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First and foremost

@ Associate professor @ Dauphine-PSL;

@ Researcher @ LAMSADE and PRAIRIE.

@ Research: Nonlinear optimization and
applications to data science;

e Focus:

e Nonconvex problems;
o Derivative-free algorithms.
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What is this lecture about?

Derivative-free optimization (DFO)?

Black-box optimization?

Surrogate-based optimization?

Response surface methodology/Design of experiments?

Automated machine learning?

Hyperparameter tuning?
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What is this lecture about?

Derivative-free optimization (DFO)?

Black-box optimization?

Surrogate-based optimization?

Response surface methodology/Design of experiments?

Automated machine learning?

Hyperparameter tuning?

@ All of the above provided no derivatives are used;
@ More of the first two (my background);

A bit of the last two (this summer school).
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@ The derivative-free setup
© Direct-search methods

© Model-based methods
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@ The derivative-free setup
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@ The derivative-free setup
e What is DFO?
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A modern challenge

Neu}'gt vNerlv:“\'/‘vﬂorks .

Say you want to train a neural
network...

@ What is your architecture?
(Convolutional, Recurrent,etc)

e What is your training algorithm?
(Adam, RMSProp, SG,etc)

@ How do you choose your learning
rate?
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A modern challenge

Neu}'gt N \'/‘vﬂorks .

Say you want to train a neural
network...

@ What is your architecture?
(Convolutional, Recurrent,etc)

e What is your training algorithm?
(Adam, RMSProp, SG,etc)

@ How do you choose your learning
rate?

Hyperparameter optimization

@ Each change of hyperparameter involves another round of training
(hours, days of CPU time + money!);

@ Integer/Categorical /Continuous variables.
Goal: Reach automated ML!
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Scientific computing

o Extensive use of computer simulation in physics-based applications
(aerospace engineering, chemical processes, climate);

@ Very expensive runs;

@ Need for parameter calibration.

Simulation-based optimization

@ Stemmed from the need to optimize with very expensive evaluations;

@ Relied partly on standard optimization techniques.
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Classical example: Rotor helicopter design (Booker et al.

1998)

@ About 30 parameters;

@ 1 simulation: 2 weeks of
computational fluid dynamics
simulation;

@ A simulation failed 60% of the
time.
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Classical example: Rotor helicopter design (Booker et al.

1998)

@ About 30 parameters;

@ 1 simulation: 2 weeks of
computational fluid dynamics
simulation;

@ A simulation failed 60% of the
time.

Ubiquitous in multidisciplinary optimization:
@ Several codes interfaced;
@ Numerical simulations;
o Large amount of calculation, possible failures.
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The problems we want to look at

Common features in automated ML and simulation-based optimization

@ Require significant amount of
computing power;

@ Choosing the best parameters is
not easy;

@ The application people want the
best value possible in order to
build/deploy the system in
real-world settings!

o Selecting the best parameters can be posed as an optimization
problem;

@ The objective function in this problem is very expensive.
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A definition of DFO

Derivative-free optimization problem

Some derivatives are unavailable for optimization purposes.
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A definition of DFO

Derivative-free optimization problem

Some derivatives are unavailable for optimization purposes.

@ Optimization is really connected
to derivatives (gradient descent,
optimality conditions);

@ Some: It only takes one missing
derivative!

o Unavailable: They may or may
not exist!
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If you can afford derivatives you should use them!

@ Handcoding still exists;
o Finite differences can sometimes by used;

o Automatic differentiation is very powerful these days.

Most derivative-based solvers work with inexact derivatives.
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If you can afford derivatives you should use them!

@ Handcoding still exists;
o Finite differences can sometimes by used;

o Automatic differentiation is very powerful these days.

Most derivative-based solvers work with inexact derivatives.

Derivatives not affordable

@ Complex phenomena = Programming prone to errors;
@ Costly/noisy evaluations = Problem for finite differences;

@ Source code not available, company-owned = No hope for AD.
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@ The derivative-free setup

@ Mathematically speaking
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Our focus

minimizexcrn f(x) s.t. x € F

@ x: variables;

@ f: objective function;

@ F: set of feasible points.

