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The plan

Our interests
Nonconvex data science tasks.
Algorithms with complexity guarantees.

Our framework
Newton-Conjugate Gradient + trust region, revisited.
Complexity results + numerical relevance.

Our latest
Manifold optimization.
Strict saddle problems.
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Nonconvex optimization

Nonconvex ?
Many data science problems are convex: linear classification, logistic
regression,...
Nonconvex instances: Deep/shallow neural networks, nonconvex
regularization (SCAD,MDP),...

Optimization ?
Those problems often come with structure.
In many cases, global minima can be characterized (and found) in
polynomial time!
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Benign nonconvexity

Definition (S. Wright, 2023)

A nonconvex optimization problem has benign nonconvexity if useful
solutions (even global minima) can be found by optimization methods.

Typical properties
All local minima are global.
All saddle points (zero derivative but not local minima) are strict.
Algorithms can start close to a global minimum.
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Examples of benignly nonconvex problems (1/2)

Nonconvex factored matrix problems
With two matrix variables:

min
U∈Rn×r ,V∈Rm×r

f (U V>) f smooth.

⇒ Nonconvex in U and V even when f convex, but second-order
stationary points typically global minima (or close in function value).

Similar results holds using multiple matrices!

Examples (Ge et al ’17,Eftekhari ’20)

Low-rank matrix sensing :

f (U V>) =
1
2s

s∑
i=1

(
〈U V>,Ai 〉 − bi

)2
, M ∈ Rm×n

Deep linear networks : f (U1, . . . ,Ur ) = 1
2‖Ur · · ·U1A− B‖2F .
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Examples of benignly nonconvex problems (2/2)

Phase retrieval

Given A = [ai ]
m
i=1 ∈ Rm×n and b ∈ Rm, find x ∈ Cn such that

|a∗i x | = bi ∀i = 1, . . . , n.

Nonconvex optimization problem (Sun et al ’18)

min
x∈Cn

1
2m

m∑
i=1

(b2
i − |a∗i x |2)2

All local minima are global.
Saddle points are strict.
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Solving these nonconvex instances

What we have
Classes of structured nonconvex problems.
Characterization of their solutions using second-order derivatives.

What we want
Efficient algorithms to reach second-order necessary points;
Efficiency measured by complexity, akin to theoretical CS/convex
optimization.
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General problem and definitions

min
x∈Rn

f (x)

with f ∈ C2(Rn) bounded below and nonconvex.

Definitions in smooth nonconvex minimization
First-order stationary point: ‖∇f (x)‖ = 0;
Second-order stationary point: ‖∇f (x)‖ = 0,∇2f (x) � 0a.

If x does not satisfy these conditions, ∃ d such that
1 d>∇f (x) < 0: gradient-related direction.

and/or
2 d>∇2f (x)d < 0: negative curvature direction
⇒ specific to nonconvex problems.

aA � βI ⇔ λmin(A) ≥ β.
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Complexity in nonconvex optimization

Setup: Sequence of points {xk} generated by an algorithm applied to
minx∈Rn f (x).

First-order complexity result

Given ε ∈ (0, 1):
Worst-case cost to obtain an ε-point xK such that ‖∇f (xK )‖ ≤ ε.
Focus: Dependency on ε.

Second-order complexity result

Given ε, εH ∈ (0, 1):
Worst-case cost to obtain an (ε, εH)-point xK such that

‖∇f (xK )‖ ≤ ε, ∇2f (xK ) � −εH .

Focus: Dependencies on ε, εH .
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Complexity results

From nonconvex optimization (2006-)

Cost measure: Number of iterations (but those may be expensive);
Two types of guarantees:

1 ‖∇f (x)‖ ≤ ε;
2 ‖∇f (x)‖ ≤ ε and ∇2f (x) � −εH I .

Best methods: Second-order methods, deterministic variations on
Newton’s iteration involving Hessians.

Influenced by convex optimization/learning (2016-)

Cost measure: gradient evaluations+Hessian-vector products.
Two types of guarantees:

1 ‖∇f (x)‖ ≤ ε
2 ‖∇f (x)‖ ≤ ε and ∇2f (x) � −ε1/2I .

