods

- 1 The derivative-free setup
 - What is DFO?
 - Mathematically speaking
- 2 Direct-search methods
 - From random to direct search
 - From direct search to randomized direct search
- Model-based methods
 - Introduction to model-based methods
 - Towards random models

A modern challenge

Say you want to train a neural network...

- What is your architecture? (Convolutional, Recurrent,etc)
- What is your training algorithm? (Adam, RMSProp, SG,etc)
- How do you choose your learning rate?

A modern challenge

Say you want to train a neural network...

- What is your architecture? (Convolutional, Recurrent,etc)
- What is your training algorithm? (Adam, RMSProp, SG,etc)
- How do you choose your learning rate?

Hyperparameter optimization

- Each change of hyperparameter involves another round of training (hours, days of CPU time + money!);
- Integer/Categorical/Continuous variables.

Goal: Reach automated ML!

Meanwhile...

Scientific computing

- Extensive use of computer simulation in physics-based applications (aerospace engineering, chemical processes, climate);
- Very expensive runs;
- Need for parameter calibration.

Simulation-based optimization

- Stemmed from the need to optimize with very expensive evaluations;
- Relied partly on standard optimization techniques.

Classical example: Rotor helicopter design (Booker et al. 1998)

- About 30 parameters;
- 1 simulation: 2 weeks of computational fluid dynamics simulation;
- A simulation failed 60% of the time.

Classical example: Rotor helicopter design (Booker et al. 1998)

- About 30 parameters;
- 1 simulation: 2 weeks of computational fluid dynamics simulation;
- A simulation failed 60% of the time.

Ubiquitous in multidisciplinary optimization:

- Several codes interfaced;
- Numerical simulations;
- Large amount of calculation, possible failures.

The problems we want to look at

Common features in automated ML and simulation-based optimization

- Require significant amount of computing power;
- Choosing the best parameters is not easy;
- The application people want the best value possible in order to build/deploy the system in real-world settings!

Our setup

- Selecting the best parameters can be posed as an optimization problem;
- The objective function in this problem is very expensive.

A definition of DFO

Derivative-free optimization problem

Some derivatives are unavailable for optimization purposes.

A definition of DFO

Derivative-free optimization problem

Some derivatives are unavailable for optimization purposes.

- Optimization is really connected to derivatives (gradient descent, optimality conditions);
- Some: It only takes one missing derivative!
- Unavailable: They may or may not exist!

A warning

If you can afford derivatives you should use them!

- Handcoding still exists;
- Finite differences can sometimes by used;
- Automatic differentiation is very powerful these days.

Most derivative-based solvers work with inexact derivatives.

A warning

If you can afford derivatives you should use them!

- Handcoding still exists;
- Finite differences can sometimes by used;
- Automatic differentiation is very powerful these days.

Most derivative-based solvers work with inexact derivatives.

Derivatives not affordable

- Complex phenomena ⇒ Programming prone to errors;
- Costly/noisy evaluations ⇒ Problem for finite differences;
- Source code not available, company-owned \Rightarrow No hope for AD.

- The derivative-free setup
 - What is DFO?
 - Mathematically speaking
- 2 Direct-search methods
 - From random to direct search
 - From direct search to randomized direct search
- Model-based methods
 - Introduction to model-based methods
 - Towards random models

Problem

Our focus

$$minimize_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$$
 s.t. $\boldsymbol{x} \in \mathcal{F}$

- x: variables;
- f: objective function;
- F: set of feasible points.

Our assumptions

- f is bounded from below on \mathcal{F} : $f(\mathbf{x}) \geq f_{low}$;
- f is evaluated as a result of complex/long calculations:
 - Training a neural network/a language model;
 - Running a market simulation;
 - Taking a blood sample from a patient.

What do we want to do?

Find the optimal parameters?

- What does that even mean to be optimal without derivatives?
- Global optimality only possible under some assumptions (convexity) or if you wait forever.

What do we want to do?

Find the optimal parameters?

- What does that even mean to be optimal without derivatives?
- Global optimality only possible under some assumptions (convexity) or if you wait forever.

Find better parameters

- Any improvement can be valuable (and translate into efficiency/money);
- Initial configurations can be pretty good if designed by experts.

What do we want to do?

Find the optimal parameters?

- What does that even mean to be optimal without derivatives?
- Global optimality only possible under some assumptions (convexity) or if you wait forever.

Find better parameters

- Any improvement can be valuable (and translate into efficiency/money);
- Initial configurations can be pretty good if designed by experts.

Get provable guarantees

- Certifies that a method is worth using, serves as comparison;
- A popular metric these days: worst-case complexity.

Worst-case complexity (for this lecture)

Definition

Given

- A convergence criterion;
- A tolerance $\epsilon > 0$;
- An iterative algorithm;

bound the worst-case number of function calls required to satisfy the convergence criterion up to a tolerance ϵ .

The bound as a function of ϵ is called the worst-case complexity of the algorithm.

Worst-case complexity (for this lecture)

Definition

Given

- A convergence criterion;
- A tolerance $\epsilon > 0$;
- An iterative algorithm;

bound the worst-case number of function calls required to satisfy the convergence criterion up to a tolerance ϵ .

The bound as a function of ϵ is called the worst-case complexity of the algorithm.

Convergence criteria

- Differentiable $f: \|\nabla f(\mathbf{x}_k)\| \leq \epsilon$;
- Convex $f: f(\mathbf{x}_k) f^* \leq \epsilon$.