Our assumptions

e f is bounded from below on F: f(x) > fiow;
e f is evaluated as a result of complex/long calculations:

o Training a neural network/a language model;
e Running a market simulation;
e Taking a blood sample from a patient.
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What do we want to do?

Find the optimal parameters?

@ What does that even mean to be optimal without derivatives?

@ Global optimality only possible under some assumptions (convexity) or
if you wait forever.
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What do we want to do?
Find the optimal parameters?

@ What does that even mean to be optimal without derivatives?

@ Global optimality only possible under some assumptions (convexity) or
if you wait forever.

Find better parameters

@ Any improvement can be valuable (and translate into
efficiency/money);

@ Initial configurations can be pretty good if designed by experts.
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What do we want to do?
Find the optimal parameters?

@ What does that even mean to be optimal without derivatives?

@ Global optimality only possible under some assumptions (convexity) or
if you wait forever.

Find better parameters

@ Any improvement can be valuable (and translate into
efficiency/money);

@ Initial configurations can be pretty good if designed by experts.

Get provable guarantees

@ Certifies that a method is worth using, serves as comparison;

@ A popular metric these days: worst-case complexity.
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Worst-case complexity (for this lecture)

Definition

Given
@ A convergence criterion;
@ A tolerance € > 0;
@ An iterative algorithm;

bound the worst-case number of function calls required to satisfy the
convergence criterion up to a tolerance .
The bound as a function of € is called the worst-case complexity of the

algorithm.
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Worst-case complexity (for this lecture)

Definition

Given

@ A convergence criterion;
@ A tolerance € > 0;
@ An iterative algorithm;

bound the worst-case number of function calls required to satisfy the

convergence criterion up to a tolerance .
The bound as a function of € is called the worst-case complexity of the

algorithm.

Convergence criteria
e Differentiable f: |[Vf(xk)|| <€
e Convex f: f(xyx) —* <e.
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© Direct-search methods
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@ Direct-search methods
@ From random to direct search
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Grid/Random search

Goal: Solve minimizexcr f(x) where only accesses to evaluations of f are
available.

Basic search algorithm
Start with: Xo = xo € F, f = f(xg), k =0.
© Compute a new point X441 and f(Xx41).

Q If f(xkr1) < F(Xk) set Xx11 = X1, otherwise set X441 = Xk.

© |If evaluation budget exceeded stop, otherwise increment k by one.

Grid Search Random Search
@ Grid search: Predefined set of 5 L
values; B R o
: 1 0 ©
e Random search: Draw x;; at H '.. .
random. e o o £ ° o

Important parameter Important parameter

Derivative-Free Optimization



Guarantees for random search

Theorem

Let X = argmin,_; _  f(xx) the best point obtained by random search,
and * = minyecr f(x). Then

P(f(3k) < f*+¢)>p

K> In(p)

- uw({xEF|f(x)>F*+e€})
In [ u(F)

@ Very generic result;

@ Can require a lot of iterations/evaluations of f;

@ All focus on exploration.
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Direct search (DS)

Going beyond grid/random search

@ Work well in small dimensions;
@ Fully exploratory algorithms;

@ Only asymptotic guarantees.

e Early appearance: 1960s, convergence theory: 1990s.

@ Attractive: simplicity, parallel potential;

@ One method (Nelder-Mead, 1965) has more than 125000 citations and
is still the default DFO method in MATLAB!
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An example of DS : Coordinate Search
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An example of DS : Coordinate Search
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An example of DS : Coordinate Search
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An example of DS : Coordinate Search

el
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An example of DS : Coordinate Search

el
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An example of DS : Coordinate Search
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An example of DS : Coordinate Search




An example of DS : Coordinate Search




An example of DS : Coordinate Search
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An example of DS : Coordinate Search
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Basic direct-search framework

O Initialization: Set xg € R", ag > 0.
@ For k=0,1,2,...

o Choose a set Dy C R” of r directions.
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Basic direct-search framework

O Initialization: Set xg € R", ag > 0.
@ For k=0,1,2,...