Best methods: developed from accelerated gradient, assume
knowledge of Lipschitz constants.
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Complexity results (2)

Methods with good complexity
Designed to get good guarantees;
Sensitive to parameter choices;
Not necessarily efficient in practice.

Practical methods
Efficient without convexity;
Often scalable (e.g. matrix-free);
No complexity guarantees.
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General problem and definitions

min
x∈Rn

f (x)

with f ∈ C2 bounded below and nonconvex.

Goal: Find approximate stationary points

Given ε, εH ∈ (0, 1),
x is an (ε, εH)-point if

‖∇f (x)‖ ≤ ε and ∇2f (x) � −εH I .

Complexity: Given an algorithm, bound the cost of the method to find
an (ε, εH)-point.
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Some complexity results

Goal: Find x such that ‖∇f (x)‖ ≤ ε, ∇2f (x) � −εH I .

Gradient-based line search/trust region (Cartis et al ’12)

Cost: Iterations, calls to f ,∇f ,∇2f ;
Order: max{ε−2ε−1

H , ε−3
H };

Newton steps not used/leveraged.

Optimal Newton-type methods (Cartis et al ’19, Curtis et al ’17)

Cost: Iterations, calls to f ,∇f ,∇2f ;
Bound: max{ε−3/2, ε−3

H } ⇒ ε−3/2 when εH =
√
ε;

Optimal iteration complexity but expensive Newton steps.
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Our goal

Newton-type methods
Compute a Newton step or use negative curvature;
Provide decrease guarantees (for complexity);
Use inexact steps (for practicality).

Specific features
Trust region for globalization;
Conjugate gradient (inexact version).
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Trust-region Newton-type method

Inputs: x0 ∈ Rn, δ0 > 0, η > 0.
For k=0, 1, 2, . . .

1 Define mk(xk + s) := ∇f (xk)Ts + 1
2s

T∇2f (xk)s and compute

sk ∈ argmin
s∈Rn

‖s‖≤δk

mk(xk + s)

+
εH
2
‖s‖2

.

2 Compute ρk = f (xk )−f (xk+sk )
mk (xk )−mk (xk+sk ) .

3 If ρk ≥ η, set xk+1 = xk + sk and δk+1 = 2δk .
4 Otherwise, set xk+1 = xk and δk+1 = 0.5δk .

Standard version: Can get (suboptimal) iteration complexity.
Our version: Regularization to improve complexity.
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Analysis of the exact method

Goal: Compute xk such that ‖∇f (xk)‖ ≤ ε and ∇2f (xk) � −εH I .

As long as xk is not an (ε, εH)-point:
mk(xk)−mk(xk + sk) ≥ εH

2 ‖sk‖
2;

δk ≥ O(εH).

For any successful iteration (xk+1 = xk + sk),
If ‖sk‖ = δk ,

f (xk)− f (xk+1) ≥ η

2
εHδ

2
k ≥ O(ε3H)

If ‖sk‖ < δk ,

f (xk)− f (xk+1) ≥ O
(
min

{
‖∇f (xk+1)‖2ε−1

H , ε3H
})
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Complexity of the exact method

Theorem
The trust-region algorithm reaches an (ε, εH)-point in at most

O
(
max

{
ε−2εH , ε

−3
H

})
successful iterations/calls to ∇f /∇2f and

O
(
log(ε−1

H ) max
{
ε−2εH , ε

−3
H

})
= Õ

(
max

{
ε−2εH , ε

−3
H

})
total iterations/calls to f .

Order for classical method: max
{
ε−2ε−1

H , ε−3
H

}
.

εH = ε1/2 gives optimal O(ε−3/2) complexity.
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Inexact trust-region Newton-type method

Inputs: x0 ∈ Rn, δ0 > 0, ζ > 0, η > 0.
For k=0, 1, 2, . . .

1 Define mk(xk + s) := ∇f (xk)Ts + 1
2s

T∇2f (xk)s and compute

sk≈ argmin
s∈Rn

‖s‖≤δk

mk(xk + s)

+εH‖s‖2

.