- The derivative-free setup
- 2 Direct-search methods
- Model-based methods

- The derivative-free setup
 - What is DFO?
 - Mathematically speaking
- Direct-search methods
 - From random to direct search
 - From direct search to randomized direct search
- Model-based methods
 - Introduction to model-based methods
 - Towards random models

Grid/Random search

Goal: Solve minimize $_{x \in \mathcal{F}} f(x)$ where only accesses to evaluations of f are available.

Basic search algorithm

Start with: $\hat{x_0} = x_0 \in \mathcal{F}, f = f(x_0), k = 0.$

- **1** Compute a new point x_{k+1} and $f(x_{k+1})$.
- 2 If $f(\mathbf{x}_{k+1}) < f(\hat{\mathbf{x}_k})$ set $\hat{\mathbf{x}}_{k+1} = \mathbf{x}_{k+1}$, otherwise set $\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}_k}$.
- \odot If evaluation budget exceeded stop, otherwise increment k by one.

- Grid search: Predefined set of values:
- Random search: Draw x_{k+1} at random.

Guarantees for random search

Theorem

Let $\hat{x}_K = \operatorname{argmin}_{k=1,\dots,K} f(\mathbf{x}_k)$ the best point obtained by random search, and $f^* = \min_{\mathbf{x} \in \mathcal{F}} f(\mathbf{x})$. Then

$$\mathbb{P}\left(f(\hat{x}_{K})\leq f^{*}+\epsilon\right)\geq p$$

if

$$K \ge \frac{\ln(p)}{\ln\left[\frac{\mu(\{x \in \mathcal{F} | f(x) > f^* + \epsilon\})}{\mu(\mathcal{F})}\right]}.$$

- Very generic result;
- Can require a lot of iterations/evaluations of f;
- All focus on exploration.

Direct search (DS)

Going beyond grid/random search

- Work well in small dimensions;
- Fully exploratory algorithms;
- Only asymptotic guarantees.

Direct search

- Early appearance: 1960s, convergence theory: 1990s.
- Attractive: simplicity, parallel potential;
- One method (Nelder-Mead, 1965) has more than 125000 citations and is still the default DFO method in MATLAB!

An example of DS: Coordinate Search

An example of DS: Coordinate Search

An example of DS: Coordinate Search

- **1** Initialization: Set $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$.
- **2** For k = 0, 1, 2, ...
 - Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of r directions.

- **1** Initialization: Set $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$.
- **2** For k = 0, 1, 2, ...
 - Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of r directions.
 - If it exists $d_k \in \mathcal{D}_k$ so that

$$f(\boldsymbol{x}_k + \alpha_k \, \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \alpha_k^2,$$

then set $\mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \, \mathbf{d}_k$ and $\alpha_{k+1} \ge \alpha_k$ (successful iteration).

- **1** Initialization: Set $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$.
- **2** For k = 0, 1, 2, ...
 - Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of r directions.
 - If it exists $d_k \in \mathcal{D}_k$ so that

$$f(\boldsymbol{x}_k + \alpha_k \, \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \alpha_k^2,$$

then set $\mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \, \mathbf{d}_k$ and $\alpha_{k+1} \ge \alpha_k$ (successful iteration).

• Otherwise set $\mathbf{x}_{k+1} := \mathbf{x}_k$ and $\alpha_{k+1} := 0.5\alpha_k$ (unsuccessful iteration).

- **1** Initialization: Set $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$.
- **2** For k = 0, 1, 2, ...
 - Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of r directions.
 - If it exists $d_k \in \mathcal{D}_k$ so that

$$f(\boldsymbol{x}_k + \alpha_k \, \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \alpha_k^2,$$

then set $\mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \, \mathbf{d}_k$ and $\alpha_{k+1} \ge \alpha_k$ (successful iteration).

• Otherwise set $\mathbf{x}_{k+1} := \mathbf{x}_k$ and $\alpha_{k+1} := 0.5\alpha_k$ (unsuccessful iteration).

- **1** Initialization: Set $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$.
- **2** For k = 0, 1, 2, ...
 - Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of r directions.
 - If it exists $d_k \in \mathcal{D}_k$ so that

$$f(\boldsymbol{x}_k + \alpha_k \, \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \alpha_k^2,$$

then set $\mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \mathbf{d}_k$ and $\alpha_{k+1} \ge \alpha_k$ (successful iteration).

• Otherwise set $\mathbf{x}_{k+1} := \mathbf{x}_k$ and $\alpha_{k+1} := 0.5\alpha_k$ (unsuccessful iteration).

Key aspects

- Sufficient decrease condition;
- Choice of \mathcal{D}_k , value of r.

Cosine measure and PSS

A measure of set quality

For a set $\mathcal{D} \subset \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n \setminus \{0\}$, the cosine measure of \mathcal{D} at \mathbf{v} is

$$cm(\mathcal{D}, \mathbf{v}) = \max_{\mathbf{d} \in \mathcal{D}} \frac{\mathbf{d}^{\top} \mathbf{v}}{\|\mathbf{d}\| \|\mathbf{v}\|}$$

Cosine measure and PSS

A measure of set quality

For a set $\mathcal{D} \subset \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n \setminus \{0\}$, the cosine measure of \mathcal{D} at \mathbf{v} is

$$\operatorname{cm}(\mathcal{D}, \mathbf{v}) = \max_{\mathbf{d} \in \mathcal{D}} \frac{\mathbf{d}^{\top} \mathbf{v}}{\|\mathbf{d}\| \|\mathbf{v}\|}$$

• When $cm(\mathcal{D}, \mathbf{v}) > 0$, \mathbf{v} makes an acute angle with some $\mathbf{d} \in \mathcal{D}$.