o Choose a set Dy C R” of r directions.
o If it exists d, € Dy so that

f(Xk + ok dk) < f(Xk) = ai,

then set xx11 1= xx + ax dy and ayy1 > ay (successful iteration).
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Basic direct-search framework

O Initialization: Set xg € R", ag > 0.
Q@ For k=0,1,2,...
o Choose a set Dy C R” of r directions.
o If it exists d, € Dy so that
f(Xk + ok dk) < f(Xk) = ai,

then set xx11 1= xx + ax dy and ayy1 > ay (successful iteration).
o Otherwise set xx1 := xx and aki1 := 0.5ay (unsuccessful iteration).
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Basic direct-search framework

O Initialization: Set xg € R", ag > 0.
Q@ For k=0,1,2,...
o Choose a set Dy C R” of r directions.
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C. W. Royer Derivative-Free Optimization 23



Basic direct-search framework

O Initialization: Set xg € R", ag > 0.
Q@ For k=0,1,2,...
o Choose a set Dy C R” of r directions.
o If it exists d, € Dy so that
f(Xk + ok dk) < f(Xk) = ai,

then set xx11 1= xx + ax dy and ayy1 > ay (successful iteration).
o Otherwise set xx1 := xx and aki1 := 0.5ay (unsuccessful iteration).

Key aspects

o Sufficient decrease condition;

@ Choice of Dy, value of r.
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Cosine measure and PSS

A measure of set quality
For a set D C R” and v € R"\ {0}, the cosine measure of D at v is

d'v
cm(D,v) = max ————
deD |[d||[|v]|
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Cosine measure and PSS

A measure of set quality
For a set D C R” and v € R"\ {0}, the cosine measure of D at v is

d'v
cm(D,v) = max ————
deD |[d||[|v]|

@ When cm(D, v) > 0, v makes an acute angle with some d € D.
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Cosine measure and PSS

A measure of set quality
For a set D C R” and v € R"\ {0}, the cosine measure of D at v is

d'v
cm(D,v) = max ————
deD |[d||[|v]|

@ When cm(D, v) > 0, v makes an acute angle with some d € D.

@ Ensuring cm(D, v) > 0 Vv # 0 requires D to be a Positive Spanning
Set = |D| > n+ 1 vectors.

Coordinate set: Dg, = {e1,...,€n,-€1,...,-€p}.
(*] ‘D@’ = 2n.
o Vv, cm(Dg,v)> —=

f
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Worst-case complexity in deterministic direct search

Assumption: It exists x € (0, 1) such that Yk, cm(Dy, v) > k Vv € R”,
with |Dy| =r.

Let € € (0,1) and N be the number of function evaluations needed to
satisfy ||V f(xk)|| < €. Then,

N. < O(r(ke)™?).
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Worst-case complexity in deterministic direct search

Assumption: It exists x € (0, 1) such that Yk, cm(Dy, v) > k Vv € R”,
with |Dy| =r.

Let € € (0,1) and N be the number of function evaluations needed to
satisfy ||V f(xk)|| < €. Then,

N. < O(r(ke)™?).

@ Choosing Dy = Dg, one has k = 1/y/n,r = 2n, and the bound
becomes

N < O (n2 6_2) .
@ The n? cannot be improved deterministically.
C. W. Royer
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@ Direct-search methods

@ From direct search to randomized direct search
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Randomized direct-search techniques

Deterministic direct search

@ Using fixed sets of directions gives limited exploration;

e Strong dependency on the dimension (O(n?e¢~2) complexity).
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Randomized direct-search techniques

@ Using fixed sets of directions gives limited exploration;

e Strong dependency on the dimension (O(n?e¢~2) complexity).

Randomized techniques

@ Randomized direct search: Use a random set of directions D) such
that

Vv,IP’(cm(Dk, V) > /i‘Do, ceey Dkfl) > p.
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Randomized direct-search techniques

Deterministic direct search

@ Using fixed sets of directions gives limited exploration;

e Strong dependency on the dimension (O(n?e¢~2) complexity).

Randomized techniques

@ Randomized direct search: Use a random set of directions D) such
that

Vv,IP’(cm(Dk, V) > /i‘Do, ceey Dkfl) > p.

