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What I intend to talk about...

Optimization without derivatives, aka...

Derivative-free optimization (DFO);
Zeroth-order optimization;
Black-box optimization;
Simulation-based optimization;
Hyperparameter tuning:
Reinforcement learning?

What I really intend to talk about

My line of work (1+2);
Hopefully relevant to others.
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Classical DFO problem: Rotor helicopter design (Booker et
al. 1998)

About 30 parameters;
1 simulation: 2 weeks of
computational fluid dynamics
simulation;
A simulation failed 60% of the
time.

Ubiquitous in multidisciplinary optimization:
Several codes interfaced;
Numerical simulations;
Large amount of calculation, possible failures.
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Less classical example: Electrical engine design
(D. Gaudrie, Stellantis)

About 50 continuous parameters;
Multiobjective (3 functions), 6-dimensional constraint vector;
Most points are infeasible!
1 simulation ≈ 5 minutes;
Current practice: Run genetic algorithms for 3 weeks!
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A modern challenge

Say you want to train a neural
network...

What is your architecture?
(Convolutional, Recurrent,etc)
What is your training algorithm?
(Adam, RMSProp, SG,etc)
How do you choose your learning
rate?

Hyperparameter optimization
Each change of hyperparameter involves another round of training
(hours, days of CPU time + money!);
Integer/Categorical/Continuous variables.

Goal: Reach automated ML!
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Challenges for DFO

Scale up
To millions of parameters? Maybe not...
But a couple orders of magnitude may be helpful!

⇒ Dimensionality reduction.

Be data-oriented
Expensive calculations involving massive amounts of data...
...possibly distributed on several memory nodes.

⇒ Decentralized approaches.
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Roadmap

1 DFO and direct search

2 Direct search and reduced dimensions

3 Decentralizing direct search
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Outline

1 DFO and direct search
Deterministic direct search
Direct search based on probabilistic descent

2 Direct search and reduced dimensions

3 Decentralizing direct search
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Introductory assumptions and definitions

minimizex∈Rn f (x).

Assumptions
f bounded below;
f continuously differentiable (nonconvex).

Blackbox/Derivative-free setup

Derivatives unavailable for algorithmic use.
Only access to values of f or stochastic estimates.
f depends on expensive simulations/procedures.
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Complexity in blackbox optimization

My goal as a derivative-free/blackbox optimizer

Develop algorithms with controlled
Number of calls to f ;
Dependency on n.

For this talk
Given ε ∈ (0, 1) and, bound the number of function evaluations needed
by a method to reach x such that

‖∇f (x)‖ ≤ ε,

deterministically or in expectation/probability.

Focus: dependency w.r.t. n.
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Two paradigms in derivative-free optimization

Model-based
Build a model of the objective;
Response surface, surrogate modeling, etc.

Direct search
Sample along appropriate directions;
Zeroth-order, random search, etc.
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An example of DS : Coordinate Search
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A simple direct-search framework

Inputs: x0 ∈ Rn 0 < θ < 1 ≤ γ, α0 > 0.
Iteration k: Given (xk , αk),

Choose a set Dk ⊂ Rn of m vectors.
If ∃ d k ∈ Dk such that

f (xk + αk d k) < f (xk)− α2
k‖d k‖2

set xk+1 := xk + αkd k , αk+1 := γαk .
Otherwise, set xk+1 := xk , αk+1 := θαk .

Which vectors should we use?
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Choosing Dk

A measure of set quality
The set Dk is called κ-descent for f at xk if

max
d∈Dk

−dT∇f (xk)

‖d‖‖∇f (xk)‖
≥ κ ∈ (0, 1].

Guaranteed when Dk is a Positive Spanning Set (PSS);
Dk PSS ⇒ |Dk | ≥ n + 1;
Ex) D⊕ := {e1, . . . , en, -e1, . . . , -en} is always 1√

n
-descent.
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Key convergence arguments in direct search

Assumption: For every k , Dk is κ-descent and contains m unit directions.

Small step size ⇒ Success
If

αk < O (κ‖∇f (xk)‖) ,

then xk+1 6= xk and αk+1 ≥ αk .