Cosine measure and PSS

A measure of set quality

For a set $\mathcal{D} \subset \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n \setminus \{0\}$, the cosine measure of \mathcal{D} at \mathbf{v} is

$$cm(\mathcal{D}, \mathbf{v}) = \max_{\mathbf{d} \in \mathcal{D}} \frac{\mathbf{d}^{\top} \mathbf{v}}{\|\mathbf{d}\| \|\mathbf{v}\|}$$

- When $cm(\mathcal{D}, \mathbf{v}) > 0$, \mathbf{v} makes an acute angle with some $\mathbf{d} \in \mathcal{D}$.
- Ensuring cm(\mathcal{D}, \mathbf{v}) > 0 $\forall \mathbf{v} \neq 0$ requires \mathcal{D} to be a Positive Spanning Set $\Rightarrow |\mathcal{D}| \geq n + 1$ vectors.

Example

Coordinate set: $\mathcal{D}_{\oplus} = \{\boldsymbol{e}_1, \dots, \boldsymbol{e}_n, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_n\}.$

- $|\mathcal{D}_{\oplus}| = 2n$.
- $\forall \mathbf{v}$, $\operatorname{cm}(\mathcal{D}_{\oplus}, \mathbf{v}) \geq \frac{1}{\sqrt{n}}$.

Worst-case complexity in deterministic direct search

Assumption: It exists $\kappa \in (0,1)$ such that $\forall k, \operatorname{cm}(\mathcal{D}_k, \mathbf{v}) \geq \kappa \ \forall \mathbf{v} \in \mathbb{R}^n$, with $|\mathcal{D}_k| = r$.

Theorem

Let $\epsilon \in (0,1)$ and N_{ϵ} be the number of function evaluations needed to satisfy $\|\nabla f(\mathbf{x}_k)\| < \epsilon$. Then,

$$N_{\epsilon} \leq \mathcal{O}\left(r(\kappa \epsilon)^{-2}\right).$$

Worst-case complexity in deterministic direct search

Assumption: It exists $\kappa \in (0,1)$ such that $\forall k, \operatorname{cm}(\mathcal{D}_k, \mathbf{v}) \geq \kappa \ \forall \mathbf{v} \in \mathbb{R}^n$, with $|\mathcal{D}_k| = r$.

Theorem

Let $\epsilon \in (0,1)$ and N_{ϵ} be the number of function evaluations needed to satisfy $\|\nabla f(\mathbf{x}_k)\| < \epsilon$. Then,

$$N_{\epsilon} \leq \mathcal{O}\left(r(\kappa \epsilon)^{-2}\right).$$

• Choosing $\mathcal{D}_k=\mathcal{D}_\oplus$, one has $\kappa=1/\sqrt{n}, r=2n$, and the bound becomes

$$N_{\epsilon} \leq \mathcal{O}\left(n^2 \epsilon^{-2}\right).$$

• The n^2 cannot be improved deterministically.

Outline

- The derivative-free setup
 - What is DFO?
 - Mathematically speaking
- 2 Direct-search methods
 - From random to direct search
 - From direct search to randomized direct search
- Model-based methods
 - Introduction to model-based methods
 - Towards random models

Deterministic direct search

- Using fixed sets of directions gives limited exploration;
- Strong dependency on the dimension $(\mathcal{O}(n^2\epsilon^{-2}))$ complexity).

Deterministic direct search

- Using fixed sets of directions gives limited exploration;
- Strong dependency on the dimension $(\mathcal{O}(n^2\epsilon^{-2}))$ complexity).

Randomized techniques

• Randomized direct search: Use a random set of directions D_k such that

$$\forall \boldsymbol{v}, \mathbb{P}(\mathsf{cm}(\boldsymbol{D}_k, \boldsymbol{v}) \geq \kappa | \boldsymbol{D}_0, \dots, \boldsymbol{D}_{k-1}) \geq p.$$

Deterministic direct search

- Using fixed sets of directions gives limited exploration;
- Strong dependency on the dimension $(\mathcal{O}(n^2\epsilon^{-2}))$ complexity).

Randomized techniques

• Randomized direct search: Use a random set of directions D_k such that

$$\forall oldsymbol{v}, \mathbb{P}(\mathsf{cm}(oldsymbol{D}_k, oldsymbol{v}) \geq \kappa | oldsymbol{D}_0, \dots, oldsymbol{D}_{k-1}) \geq
ho.$$

• Nesterov's random search (inspired by Gaussian smoothing): Draw $u_k \sim \mathcal{N}(0, I)$ and use

$$\frac{f(\mathbf{x} + \mu \mathbf{u}) - f(\mathbf{x})}{\mu} \mathbf{u}$$
 or $\frac{f(\mathbf{x} + \mu \mathbf{u}) - f(\mathbf{x} - \mu \mathbf{u})}{\mu} \mathbf{u}$

Deterministic direct search

- Using fixed sets of directions gives limited exploration;
- Strong dependency on the dimension $(\mathcal{O}(n^2\epsilon^{-2}))$ complexity).