2 Compute ρk = f (xk )−f (xk+sk )
mk (xk )−mk (xk+sk ) .

3 If ρk ≥ η, set xk+1 = xk + sk and δk+1 = 2δk .
4 Otherwise, set xk+1 = xk and δk+1 = 0.5δk .

Standard version: Solve subproblem via Conjugate Gradient (CG);
Our approach:

Regularization tailored to inexact setting.
Extra stopping criteria on CG for complexity.
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Linear Conjugate Gradient (CG)

Goal: Solve Hs = −g with H symmetric matrix and g ∈ Rn.

Linear CG
Init: Set s0 = 0Rn , r0 = g , p0 = −g , j = 0, ξ ≥ 0.
For j = 0, 1, 2, ...

Compute sj+1 = sj +
‖rj‖2
pT
j Hpj

pj and rj+1 = Hsj+1 + g .

Set pj+1 = −rj+1 +
‖rj+1‖2
‖rj‖2 pj .

Set j = j + 1; terminate if ‖Hsj + g‖ ≤ ξ‖g‖.

Only requires v 7→ Hv (“matrix-free”);
Terminates in at most n iterations when H � 0.
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The Steihaug-Toint approach

TR subproblem

min
s∈Rn

gTs + 1
2s

THs s.t. ‖s‖ ≤ δ, H = HT .

Apply conjugate gradient (CG) to the linear system Hs = −g ;
Stop when residual small enough ‖Hs + g‖ ≤ ζ‖g‖ or the boundary is
reached;
For H 6� 0: if negative curvature is encountered in H, take a
negative curvature step towards the boundary.

Steihaug’s approach within TR
Optimal iteration complexity?
Cost: Number of Hessian-vector products?
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Conjugate gradient method with explicit cap

Goal: mins∈Rn gTs + 1
2s

T(H + 2εH I )s s.t. ‖s‖ ≤ δ.

Key differences
Stop after J iterations of CG if one of the following conditions holds:

1 Convergence: ‖(H + 2εH I )s + g‖ ≤ ζ min{‖g‖, εH‖s‖};
2 Boundary reached;
3 Small curvature: A vector u is found such that

uT(H + 2εH I )u ≤ εH‖u‖2 ⇒ uTHu ≤ −εH‖u‖2.

4 Explicit iteration cap: J ≤ Ĵ := min{n, Õ(ε
−1/2
H )} iterations

If H + 2εH I � εH I , convergence (case 1) occurs in less than Ĵ
iterations!
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Towards second-order guarantees

CG with explicit cap

Good steps when converged and ‖∇f (xk)‖ ≥ ε;
Or when negative curvature is detected;
But may not converge/miss negative curvature information!

Our approach
At iteration xk ,

1 Run CG on the regularized problem first;
2 If the cap is triggered (Ĵ) or ‖∇f (xk)‖ ≤ ε and the convergence

criterion is met, call a minimum eigenvalue oracle to check whether
∇2f (xk) � −εH I .

C. W. Royer Nonconvex Newton methods CAS 2023 28



Towards second-order guarantees

CG with explicit cap

Good steps when converged and ‖∇f (xk)‖ ≥ ε;
Or when negative curvature is detected;
But may not converge/miss negative curvature information!

Our approach
At iteration xk ,

1 Run CG on the regularized problem first;
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Minimum eigenvalue oracle (MEO)

Given H = HT ∈ Rn×n, εH ∈ (0, 1), and ξ ∈ (0, 1), output
1 A vector s such that

sTHs ≤ −εH
2
‖s‖2.

2 OR a certificate that H � −εH I , valid with probability 1− ξ.

An example of MEO
Run CG on Hs = b, b uniform on the unit sphere.

Produces output in min{n, Õ(ε
−1/2
H )} iterations;

Same order than the cap Ĵ on CG earlier!
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−1/2
H )} iterations;

Same order than the cap Ĵ on CG earlier!
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Analysis of the inexact method

Goal: Compute xk such that ‖∇f (xk)‖ ≤ ε and ∇2f (xk) � −εH I .

For any realization, as long as xk is not an (ε, εH)-point:
mk(xk)−mk(xk + sk) ≥ εH

4 ‖sk‖
2;

δk ≥ O(εH).