Step size goes to zero
Independently of the κ-descent property,

∃β ∈ (0,∞),
∞∑
k=0

α2
k < β <∞

(
⇒ lim

k→∞
αk = 0

)
.
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Worst-case complexity in deterministic direct search

Assumption: For every k , Dk is κ-descent and contains m unit directions.

Theorem
Let ε ∈ (0, 1) and Nε be the number of function evaluations needed to
reach xk such that ‖∇f (xk)‖ ≤ ε. Then,

Nε ≤ O
(
m κ−2 ε−2) .

Unit norm can be replaced by bounded norm.
Choosing Dk = D⊕, one has κ = 1√

n
, m = 2n, and the bound

becomes
Nε ≤ O

(
n2 ε−2) .

Optimal in the power of n for deterministic direct-search algorithms.
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Outline

1 DFO and direct search
Deterministic direct search
Direct search based on probabilistic descent

2 Direct search and reduced dimensions

3 Decentralizing direct search
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A probabilistic property

Deterministic descent
The set Dk is κ-descent for (f , xk) if

max
d∈Dk

−∇f (xk)>d
‖∇f (xk)‖‖d‖

≥ κ ∈ (0, 1].

Probabilistic descent
The sequence {Dk} is said to be (p, κ)-descent if:

P (D0 κ-descent ) ≥ p

∀k ≥ 1, P (Dk κ-descent | D0, . . . ,Dk−1) ≥ p,
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Key arguments in probabilistic direct search (1/2)

Assumption: For every k , Dk contains m unit directions.

Small step size ⇒ Success
If Dk is κ-descent and

αk < O (κ‖∇f (xk)‖) .

then xk+1 6= xk and αk+1 ≥ αk .

Step size goes to zero
For all realizations of the method,

∞∑
k=0

α2
k <∞
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Key arguments for probabilistic direct search (2/2)

A useful bound
Let zk = 1 (Dk κ-descent). For all realizations of the algorithm, one has

k−1∑
`=0

z` ≤ O

(
1

κ2 (min0≤`≤k ‖∇f (x`)‖)2

)
+ p0 k,

with p0 = 1
1+µ , µ = logθ(1/γ).

P(z` = 1|z0, . . . , z`−1) ≥ p by assumption;
{
∑k−1

`=0 z`}k is a submartingale;
As long as p > p0, can relate the behavior of ‖∇f (xk)‖ and that of∑k−1

`=0 z`.
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Complexity results

Assumptions:
{Dk} (p, κ)-descent, p > p0.
Dk contains m unit vectors.

Probabilistic worst-case complexity (Gratton et al, ’15)

Let ε ∈ (0, 1) and Nε the number of function evaluations needed to have
‖∇f (xk)‖ ≤ ε. Then

P
(
Nε ≤ O

(
m κ−2ε−2

p − p0

))
≥ 1− exp

(
−O

(
p − p0

p
(κ ε)−2

))
.

Expected evaluation complexity

E[Nε] ≤ O
(
mκ−2ε−2

p − p0

)
+O(m).
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A practical (p, κ)-descent sequence

Using 2 directions uniformly distributed over the unit sphere.

Defines a (p, τ/
√
n)-descent sequence, p > 1/2.

Optimal (largest τ): Choose opposite directions!

Complexity bound

Deterministic: m = O(n)⇒ O(n2 ε−2).
Probabilistic m = O(1)⇒ O(n ε−2).

⇒ Factor n improvement at the iteration level.
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Not the only game in town

Gaussian smoothing approach: Draw uk ∼ N (0, I ) and use

f (x + µu)− f (x)

µ
u or

f (x + µu)− f (x − µu)

µ
u.

Random gradient-free method (Nesterov and Spokoiny 2017),
Stochastic three-point method (Bergou et al, 2020).
⇒ Both achieve an O(nε−2) bound with predefined stepsizes.

Gaussian directions are not always bounded ⇒ Probabilistic analysis
does not apply.
Same complexity but different directions ⇒ Can we provide a unified
framework?
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Outline

1 DFO and direct search

2 Direct search and reduced dimensions

3 Decentralizing direct search
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Back to original direct search

Recall: Classical direct search
Set Dk ⊂ Rn, |Dk | = m, cm(Dk) ≥ κ;
Complexity:

O(mκ−2 ε−2).

m may not depend on n (probabilistic)
...but κ depends on n (approximate ∇f (xk) ∈ Rn).