Randomized techniques

• Randomized direct search: Use a random set of directions \boldsymbol{D}_k such that

$$\forall oldsymbol{v}, \mathbb{P}(\mathsf{cm}(oldsymbol{D}_k, oldsymbol{v}) \geq \kappa | oldsymbol{D}_0, \dots, oldsymbol{D}_{k-1}) \geq
ho.$$

• Nesterov's random search (inspired by Gaussian smoothing): Draw $\boldsymbol{u}_k \sim \mathcal{N}(0, \boldsymbol{I})$ and use

$$\frac{f(\mathbf{x} + \mu \mathbf{u}) - f(\mathbf{x})}{\mu} \mathbf{u}$$
 or $\frac{f(\mathbf{x} + \mu \mathbf{u}) - f(\mathbf{x} - \mu \mathbf{u})}{\mu} \mathbf{u}$

• For both: Complexity improved to $\mathcal{O}(n\epsilon^{-2})!$

Stochastic derivative-free optimization

$$\min_{\mathbf{x}\in\mathcal{F}}f(\mathbf{x})$$

New assumptions

- f only available through a stochastic oracle $\tilde{f}(x; \xi)$;
- The vector ξ is a random quantity lying in a compact set Ξ ;
- Typical : $\tilde{f}(\cdot; \xi)$ convex in x for every realization of ξ .
- Minimum of f attained at x_* .

Stochastic derivative-free optimization

$$\min_{\mathbf{x}\in\mathcal{F}}f(\mathbf{x})$$

New assumptions

- f only available through a stochastic oracle $\tilde{f}(x; \xi)$;
- The vector ξ is a random quantity lying in a compact set Ξ ;
- Typical : $\tilde{f}(\cdot; \xi)$ convex in x for every realization of ξ .
- Minimum of f attained at x_* .
- Stochastic oracle ↔ Bandit feedback;
- Interesting connections with bandit/online optimization literature.

DFO and Bandit feedback methods

Multi-armed bandit classical setting

- Discrete set of arms $\{1, \ldots, A\}$;
- At every iteration k, a player plays an arm x_k , nature draws ξ_k , yielding a reward $f(x_k; \xi_k)$;
- Expected cumulative regret:

$$\mathbb{E}\left[\sum_{k=0}^{K-1} f(\boldsymbol{x}_k; \xi_k)\right] - Kf(\boldsymbol{x}_*),$$

Infinite-armed bandits (Auer, 2002)

- Player plays x_k , nature draws ξ_k from Ξ compact set;
- 2 Player observes $f(\mathbf{x}_k; \boldsymbol{\xi}_k)$.

Goal (for complexity):
$$f(\bar{\boldsymbol{x}}_K) - f(\boldsymbol{x}_*) \le \epsilon$$
, $\bar{\boldsymbol{x}}_K = \frac{1}{K} \sum_{k=0}^{K-1} \boldsymbol{x}_k$.

Bandit feedback methods

One-point methods

• Draw $\boldsymbol{u}_k \sim \mathcal{U}(\mathbb{S}^{n-1})$ and use

$$\frac{\tilde{f}(\boldsymbol{x}_k + \mu \boldsymbol{u}_k; \boldsymbol{\xi}_k)}{\mu} \boldsymbol{u}_k \quad \text{or} \quad \frac{\tilde{f}(\boldsymbol{x}_k + \mu \boldsymbol{u}_k; \boldsymbol{\xi}_k^+) - \tilde{f}(\boldsymbol{x}_k - \mu \boldsymbol{u}_k; \boldsymbol{\xi}_k^-)}{\mu} \boldsymbol{u}_k$$

• Best known complexity: $\mathcal{O}(n\epsilon^{-3})$ for convex problems.

Bandit feedback methods

One-point methods

ullet Draw $oldsymbol{u}_k \sim \mathcal{U}(\mathbb{S}^{n-1})$ and use

$$\frac{\tilde{f}(\mathbf{x}_k + \mu \mathbf{u}_k; \boldsymbol{\xi}_k)}{\mu} \mathbf{u}_k \quad \text{or} \quad \frac{\tilde{f}(\mathbf{x}_k + \mu \mathbf{u}_k; \boldsymbol{\xi}_k^+) - \tilde{f}(\mathbf{x}_k - \mu \mathbf{u}_k; \boldsymbol{\xi}_k^-)}{\mu} \mathbf{u}_k$$

• Best known complexity: $\mathcal{O}(n\epsilon^{-3})$ for convex problems.

Two/Multi-point methods

- Assumption: Can use the same ξ to perform several evaluations.
- Draw $\boldsymbol{u}_k \sim \mathcal{U}(\mathbb{S}^{n-1})$ and use

$$\frac{\tilde{f}(\mathbf{x}_k + \mu_k \mathbf{u}_k; \boldsymbol{\xi}_k)}{\mu_k} \mathbf{u}_k \quad \text{or} \quad \frac{\tilde{f}(\mathbf{x}_k + \mu_k \mathbf{u}_k; \boldsymbol{\xi}_k) - \tilde{f}(\mathbf{x}_k - \mu_k \mathbf{u}_k; \boldsymbol{\xi}_k)}{\mu_k} \mathbf{u}_k$$

• Best known-complexity: $\mathcal{O}(n\epsilon^{-2})$ for convex problems.

Direct search: Summarizing

My point of view

- Direct-search methods sample but do not seek to construct a gradient;
- Decreasing the objective is the main goal;
- Classical methods have evolved closer to random search via randomization.

Interesting connections

- Geometry: Positive spanning sets;
- Bandit/Online optimization: For stochastic settings in particular.

Software suggestions

NOMAD/HyperNOMAD: https://github.com/bbopt/HyperNOMAD

- Developed at Polytechnique Montréal (Canada) since 2009;
- C++/Matlab versions;
- Multiple features: categorical, constraints, etc;
- HyperNOMAD (2019): Extension applied to optimize architectures and hyperparameters of neural networks.

Bandit-based optimization methods

- Hyperband (Jamieson et al 2016), BOHB (Falkner et al 2018): combine bandit approaches with other tools from Bayesian optimization;
- In both cases, doing more than just sampling is helpful...