For any realization and any successful iteration (xk+1 = xk + sk),
If ‖sk‖ = δk ,

f (xk)− f (xk+1) ≥ η

4
εHδ

2
k ≥ O(ε3H)

If ‖sk‖ < δk ,

f (xk)− f (xk+1) ≥ O
(
min

{
‖∇f (xk+1)‖2ε−1

H , ε3H
})

C. W. Royer Nonconvex Newton methods CAS 2023 30



Iteration complexity of the inexact method (1/2)

Theorem
The trust-region algorithm reaches an (ε, εH)-point in at most

O
(
max

{
ε−2εH , ε

−3
H

})
successful iterations/calls to ∇f and

Õ
(
max

{
ε−2εH , ε

−3
H

})
total iterations/calls to f with probability (1− ξ)O(max{ε−2εH ,ε−3H }).

Same order of complexity than before;
With small probability, the method terminates at xk where
‖∇f (xk)‖ ≤ ε but ∇2f (xk) ≺ −εH I .
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Computational complexity of the inexact method (2/2)

Matrix-free variant: Can we quantify the cost of computing the
trust-region step?

Theorem
For any realization of the inexact algorithm, the number of Hessian-vector
products used in CG+MEO is

Õ
(

min{n, ε−1/2
H } × max

{
ε−2εH , ε

−3
H

})
.

Deterministic result (covers early termination).
εH = ε1/2 and large n gives best known Õ(ε−7/4) complexity.
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Outline

1 Nonconvex problems and algorithms

2 Newton-type framework
Problem and exact method
Inexact variants
Numerics

3 Extensions

C. W. Royer Nonconvex Newton methods CAS 2023 33



Setup

Test problems

CUTEst smooth unconstrained problems with n ≥ 100 (109 problems);
Performance profiles for εH = ε1/2, ε = 10−5.

Algorithms (trust-region type)

TRACE (Curtis, Robinson, Samadi ’17);
TR-Newton (Moré, Sorensen ’83);
TR-Newton-CG (Steihaug ’83);
TR-Newton-CG-explicit (ours with capped CG+MEO).

TR-Newton methods tested with/without regularization.
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Performance profile: Iterations

C. W. Royer Nonconvex Newton methods CAS 2023 35



Performance profile: Hessian-vector products
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The matrix completion example

Matrix completion

min
X∈Rn×m,rank(X )=r

‖PΩ(X −M)‖2F , M ∈ Rn×m, Ω ⊂ [n]× [m].

Nonconvex factored reformulation (Burer & Monteiro, ’03)

min
U∈Rn×r ,V∈Rm×r

∥∥∥PΩ(U V> −M)
∥∥∥2

F
,

⇒ Nonconvex in U and V .
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Numerical illustration

Matrix problem

min
U,V

1
2

∥∥∥PΩ(UV> −M)
∥∥∥2

F
,

with M ∈ Rm×n, U ∈ Rm×r , V ∈ Rn×r , |Ω| ≈ {5%, 15%} ×mn.
Synthetic data: (n,m) = (500, 499).

Comparison

Our Newton+Conjugate Gradient (CG) technique;
Nonlinear CG (Polak-Ribière);
Dedicated solvers (Alternating methods):

Alternated gradient descent (Tanner and Wei 2016);
LMaFit (Wen et al. 2012).
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Matrix completion (synthetic data, rank 5)
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Matrix completion (synthetic data, rank 15)
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In short: Newton-Capped Conjugate Gradient

Our changes to Steihaug’s method
Regularization to get decrease guarantees;
MEO to get second-order probabilistic results;
Extra checks in (linear) conjugate gradient.

The (typical) cost of complexity

More iterations of Conjugate Gradient;
Eigenvalue oracle typically triggered once!
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Outline

1 Nonconvex problems and algorithms

2 Newton-type framework

3 Extensions
Manifold optimization
Strict saddle problems
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Motivation

Our problems of interest

Could involve complex variables (e.g. phase retrieval).
Matrix completion/factorization: Variables naturally in matrix form.
Additional constraints: Orthogonal columns, e.g. in phase retrieval.