Meanwhile...
Random embeddings (Cartis et al 2020, 2021);
Random subspaces (Gratton et al, Kozak et al. 2021).

Reduce the dependency on n by working on low dimensions.
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A new start (with Lindon Roberts)

Idea
Consider a random subspace of dimension r ≤ n;
Use a PSS to approximate the projected gradient in the subspace;
Guarantee sufficient gradient information in probability.

What it brings us
Handle unbounded directions;
Revisit the opposite uniform directions choice;
Generalize the analysis to other settings, e.g. Gaussian.
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Algorithm

Inputs: x0 ∈ Rn , α0 > 0.
Iteration k: Given (xk , αk),

Choose Pk ∈ Rr×n at random.
Choose Dk ⊂ Rr having m vectors.
If ∃ d k ∈ Dk such that

f (xk + αk PT
k d k) < f (xk)− α2

k‖PT
k d k‖2,

set xk+1 := xk + αkPT
k d k , αk+1 := γαk .

Otherwise, set xk+1 := xk , αk+1 := θαk .
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Probabilistic properties

New polling sets {
PT

k d
∣∣ d ∈ Dk

}
⊂ Rn.

Pk ∈ Rr×n: Maps onto r -dimensional subspace;
Dk : Direction set in the subspace.

What do we want?

Preserve information while applying Pk/PT
k .

Approximate −Pk∇f (xk) using Dk .
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Probabilistic properties for Pk

Pk is (η, σ,Pmax)-well aligned for (f , xk) if
‖Pk∇f (xk)‖ ≥ η‖∇f (xk)‖,

σmin(Pk) ≥ σ,
σmax(Pk) ≤ Pmax.

Ex) Pk = I ∈ Rn×n is (1, 1, 1)-well aligned.

Probabilistic version
{Pk} is (q, η, σ,Pmax)-well aligned if:

P (P0 (q, η, σ,Pmax)-well aligned ) ≥ q

∀k ≥ 1, P ((q, η, σ,Pmax)-well aligned | P0,D0, . . . ,Pk−1,Dk−1) ≥ q,
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Probabilistic properties for Dk

Deterministic descent
The set Dk is (κ, dmax)-descent for (f , xk) if

maxd∈Dk

−dTPk∇f (xk )
‖d‖‖Pk∇f (xk )‖ ≥ κ,

∀d ∈ Dk , d−1
max ≤ ‖d‖ ≤ dmax.

Ex) D⊕ is ( 1√
n
, 1)-descent.

Probabilistic descent sets
{Dk} is (p, κ, dmax)-descent if:

P (D0 (κ, dmax)-descent | P0) ≥ p

∀k ≥ 1, P (Dk (κ, dmax)-descent | P0,D0, . . . ,Pk−1,Dk−1,Pk) ≥ p,
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Key arguments

Small step size + Good Pk/Dk ⇒ Success

If Pk is (η, σ,Pmax)-well aligned, Dk is (κ, dmax)-descent, and

αk < O
(

κη

P2
maxd

3
max

‖∇f (xk)‖
)
.

then xk+1 6= xk and αk+1 ≥ αk .

A step size sequence goes to zero
For all realizations of the method,∑

k∈K
α2
k < O

(
d2
max

σ2

)
<∞,

where K is the set of succesful iterations for which Pk is (η, σ,Pmax)-well
aligned and Dk is (κ, dmax)-descent.
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‖∇f (xk)‖
)
.

then xk+1 6= xk and αk+1 ≥ αk .

A step size sequence goes to zero
For all realizations of the method,∑

k∈K
α2
k < O

(
d2
max

σ2

)
<∞,

where K is the set of succesful iterations for which Pk is (η, σ,Pmax)-well
aligned and Dk is (κ, dmax)-descent.
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Martingale argument

Proposition
Define

zk = 1 (D0 (κ, dmax)-descent and P0 (q, η, σ,Pmax)-well aligned) .

For all realizations of the algorithm, one has

k∑
l=0

z` ≤ O

(
1

(min0≤l≤k ‖∇f (x`)‖)2

)
+ p0 k

with p0 = max
{

1
1+µ ,

µ
1+µ

}
and µ = logγ(1/θ).