Outline

- The derivative-free setup
- 2 Direct-search methods
- Model-based methods

Outline

- The derivative-free setup
 - What is DFO?
 - Mathematically speaking
- 2 Direct-search methods
 - From random to direct search
 - From direct search to randomized direct search
- Model-based methods
 - Introduction to model-based methods
 - Towards random models

Beyond the direct-search approach

What we saw before

- Direct-search techniques do exploration...
- ...with a bit of local exploitation.
- Typically re-sample (especially for randomized methods), do not re-use information from the past.

Model-based DFO

- Uses past evaluations to construct a model of the objective function;
- Can re-use points and be significantly cheaper than finite differences.

- Goal: minimize_{$\mathbf{x} \in \mathbb{R}^n$} $f(\mathbf{x})$;
- ullet Evaluations of f available but expensive, f smooth.

- Goal: minimize_{$\mathbf{x} \in \mathbb{R}^n$} $f(\mathbf{x})$;
- ullet Evaluations of f available but expensive, f smooth.

Inputs: $x_0 \in \mathbb{R}^n$, $\eta \in (0,1), \delta_0 > 0$.

- Compute a model $s \mapsto m_k(x_k + s)$ of f at x_k ;
- Compute a step $s_k \approx \operatorname{argmin}_{\|s\| < \delta_k} m_k(x_k + s)$;

- Goal: minimize_{$\mathbf{x} \in \mathbb{R}^n$} $f(\mathbf{x})$;
- ullet Evaluations of f available but expensive, f smooth.

Inputs: $x_0 \in \mathbb{R}^n$, $\eta \in (0,1), \delta_0 > 0$.

- Compute a model $s \mapsto m_k(x_k + s)$ of f at x_k ;
- Compute a step $s_k \approx \operatorname{argmin}_{\|s\| \leq \delta_k} m_k(x_k + s)$;
- Evaluate $\rho_k = \frac{f(\mathbf{x}_k) f(\mathbf{x}_k + \mathbf{s}_k)}{m_k(\mathbf{x}_k) m_k(\mathbf{x}_k + \mathbf{s}_k)}$.

- Goal: minimize_{$\mathbf{x} \in \mathbb{R}^n$} $f(\mathbf{x})$;
- ullet Evaluations of f available but expensive, f smooth.

Inputs: $x_0 \in \mathbb{R}^n$, $\eta \in (0,1), \delta_0 > 0$.

- Compute a model $s \mapsto m_k(x_k + s)$ of f at x_k ;
- Compute a step $s_k \approx \operatorname{argmin}_{\|s\| \leq \delta_k} m_k(x_k + s)$;
- Evaluate $\rho_k = \frac{f(\mathbf{x}_k) f(\mathbf{x}_k + \mathbf{s}_k)}{m_k(\mathbf{x}_k) m_k(\mathbf{x}_k + \mathbf{s}_k)}$.
- If $\rho_k \ge \eta$, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{s}_k$ and $\delta_{k+1} \ge \delta_k$.

- Goal: minimize_{$\mathbf{x} \in \mathbb{R}^n$} $f(\mathbf{x})$;
- ullet Evaluations of f available but expensive, f smooth.

Inputs: $x_0 \in \mathbb{R}^n$, $\eta \in (0,1), \delta_0 > 0$.

- Compute a model $s \mapsto m_k(x_k + s)$ of f at x_k ;
- Compute a step $s_k \approx \operatorname{argmin}_{\|s\| \le \delta_k} m_k(x_k + s)$;
- Evaluate $\rho_k = \frac{f(\mathbf{x}_k) f(\mathbf{x}_k + \mathbf{s}_k)}{m_k(\mathbf{x}_k) m_k(\mathbf{x}_k + \mathbf{s}_k)}$.
- If $\rho_k \geq \eta$, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{s}_k$ and $\delta_{k+1} \geq \delta_k$.
- Otherwise, set $\mathbf{x}_{k+1} = \mathbf{x}_k$ and $\delta_{k+1} = \delta_k/2$.

Deterministic analysis

Model quality

Goal: Approximate a smooth function f with a model m.

- Taylor-like error bounds on the approximation;
- Local: will hold over a ball (\approx trust region).

Fully linear models (Conn, Scheinberg, Vicente '08)

The model m is a κ -fully linear model of f at (\mathbf{x}, δ) if for any $\mathbf{y} \in B(\mathbf{x}, \delta)$,

$$|m(\mathbf{y}) - f(\mathbf{y})| \le \kappa \delta^2$$

 $\|\nabla m(\mathbf{y}) - \nabla f(\mathbf{y})\| \le \kappa \delta.$

Building fully linear models

- \mathcal{P}_n^d : space of polynomial functions on \mathbb{R}^n of degree $\leq d$, dim $\mathcal{P}_n^d = q + 1$;
- $\Phi = {\phi_0(\cdot), \dots, \phi_q(\cdot)}$: basis of \mathcal{P}_n^d ;
- $\mathcal{Y} = \{ \mathbf{y}^0, \dots, \mathbf{y}^p \}$: interpolation set, p+1 points in \mathbb{R}^n ;