@ Nesterov's random search (inspired by Gaussian smoothing): Draw
ug ~ N(0,1) and use

f(x + pu) — f(x)u or f(x + pu) — f(x — pu)
7 7

u
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Randomized direct-search techniques

Deterministic direct search

@ Using fixed sets of directions gives limited exploration;

e Strong dependency on the dimension (O(n?e¢~2) complexity).

Randomized techniques

@ Randomized direct search: Use a random set of directions D) such
that

Vv,IP’(cm(Dk, V) > /i‘Do, ceey Dkfl) > p.

@ Nesterov's random search (inspired by Gaussian smoothing): Draw
ug ~ N(0,1) and use

f(x + pu) — f(x)u or f(x + pu) — f(x — pu)
7 7

u

@ For both: Complexity improved to O(ne~?2)!
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Stochastic derivative-free optimization

in f
i)

New assumptions
o f only available through a stochastic oracle 7(x; £);
@ The vector £ is a random quantity lying in a compact set =;
@ Typical : f(-;f) convex in x for every realization of €.

@ Minimum of f attained at x,.

C. W. Royer Derivative-Free Optimization
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Stochastic derivative-free optimization

in f
i)

New assumptions

o f only available through a stochastic oracle 7(x; £);

@ The vector £ is a random quantity lying in a compact set =;

Typical : f( &) convex in x for every realization of &.

@ Minimum of f attained at x,.

Stochastic oracle «+» Bandit feedback;

Interesting connections with bandit/online optimization literature.
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DFO and Bandit feedback methods
Multi-armed bandit classical setting

@ Discrete set of arms {1,...,A};
@ At every iteration k, a player plays an arm xj, nature draws &,
yielding a reward f(xx; &k);

@ Expected cumulative regret:

K-1
> Flxkiée)
k=0

- Kf(x*)a

Infinite-armed bandits (Auer, 2002)
© Player plays xx, nature draws &, from = compact set;
@ Player observes f(xx; &)
Goal (for complexity): f(xx) — f(x.) <€, XK =% LS s 0 Xk-
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Bandit feedback methods

o Draw uy ~ U(S"1) and use

F(Xk+ﬂuk;£k)uk o F(Xk+ﬂuk;€7f)—f(xk—/wk;E;)uk
M u

o Best known complexity: O(ne~3) for convex problems.
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Bandit feedback methods

One-point methods

o Draw uy ~ U(S"1) and use

F(xk+ﬂuk;£k)uk o f(XkJer;éI)—f(Xk—MUk;ﬁl)uk
u u

o Best known complexity: O(ne~3) for convex problems.

Two/Multi-point methods

@ Assumption: Can use the same & to perform several evaluations.
o Draw uy ~ U(S"!) and use

f(xk-i-,ukuk;fk)uk or F(Xk-i-,ukuk;ﬁk)—F(Xk—ukuk:ﬁk)uk
Mk Mk

o Best known-complexity: O(ne=2) for convex problems.
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Direct search: Summarizing

My point of view

@ Direct-search methods sample but do not seek to construct a gradient;
@ Decreasing the objective is the main goal,

o Classical methods have evolved closer to random search via
randomization.

Interesting connections

@ Geometry: Positive spanning sets;

e Bandit/Online optimization: For stochastic settings in particular.
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Software suggestions

NOMAD /HyperNOMAD: https://github.com/bbopt/HyperNOMAD

@ Developed at Polytechnique Montréal (Canada) since 2009;
e C++/Matlab versions;

@ Multiple features: categorical, constraints, etc;

@ HyperNOMAD (2019): Extension applied to optimize architectures
and hyperparameters of neural networks.

Bandit-based optimization methods

@ Hyperband (Jamieson et al 2016), BOHB (Falkner et al 2018):
combine bandit approaches with other tools from Bayesian
optimization;

@ In both cases, doing more than just sampling is helpful...
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© Model-based methods

C. W. Royer Derivative-Free Optimization 33



© Model-based methods

@ Introduction to model-based methods

C. W. Royer Derivative-Free Optimization 34



Beyond the direct-search approach

What we saw before

@ Direct-search techniques do exploration...
@ ...with a bit of local exploitation.