Manifold optimization
Solve problems on a Riemannian manifold, i.e. a space that can be
mapped to Rn.
Preserve feasibility throughout.
Examples:

1 Vectors : Rn, Cn, §n−1;
2 Matrices : Rn×m, Grassmann (subspaces), Stiefel (orthogonal

matrices).
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Manifold optimization

Problem: minx∈M f (x),M Riemannian manifold.

Algorithmic blocks
Riemannian gradient and Hessian :

Counterparts of gradient and Hessian in Euclidean (Rn) setting.
Formulas depending onM,∇f (x),∇2f (x) can be derived by hand or
using toolboxes (Manopt).

Retraction :

Operator that “projects” back onto the manifold.
Depends solely onM, formulas available in toolboxes.

With these operations, can adapt most algorithms to the Riemannian
setting.
Complexity guarantees are preserved but now apply to finding
Riemannian stationary points.
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Illustration: Trust-Region Newton

Problem: minx∈Rn f (x).

Inputs: x0 ∈ Rn, δ0 > 0, η > 0.
For k=0, 1, 2, . . .

1 Define mk(xk + s) := ∇f (xk)Ts + 1
2s

T∇2f (xk)s and compute

sk ∈ argmin
s∈Rn

‖s‖≤δk

mk(xk + s) +
εH
2
‖s‖2.

2 Compute ρk = f (xk )−f (xk+sk )
mk (xk )−mk (xk+sk ) .

3 If ρk ≥ η, set xk+1 = xk + sk and δk+1 = 2δk .
4 Otherwise, set xk+1 = xk and δk+1 = 0.5δk .
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Problem: minx∈M f (x),M Riemannian manifold.

Inputs: x0 ∈M, δ0 > 0, η > 0, εH ∈ (0, 1).
For k=0, 1, 2, . . .

1 Compute the Riemannian gradient gf ,M(xk) and Riemannian
Hessian Hf ,M(xk).
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THf ,M(xk)s and compute

sk ∈ argmin
s∈Rn

‖s‖≤δk

mk(xk + s) +
εH
2
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3 Define xMk as the retraction of xk + sk onto M.

4 Compute ρk =
f (xk )−f (xMk )

mk (xk )−mk (xMk )
.
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Outline

1 Nonconvex problems and algorithms

2 Newton-type framework

3 Extensions
Manifold optimization
Strict saddle problems
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Strict saddle functions

What are those?
Special nonconvex functions;
Various definitions exist.

An informal definition
Given α > 0,β > 0,γ > 0, a function f : Rn → R is (α, β, γ)-strict saddle if
for any x ∈ Rn, one of these properties holds:

1 ‖∇f (x)‖ ≥ α;
2 ∇2f (x) 6� −βI ;
3 There exists x∗ ∈ argminx f (x) such that ‖x − x∗‖ ≤ γ.
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Strict saddle functions (2)

Why are strict saddle functions interesting?
Second-order methods will converge near a global minimum.
Convergence will be driven by problem-dependent quantities
(α, β, γ).

Phase retrieval (Sun et al ’18)

min
x∈Cn

1
2m

m∑
i=1

(b2
i − |a∗i x |2)2.

Manifold optimization problem (Cn).
Under certain assumptions and for m large enough, the objective is
(c , c

n log(m) ,
c

n log(m) )-strict saddle for some absolute constant c > 0.
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Our approach

Algorithm

Newton trust-region (+manifold if needed).
Assuming (α, β, γ) are known, take different steps at every iteration.
Promote Newton steps, especially for the third case (close to global
minimum).

Complexity (Goyens and R., ’23)

The method reaches an (ε, εH)-point in

O
(
max

{
α−2, β−3})+ log2 log2

[
O
(
max{ε−1, ε−1

H }
)]

Dependencies in ε/εH are “log-log” thanks to Newton.
Improves over existing results (O’Neill and Wright ’23).
Key: Dependencies in α/β!
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Summary

Nonconvex optimization problems
Tractable formulations ubiquitous in data science.
Interest in fast algorithms (in a complexity sense).

Our approach

Revisit popular frameworks in nonlinear optimization (Newton-CG);
Get optimal complexity + good numerical performance.

Going further

Handle constraints/matrix variables using manifold optimization.
Tailor the method to specific structures (strict saddle).
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