Building fully linear models

- \mathcal{P}_n^d : space of polynomial functions on \mathbb{R}^n of degree $\leq d$, dim $\mathcal{P}_n^d = q + 1$;
- $\Phi = \{\phi_0(\cdot), \dots, \phi_q(\cdot)\}$: basis of \mathcal{P}_n^d ;
- $\mathcal{Y} = \{ \mathbf{y}^0, \dots, \mathbf{y}^p \}$: interpolation set, p+1 points in \mathbb{R}^n ;
- Goal: model $m(\mathbf{x}) = \sum_{i=0}^{q} \alpha_i \phi_i(\mathbf{x})$ such that

$$\forall j = 0, \ldots, p, \quad m(\mathbf{y}^j) \approx f(\mathbf{y}^j).$$

• Reformulated as $M(\Phi, \mathcal{Y})\alpha \approx f(\mathcal{Y})$, with

$$M(\Phi, \mathcal{Y}) = \begin{bmatrix} \phi_0(\mathbf{y}^0) & \cdots & \phi_q(\mathbf{y}^0) \\ \vdots & \vdots & \vdots \\ \phi_0(\mathbf{y}^p) & \cdots & \phi_q(\mathbf{y}^p) \end{bmatrix}, \quad f(\mathcal{Y}) = \begin{bmatrix} f(\mathbf{y}^0) \\ \vdots \\ f(\mathbf{y}^p) \end{bmatrix}.$$

Building fully linear models (2)

Polynomial regression models

Compute $lpha^*$ solution of

$$\min_{\alpha \in \mathbb{R}^{q+1}} \| M(\Phi, \mathcal{Y}) \alpha - f(\mathcal{Y}) \|^2.$$

and set $m(\mathbf{x}) = \sum_{i=0}^{q} \alpha_i^* \phi_i(\mathbf{x})$.

Main result

If $\mathcal{Y} \subset B(\mathbf{y}^0, \delta)$ is *poised*, then m is fully linear in $B(\mathbf{y}^0, \delta)$.

Ex)

- Linear interpolation/regression case p = q = n;
- $\mathcal{Y} = \{ \mathbf{y}^0, \mathbf{y}^1, \dots, \mathbf{y}^n \}$ vertices of a simplex in \mathbb{R}^n .

Complexity analysis

Key assumptions

For every iteration k,

- m_k is κ -fully linear with $\kappa > 0$;
- m_k is built using at most r new evaluations of f in $B(\mathbf{x}_k, \delta_k)$.

Complexity result

To achieve $\inf_{0 \le \ell \le k} \|\nabla f(\mathbf{x}_{\ell})\| < \epsilon$, the method requires at most

- $\mathcal{O}(\kappa^2 \epsilon^{-2})$ iterations;
- $\mathcal{O}(r \, \kappa^2 \epsilon^{-2})$ function evaluations.
- Ex) Linear interpolation/regression: $r = \mathcal{O}(n), \kappa = \mathcal{O}(\sqrt{n})$
- \Rightarrow Evaluation complexity in $\mathcal{O}(n^2\epsilon^{-2})$.

Deterministic analysis

Model quality

Goal: Approximate a smooth function f with a model m.

- Taylor-like error bounds on the approximation;
- Local: will hold over a ball (pprox trust region).

Deterministic analysis

Model quality

Goal: Approximate a smooth function f with a model m.

- Taylor-like error bounds on the approximation;
- Local: will hold over a ball (\approx trust region).

Fully quadratic models (Conn, Scheinberg, Vicente '08)

The model m_k is a κ -fully quadratic model of f at (\mathbf{x}_k, δ_k) if for any $\mathbf{y} \in B(\mathbf{x}_k, \delta_k)$,

$$|m_k(\mathbf{y}) - f(\mathbf{y})| \leq \kappa \delta_k^3$$

$$\|\nabla m_k(\mathbf{y}) - \nabla f(\mathbf{y})\| \leq \kappa \delta_k^2$$

$$\|\nabla^2 m_k(\mathbf{y}) - \nabla^2 f(\mathbf{y})\| \leq \kappa \delta_k.$$

Building fully quadratic models in practice

Popular choices

Model m_k built using values of f at $\mathcal{Y}_k = \{x_k, y^1, \dots, y^r\}$:

- Interpolation/Regression polynomials;
- Radial basis functions (Gaussian kernels).

Main argument

Good geometry of $\mathcal{Y}_k \Rightarrow m_k$ fully quadratic in $B(\mathbf{x}_k, \delta_k)$.

Ex) Quadratic interpolation with $r = \mathcal{O}(n^2)$ samples

$$\mathcal{Y}_k = \left\{ \mathbf{x}_k, \{ \mathbf{x}_k \pm \delta_k \mathbf{e}_i \}_{i=1}^n, \{ \mathbf{x}_k + \delta_k \frac{\mathbf{e}_i + \mathbf{e}_j}{2} \}_{1 \le i < j \le n} \right\}.$$

Building fully quadratic models in practice

Popular choices

Model m_k built using values of f at $\mathcal{Y}_k = \{x_k, y^1, \dots, y^r\}$:

- Interpolation/Regression polynomials;
- Radial basis functions (Gaussian kernels).

Main argument

Good geometry of $\mathcal{Y}_k \Rightarrow m_k$ fully quadratic in $B(\boldsymbol{x}_k, \delta_k)$.

Ex) Quadratic interpolation with $r = \mathcal{O}(n^2)$ samples

$$\mathcal{Y}_k = \left\{ \boldsymbol{x}_k, \{ \boldsymbol{x}_k \pm \delta_k \boldsymbol{e}_i \}_{i=1}^n, \{ \boldsymbol{x}_k + \delta_k \frac{\boldsymbol{e}_i + \boldsymbol{e}_j}{2} \}_{1 \le i < j \le n} \} \right\}.$$

In practice

- Reuse previous points;
- Control geometry with criticality step;
- May still require r new samples per iteration.

Complexnalysis

Key assumptions

For every iteration k,

- m_k is κ -fully quadratic with $\kappa > 0$;
- m_k is built using at most r new evaluations of f in $B(x_k, \delta_k)$.