@ Typically re-sample (especially for randomized methods), do not re-use
information from the past.

Model-based DFO

@ Uses past evaluations to construct a model of the objective function;

@ Can re-use points and be significantly cheaper than finite differences.

C. W. Royer Derivative-Free Optimization 35



Trust-region DFO algorithm

o Goal: minimizeycrn f(x);

o Evaluations of f available but expensive, f smooth.
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Trust-region DFO algorithm

o Goal: minimizeycrn f(x);

o Evaluations of f available but expensive, f smooth.

Inputs: xo € R", n € (0,1),d0 > 0.
For k=0,1,2,...
e Compute a model s — my(xx + s) of f at xy;

o Compute a step sk ~ argmin|q <, Mk(Xk + S);
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Trust-region DFO algorithm

o Goal: minimizeycrn f(x);

o Evaluations of f available but expensive, f smooth.

Inputs: xo € R", n € (0,1),d0 > 0.

For k=0,1,2,...
e Compute a model s — my(xx + s) of f at xy;
o Compute a step sk ~ argmin|q <, Mk(Xk + S);

f(xk)=f(xk+sk)
my (X ) —mp(xc+sk)

o Evaluate py =
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Trust-region DFO algorithm

o Goal: minimizeycrn f(x);

o Evaluations of f available but expensive, f smooth.

Inputs: xo € R", n € (0,1),d0 > 0.

For k=0,1,2,...
e Compute a model s — my(xx + s) of f at xy;
o Compute a step sk ~ argmin|q <, Mk(Xk + S);

f(xk)=f(xk+sk)
my (X ) —mp(xc+sk)

o If pp >, set Xk4+1 = Xk + Sk and Or1 > Ok-

o Evaluate py =
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Trust-region DFO algorithm

o Goal: minimizeycrn f(x);

o Evaluations of f available but expensive, f smooth.

Inputs: xo € R", n € (0,1),d0 > 0.
For k=0,1,2,...
e Compute a model s — my(xx + s) of f at xy;
o Compute a step sk ~ argmin|q <, Mk(Xk + S);
f(xk)=f(xk+sk)

o Evaluate py = )= (et en)
o If pp >, set Xk4+1 = Xk + Sk and Or1 > Ok-
o Otherwise, set xx+1 = x4 and 0x11 = i /2.
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Deterministic analysis

Model quality

Goal: Approximate a smooth function f with a model m.
@ Taylor-like error bounds on the approximation;

@ Local: will hold over a ball (= trust region).

Fully linear models (Conn, Scheinberg, Vicente '08)
The model m is a x-fully linear model of f at (x,d) if for any y € B(x,0),

Im(y) - f(y)| < k6°
[Vm(y) = Vi(y)ll < rd.
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Building fully linear models

o PY: space of polynomial functions on R” of degree < d,
dimPd =q+1;

o ®={¢o(-),...,dq(-)}: basis of PZ;
o YV ={y%...,yP}: interpolation set, p + 1 points in R”;
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Building fully linear models

o PY: space of polynomial functions on R” of degree < d,
dimPd =q+1;

o ®={¢o(-),...,dq(-)}: basis of PZ;

o YV ={y%...,yP}: interpolation set, p + 1 points in R”;

o Goal: model m(x) = >"7 | ai¢i(x) such that

vj:07"'7p7 m(yj)%f(yj)'
@ Reformulated as M(®,Y)a ~ (), with

do(y°) -+ ¢q(y°) f(y°)
M(®,)) = 0 : E . f(Y) = E
do(yP) - dqlyP) f(yP)
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Building fully linear models (2)

Polynomial regression models

Compute a* solution of

min _[|M(®, V)a — F(V)|2

acRatl

and set m(x) = ?:0 a’oi(x).

Main result

If ¥ C B(y°,6) is poised, then m is fully linear in B(y?,d).
Ex)

@ Linear interpolation/regression case p = g = n;

o V={y%y',...,y"} vertices of a simplex in R".
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Complexity analysis

Key assumptions

For every iteration k,
o my is k-fully linear with x > 0;

@ my is built using at most r new evaluations of f in B(xx,dk).