∑
` z` satisfies a concentration bound;

Best case: θ = γ−1 = 1/2.
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Complexity analysis

Theorem (Roberts and Royer, 2022)

Assume:
{Dk} (p, κ, dmax)-descent, |Dk | = m;
{Pk} (q, η, σ,Pmax)-well aligned.

Let Nε the number of function evaluations needed to have ‖∇f (xk)‖ ≤ ε.

P
(
Nε ≤ O

(
mφε−2

pq − p0

))
≥ 1− exp

(
−O

(
pq − p0

pq
φε−2

))
.

where φ = η−2σ−2P4
maxd

8
maxκ

−2.

How does this bound depend on n?
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Can we really improve the dimension dependence?

mη−2σ−2P4
maxd

8
maxκ

−2ε−2.

A first simplification

Dk = {e1, . . . , er ,−e1, . . . ,−er} in Rr ;
κ = 1√

r
, m = 2r .

⇒ Bound becomes 2r2η−2σ−2P4
maxε

−2.

Using sketching techniques

Pk σ Pmax

Identity 1 1
Gaussian Θ(

√
n/r) Θ(

√
n/r)

Hashing Θ(
√
n/r)

√
n

Orthogonal
√

n/r
√
n/r .

⇒ Get a bound in O(nε−2) even when r = O(1) and η = O(1)!
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Outline

1 DFO and direct search

2 Direct search and reduced dimensions
Algorithm and complexity
Numerical illustration

3 Decentralizing direct search
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Experiments in larger dimensions

Benchmark:
Medium-scale test set (90 CUTEst problems of dimension ≈ 100);
Large-scale test set (28 CUTEst problems of dimension ≈ 1000).

Budget: 200(n + 1) evaluations.

Comparison:
Deterministic methods with Dk = D⊕ or
Dk = {e1, . . . , en,−

∑n
i=1 e i};

Probabilistic direct search with 2 directions;
Stochastic Three Point;
Reduced dimension methods with Gaussian/Hashing/Orthogonal Pk

matrices + 2 directions in the subspace.
Goal: Satisfy f (xk)− fbest ≤ 0.1(f (x0)− fbest).
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Comparison of all methods
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Gaussian matrices and the value of r
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Summary of our findings

If you want to scale up...
Can use less directions through sketching;
But always a (hidden) dependency on n!

Numerically
Sketches of dimension > 1 may improve things...
...but in general opposite Gaussian directions are quite good!
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Outline

1 DFO and direct search

2 Direct search and reduced dimensions

3 Decentralizing direct search
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Setup

minimize
x∈Rn

f (x) :=
N∑
i=1

fi (x).

All fi s are C1,1,
∑N

i=1 fi bounded below.
Data for computing fi is stored locally by an agent.
N agents communicate through a network/graph.

Network structure

Doubly stochastic matrix W = [wij ] ∈ RN×N ;
Ni : set of neighbors of agent i ;
wij 6= 0 iff i = j or j ∈ Ni .
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Popular approach: Consensus optimization

Each agent i has a local vector x (i);
Agent i updates x (i) and communicates with its neighbors;
Goal:

N∑
i=1

∇f (x (i)) = 0︸ ︷︷ ︸
optimality

, x (i) =
N∑
j=1

wijx (j)

︸ ︷︷ ︸
consensus

.

Penalized formulation (σ > 0)

minimize
x (1),...,x (N)∈Rn

N∑
i=1

fi (x (i)) + σ

 N∑
i=1

‖x (i)‖2 −
N∑
i=1

N∑
j=1

wij [x (i)]Tx (j)

 .
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Solving consensus problems

minimize
x(1),...,x(N)∈Rn

N∑
i=1

fi (x (i)) + σ

(
N∑
i=1

‖x (i)‖2 −
N∑
i=1

N∑
j=1

wij [x (i)]Tx (j)

)
.

With derivatives
Dual methods (ADMM, etc);
Decentralized gradient descent:

∀i = 1...N, x (i)
k+1 =

N∑
j=1

wijx
(j)
k − αk∇fi (x

(i)
k ).