Key results

- $\delta_k \rightarrow 0$;
- If x_k not stationary and δ_k small enough, the step is accepted.

Complexity analysis

Assumption: Steps chosen to yield best iteration complexity $(\mathcal{O}(\epsilon_g^{-3/2}))$.

Complexity result

To achieve $\|\nabla f(\mathbf{x}_k)\| \le \epsilon_g$ and $\nabla^2 f(\mathbf{x}_k) \succeq -\epsilon_g^{1/2} I$, the method requires at most

- $\mathcal{O}(\kappa^3 \epsilon_g^{-3/2})$ iterations;
- $\mathcal{O}(r \kappa^3 \epsilon_g^{-3/2})$ function evaluations.

Complexity analysis

Assumption: Steps chosen to yield best iteration complexity $(\mathcal{O}(\epsilon_g^{-3/2}))$.

Complexity result

To achieve $\|\nabla f(\mathbf{x}_k)\| \le \epsilon_g$ and $\nabla^2 f(\mathbf{x}_k) \succeq -\epsilon_g^{1/2} I$, the method requires at most

- $\mathcal{O}(\kappa^3 \epsilon_g^{-3/2})$ iterations;
- $\mathcal{O}(r \kappa^3 \epsilon_g^{-3/2})$ function evaluations.

Example: Quadratic interpolation/regression

- $r = \mathcal{O}(n^2), \kappa = \mathcal{O}(n);$
- Evaluation complexity in $\mathcal{O}(n^5 \epsilon_g^{-3/2})$.

Note: Exploiting structure

Behind the black box

- For simplicity, we focused on expensive objectives;
- In many cases, part of the objective actually has gradients;
- In general, always better to exploit any known structure of the model!

Example: Least squares

$$\mathsf{minimize}_{\mathbf{x} \in \mathbb{R}^n} \, f(\mathbf{x}) = \frac{1}{2} \, \| r(\mathbf{x}) \|^2 \quad r : \mathbb{R}^n o \mathbb{R}^m.$$

Derivatives of r unknown but derivatives of f partially known:

$$\nabla f(\mathbf{x}) = \mathbf{J}_r(\mathbf{x})^{\mathrm{T}} r(\mathbf{x}).$$

 Can help build more accurate models by leveraging the problem structure.

Outline

- The derivative-free setup
 - What is DFO?
 - Mathematically speaking
- 2 Direct-search methods
 - From random to direct search
 - From direct search to randomized direct search
- Model-based methods
 - Introduction to model-based methods
 - Towards random models

Challenges with the deterministic approach

Using fully linear models

- In practice, reuse function values/using less than n + 1 works well;
- In theory, need $\mathcal{O}(n)$ function evaluations to certify fully linearity (Scheinberg and Toint '09).

Idea (Bandeira et al, '14)

Suppose that models are only fully linear with some probability.

- Generates random processes;
- Analyzed with martingale-type arguments.

A probabilistic property

Recall: The model m_k is κ -fully linear at (\mathbf{x}_k, δ_k) if for all $\mathbf{y} \in \mathcal{B}(\mathbf{x}_k, \delta_k)$:

$$|m_k(\mathbf{y}) - f(\mathbf{y})| \le \kappa \delta_k^2, \quad \|\nabla m_k(\mathbf{y}) - \nabla f(\mathbf{y})\| \le \kappa \delta_k$$

A probabilistic property

Recall: The model m_k is κ -fully linear at (\mathbf{x}_k, δ_k) if for all $\mathbf{y} \in \mathcal{B}(\mathbf{x}_k, \delta_k)$:

$$|m_k(\mathbf{y}) - f(\mathbf{y})| \le \kappa \delta_k^2, \quad \|\nabla m_k(\mathbf{y}) - \nabla f(\mathbf{y})\| \le \kappa \delta_k$$

Probabilistic models

A random model sequence $\{m_k\}$ is said to be (p, κ) -fully linear if:

$$\mathbb{P}(m_0 \kappa \text{-fully linear}) \geq p$$

$$\forall k \geq 1$$
, $\mathbb{P}(m_k \kappa \text{-fully linear } | m_0, \dots, m_{k-1}) \geq p$,

Probabilistic complexity

Key assumptions

For every iteration k,

- $\{m_k\}_k$ is (p, κ) -fully linear with p > 1/2;
- m_k is built using at most r new evaluations of f in $B(x_k, \delta_k)$.

Theorem (Gratton, R., Vicente, Zhang '18)

Let $\epsilon \in (0,1)$ and N_{ϵ} the number of evaluations needed to have $\|\nabla f(x_k)\| \leq \epsilon$. Then, $N_{\epsilon} = \mathcal{O}(r\kappa^2\epsilon^{-2})$ with high probability.

Probabilistic models in practice

Subsampling case

$$f(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} f_i(\mathbf{x}), \nabla f_i$$
 available but not ∇f

- Generate $S \subset \{1, ..., N\}$ at random;
- Form $m(\mathbf{x} + \mathbf{x}) = f(\mathbf{x}) + \frac{1}{|S|} \sum_{i \in S} \nabla f_i(\mathbf{x})^{\top} \mathbf{s}$;
- With $|S| = \mathcal{O}(\delta^{-2})$, the model is probabilistically fully linear on $B(\mathbf{x}, \delta)$.

Probabilistic models in practice

Subsampling case

$$f(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^m f_i(\mathbf{x}), \nabla f_i$$
 available but not ∇f

- Generate $S \subset \{1, ..., N\}$ at random;
- Form $m(\mathbf{x} + \mathbf{x}) = f(\mathbf{x}) + \frac{1}{|S|} \sum_{i \in S} \nabla f_i(\mathbf{x})^{\top} \mathbf{s}$;
- With $|S| = \mathcal{O}(\delta^{-2})$, the model is probabilistically fully linear on $B(\mathbf{x}, \delta)$.