Complexity result

To achieve info<y<i ||V f(x¢)|| < €, the method requires at most
o O(r?e2) iterations;
o O(rk?e?) function evaluations.

Ex) Linear interpolation/regression: r = O(n),x = O(y/n)
= Evaluation complexity in O(n?¢~2).
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Deterministic analysis

Model quality

Goal: Approximate a smooth function f with a model m.
@ Taylor-like error bounds on the approximation;

@ Local: will hold over a ball (= trust region).
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Deterministic analysis

Model quality

Goal: Approximate a smooth function f with a model m.
@ Taylor-like error bounds on the approximation;

@ Local: will hold over a ball (= trust region).

Fully quadratic models (Conn, Scheinberg, Vicente '08)

The model my is a k-fully quadratic model of f at (xy, dx) if for any
y € B(Xk,5k),

Imi(y) — f(y)l < &0}
IVmi(y) — VE(y)ll < rd;
IV2mi(y) — V()| < Kok
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Building fully quadratic models in practice

Popular choices

Model my built using values of f at Yy = {xx, ¥}, ...,y }:
@ Interpolation/Regression polynomials;

e Radial basis functions (Gaussian kernels).

Main argument
Good geometry of Vi = my fully quadratic in B(xk, dk).

Ex) Quadratic interpolation with r = O(n?) samples

Vi = {X/a {xi Lo}y, {xk + 5k¥}1§i<j§n}}-
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Building fully quadratic models in practice

Popular choices

Model my built using values of f at Yy = {xx, ¥}, ...,y }:
@ Interpolation/Regression polynomials;

e Radial basis functions (Gaussian kernels).

Good geometry of Vi = my fully quadratic in B(xk, dk).

Ex) Quadratic interpolation with r = O(n?) samples
Vi = {Xm {xi £ oei iy, {xk + 0k ks

s }1<icj<n} (-

In practice

@ Reuse previous points;

@ Control geometry with criticality step;

@ May still require r new samples per iteration.
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Complexnalysis

Key assumptions

For every iteration k,

e my is k-fully quadratic with x > 0;

@ my is built using at most r new evaluations of f in B(xx,dk).

Key results
(] (5k — 0;

@ If x, not stationary and d, small enough, the step is accepted.
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Complexity analysis

Assumption: Steps chosen to yield best iteration complexity (0(6;3/2)). J

Complexity result

To achieve ||Vf(xx)|| < €z and V2f(xy) = — / I, the method requires at
most

° O(K36;3/2) iterations;

e O(r I€36;3/2) function evaluations.
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Complexity analysis

Assumption: Steps chosen to yield best iteration complexity (0(6;3/2)). J

Complexity result

To achieve ||Vf(xx)|| < €z and V2f(xy) = — / I, the method requires at
most

° O(K3€;3/2) iterations;

e O(r /<;36;3/2) function evaluations.

Example: Quadratic interpolation/regression

o r=0(n?),k = O(n);

@ Evaluation complexity in (’)(n5e;3/2).
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Note: Exploiting structure
Behind the black box

@ For simplicity, we focused on expensive objectives;

@ In many cases, part of the objective actually has gradients;

@ In general, always better to exploit any known structure of the model!

Example: Least squares

1
minimizexegy f(x) = 2 [r(x)|? r:R" = R™.

@ Derivatives of r unknown but derivatives of f partially known:
VF(x) = J.(x)r(x).

@ Can help build more accurate models by leveraging the problem
structure.
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© Model-based methods

@ Towards random models
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Challenges with the deterministic approach

Using fully linear models

@ In practice, reuse function values/using less than n + 1 works well;

@ In theory, need O(n) function evaluations to certify fully linearity
(Scheinberg and Toint '09).

Idea (Bandeira et al, '14)

Suppose that models are only fully linear with some probability.