Existing derivative-free techniques
Approximate each gradient via finite differences.
Randomized using STP-like approaches.
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Bringing in direct search (with E. Bergou, Y. Diouane, V.
Kungurtsev)

minimize
x(1),...,x(N)∈Rn

N∑
i=1

fi (x (i)) + σ

(
N∑
i=1

‖x (i)‖2 −
N∑
i=1

N∑
j=1

wij [x (i)]Tx (j)

)
.

Approach
Define

Li (x (i)) = fi (x (i))−
N∑
i=1

N∑
j=1

wij [x (i)]Tx (j)

Agent i runs a direct search method.
Li changes over iterations ⇒ Forces decrease in the stepsize.
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Algorithm

Inputs: x0 ∈ Rn, x (i)
0 = x0 ∀i , {αk}k ↘ 0, t > 0.

Iteration k , Agent i : Given
(
x (i)
k , αk

)
,

Choose a set D(i)
k ⊂ Rn of m unit vectors.

If ∃ d (i)
k ∈ D

(i)
k such that

f (x (i)
k + αk d k) < f (x (i)

k )− α1+t
k ,

set x (i)
k+1 := x (i)

k + αkd
(i)
k .

Otherwise, set x (i)
k+1 := x (i)

k .
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First results: Convergence

minimizex(1),...,x(N)∈Rn

∑N
i=1 fi (x

(i)) + σ
(∑N

i=1 ‖x
(i)‖2 −

∑N
i=1
∑N

j=1 wij [x (i)]Tx (j)
)

∀i , Li (x (i)) = fi (x (i))−
∑N

i=1
∑N

j=1 wij [x (i)]Tx (j)

Theorem (Bergou, Diouane, Kungurstev, R.)

Suppose that every agent runs direct-search iterations based on

D(i)
k is κ-descent with unit vectors;

αk = α0
(1+k)u , u ∈ (1/2, 1);

decrease in α1+t
k with u(1 + t) < 1.

Then,

lim inf
k→∞

N∑
i=1

‖∇Li (x (i))‖ = 0.

C. W. Royer Optimization without derivatives MIDAS 2022 47



A toy example

minimize
x(1),...,x(N)∈R

∑N
i=1 fi (x

(i)) + σ
(∑N

i=1 ‖x
(i)‖2 −

∑N
i=1
∑N

j=1 wij [x
(i)]Tx(j)

)
∀i, fi (x

(i)) =
ai

1+exp(−xi )
+ bi log(1 + x2

i ).

Objective vs Number of calls to fi (·).

Blue/Red: Finite-difference techniques;
Black: Standard direct-search for all nodes;
Cyan: Separable minimization;
Magenta: New method.
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Summary

DFO and dimension dependence
A revised probabilistic analysis that allows for dimensionality reduction;
Complexity results suggest a fundamental limit O(n);
One dimensional variants pretty interesting!

Direct search based on probabilistic descent in reduced spaces. L. Roberts and C. W.
Royer (paper/Python toolbox coming soon!).

Beyond centralized problems
Typical zeroth-order approach: finite differences;
Direct-search schemes may also be applicable.
Challenge: Reason about a changing objective.

Decentralized direct search E. Bergou, Y. Diouane, V. Kungurtsev and C. W. Royer, in
preparation.
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What’s next

Stochastic function values
If sufficiently accurate in probability, things work out!
Analysis of course (a lot) more technical.
Challenge: Improve accuracy requirements.

Thank you for your attention!
clement.royer@dauphine.psl.eu

C. W. Royer Optimization without derivatives MIDAS 2022 50



What’s next

Stochastic function values
If sufficiently accurate in probability, things work out!
Analysis of course (a lot) more technical.
Challenge: Improve accuracy requirements.

Thank you for your attention!
clement.royer@dauphine.psl.eu

C. W. Royer Optimization without derivatives MIDAS 2022 50



What’s next

Stochastic function values
If sufficiently accurate in probability, things work out!
Analysis of course (a lot) more technical.
Challenge: Improve accuracy requirements.

Thank you for your attention!
clement.royer@dauphine.psl.eu

C. W. Royer Optimization without derivatives MIDAS 2022 50


	Introduction
	DFO and direct search
	Deterministic direct search
	Direct search based on probabilistic descent

	Direct search and reduced dimensions
	Algorithm and complexity
	Numerical illustration

	Decentralizing direct search
	Conclusion