Probabilistic fully quadratic models

- Deterministically, requires $\mathcal{O}(n^2)$ evaluations;
- If objective Hessian is sparse, achieved (w. h. p.) in $\mathcal{O}(n(\log n)^4)$ evaluations using techniques from compressed sensing.

Bayesian optimization and models

Bayesian optimization paradigm

- At every iteration, fit a posterior distribution to the existing observations;
- Find next point by maximizing an acquisition function;
- Repeat until the evaluation budget is exhausted.

Bayesian optimization and models

Bayesian optimization paradigm

- At every iteration, fit a posterior distribution to the existing observations;
- Find next point by maximizing an acquisition function;
- 3 Repeat until the evaluation budget is exhausted.
- Popular among statisticians, great for uncertainty quantification;
- Does not scale up well to high-dimension, must be able to maximize the acquisition function;
- In spirit, a model-based paradigm based on radial basis functions:

$$m_k(\boldsymbol{x}_k + \boldsymbol{s}) = \sum_{i=1}^{|\mathcal{Y}|} \exp(-\|\boldsymbol{y}_i - \boldsymbol{s}\|^2)$$

⇒ Those are fully linear models!

Model based: Summarizing

Building models

- Exploits the history of the algorithm;
- Efficient implementations much cheaper than finite differences;
- The best variants exploit as much structure as they can.

Are those popular?

- Metamodels/Surrogates are ubiquitous in scientific computing;
- Bayesian optimization builds models too!

Model-based software

Michael Powell's codes

- Originally written in Fortran, still some of the most robust codes to date;
- PDFO (https://www.pdfo.net/) provides Python and MATLAB interfaces;
- Use explored in adversarial training.

Other software

- POUNDERS: Derivative-free least-squares (structure);
- ORBIT: Radial basis function trust region;
- Numerous packages in Python/R for surrogate/Bayesian optimization.

A quick summary

Derivative-free optimization

- When derivatives not available;
- Many names these days;
- Focus: Use as few evaluations as possible;
- These problems are important (and cool)!

DFO for ML and ML for DFO

- Randomized DFO techniques use ML-like techniques;
- Automated ML efficient with principled approaches (like DFO).

Things I left out

Discrete variables

- Most implementations handle them in some fashion, even categorical;
- Theory is spread over communities.

Genetic/Evolutionary algorithms

- Popular in practice, can be quite efficient in small dimension;
- But require many evaluations (not quite our setup);

Notable method: CMA-ES (ask Eric Benhamou!).

Black-box constraints

- Taxonomy of constraints in DFO (ex: relaxable);
- Many paradigms from optimization theory implemented. One classical approach is to use an extreme barrier $f(x) = \infty$ if $x \notin \mathcal{F}$.

References

- A. R. Conn, K. Scheinberg, L. N. Vicente, *Introduction to derivative-free optimization*, SIAM, 2009.
- C. Audet, W. Hare, Derivative-Free and Blackbox Optimization, Springer, 2017.
- J. Larson, M. Menickelly and S. M. Wild, *Derivative-free optimization methods*, Acta Numerica, 2019.
- M. Feurer and F. Hutter, Hyperparameter Optimization, in Automated Machine Learning, Springer, 2019.
- A. Flaxman, A. T. Kalai and H. B. McMahan, Online convex optimization in the bandit setting: Gradient descent without a gradient, Symposium on Discrete Algorithms (SODA), 2005.
- P. I. Frazier, *Bayesian Optimization*, Tutorials in Operations Research, 2018.

More references

- P. Auer, Using Confidence Bounds for Exploitation-Exploration Trade-offs, Journal of Machine Learning Research, 2002.
- A. Bandeira, K. Scheinberg and L. N. Vicente, Convergence of trust-region methods based on probabilistic models, SIAM Journal on Optimization, 2014.
- A.J. Booker, J.E. Dennis Jr., P.D. Frank, D.W. Moore and D.B. Serafini, Managing surrogate objectives to optimize a helicopter rotor design – further ex- periments, AIAA/ISMOO Symposium on Multidisciplinary Analysis and Optimization, 1998.
- A.R. Conn, K. Scheinberg and L.N. Vicente, Geometry of interpolation sets in derivative free optimization, Mathematical Programming, 2018.
- S. Gratton, C. W. Royer, L. N. Vicente and Z. Zhang, Direct search based on probabilistic descent, SIAM Journal on Optimization, 2015.
- S. Gratton, C. W. Royer, L. N. Vicente and Z. Zhang, Complexity and global rates of trust-region methods based on probabilistic models, IMA Journal of Numerical Analysis, 2018.
- K. Jamieson et al., Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization, Journal
 of Machine Learning Research, 2018.
- D. Lakhmiri et al., HyperNOMAD: https://github.com/bbopt/HyperNOMAD
- Yu. Nesterov and V. Spokoiny, Random gradient-free minimization of convex functions, Foundations of Computational Mathematics, 2017.
- T. M. Ragonneau and Z. Zhang, PDFO: https://www.pdfo.net/
- K. Scheinberg and Ph. L. Toint, Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization, SIAM Journal on Optimization, 2010.

That's all!

Thank you for your attention!

Image credits

- https://towardsdatascience.com/
- https://commons.wikimedia.org/
- M. Feurer and F. Hutter, Hyperparameter Optimization, in Automated Machine Learning, Springer, 2019.