@ Generates random processes;

@ Analyzed with martingale-type arguments.
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A probabilistic property

Recall: The model my is k-fully linear at (x, dx) if for all y € B(xx, dx):

Imi(y) — F(y)| < w07, [Vmi(y) = V()| < rdx
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A probabilistic property

Recall: The model my is k-fully linear at (x, dx) if for all y € B(xx, dx):

Imi(y) — F(y)| < w07, [Vmi(y) = V()| < rdx

Probabilistic models

A random model sequence {my} is said to be (p, x)-fully linear if:

P (mg x-fully linear ) p

>
> p,

Vk > 1, P(my s-fully linear | mo,..., mg_1)
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Probabilistic complexity

Key assumptions

For every iteration k,
o {my}k is (p, k)-fully linear with p > 1/2;
@ my is built using at most r new evaluations of f in B(xk, dx).

Theorem (Gratton, R., Vicente, Zhang '18)

Let € € (0,1) and N, the number of evaluations needed to have
IVF(x)|| < e Then, N. = O(rr?e2) with high probability.
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Probabilistic models in practice
Subsampling case

m
F(x) = %Z F (N7 availabIe budne v
i=1

@ Generate S C {1,..., N} at random;
@ Form m(x + x) = f(x) + ﬁ Sies Vii(x)Ts:

o With |S| = O(672), the model is probabilistically fully linear on
B(x, ).
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Probabilistic models in practice
Subsampling case

m
F(x) = %Z F (N7 availabIe budne v
i=1

@ Generate S C {1,..., N} at random;
@ Form m(x + x) = f(x) + ﬁ Sies Vii(x)Ts:

o With |S| = O(672), the model is probabilistically fully linear on
B(x,0).

Probabilistic fully quadratic models

o Deterministically, requires O(n?) evaluations;

o If objective Hessian is sparse, achieved (w. h. p.) in
(@) (n(log n)*) evaluations using techniques from compressed sensing.
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Bayesian optimization and models

Bayesian optimization paradigm

@ At every iteration, fit a posterior distribution to the existing
observations;

@ Find next point by maximizing an acquisition function;
© Repeat until the evaluation budget is exhausted.
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Bayesian optimization and models
Bayesian optimization paradigm

@ At every iteration, fit a posterior distribution to the existing
observations;

@ Find next point by maximizing an acquisition function;

© Repeat until the evaluation budget is exhausted.

@ Popular among statisticians, great for uncertainty quantification;

@ Does not scale up well to high-dimension, must be able to maximize
the acquisition function;

@ In spirit, a model-based paradigm based on radial basis functions:

|V
mi(xi+5) =Y _exp(—|ly; — s|*)
i=1

= Those are fully linear models!
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Model based: Summarizing

Building models

o Exploits the history of the algorithm;
o Efficient implementations much cheaper than finite differences;

@ The best variants exploit as much structure as they can.

Are those popular?

e Metamodels/Surrogates are ubiquitous in scientific computing;

@ Bayesian optimization builds models too!
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Model-based software

Michael Powell’s codes

@ Originally written in Fortran, still some of the most robust codes to
date;

e PDFO (https://www.pdfo.net/) provides Python and MATLAB
interfaces;

@ Use explored in adversarial training.

Other software

o POUNDERS: Derivative-free least-squares (structure);
e ORBIT: Radial basis function trust region;

@ Numerous packages in Python/R for surrogate/Bayesian optimization.
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A quick summary

Derivative-free optimization
@ When derivatives not available;
@ Many names these days;
@ Focus: Use as few evaluations as possible;

@ These problems are important (and cool)!

DFO for ML and ML for DFO

@ Randomized DFO techniques use ML-like techniques;

@ Automated ML efficient with principled approaches (like DFO).
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Things | left out

Discrete variables

@ Most implementations handle them in some fashion, even categorical;

@ Theory is spread over communities.

Genetic/Evolutionary algorithms

@ Popular in practice, can be quite efficient in small dimension;
@ But require many evaluations (not quite our setup);
Notable method: CMA-ES (ask Eric Benhamou!).

Black-box constraints

e Taxonomy of constraints in DFO (ex: relaxable);

@ Many paradigms from optimization theory implemented. One classical
approach is to use an extreme barrier f(x) = oo if x ¢ F.
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That's alll

Thank you for your attention!

clement.royer@dauphine.psl.eu
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