
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 04/11/2016 par :
Clément W. ROYER

Derivative-Free Optimization Methods based on Probabilistic and
Deterministic Properties: Complexity Analysis and Numerical

Relevance

Algorithmes d’Optimisation Sans Dérivées à Caractère Probabiliste ou
Déterministe : Analyse de Complexité et Importance en Pratique

JURY
Serge GRATTON INPT-ENSEEIHT
Lúıs NUNES VICENTE Universidade de Coimbra
Samir ADLY Université de Limoges
Amir BECK Technion Israel Institute of Technology
Jean-Baptiste CAILLAU Université Bourgogne France-Comté
Anne GAZAIX AIRBUS - IRT A. de Saint-Exupéry
Jean-Baptiste HIRIART-URRUTY Université Toulouse 3 Paul Sabatier

École doctorale et spécialité :
MITT : Domaine Mathématiques : Mathématiques appliquées

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directeur(s) de Thèse :
Serge GRATTON (Directeur) et Lúıs NUNES VICENTE (Co-directeur)

Rapporteurs :
Samir ADLY et Amir BECK

Président du Jury :
Jean-Baptiste HIRIART-URRUTY

Contents

Abstract 15

Résumé 17

Acknowledgements 19

1 Introduction 23

2 Directional direct-search optimization methods 29
2.1 General directional direct-search algorithmic framework 30

2.1.1 Positive spanning sets and cosine measure 30
2.1.2 Algorithmic description . 31
2.1.3 Variations on the proposed framework 33

2.2 Global convergence theory . 34
2.2.1 Standard, liminf-type result . 34
2.2.2 A stronger, lim-type property . 37

2.3 Worst-case complexity . 38
2.3.1 Complexity analysis in the smooth, nonconvex case 38
2.3.2 Other complexity bounds . 39

2.4 Other types of direct-search methods . 40
2.4.1 Line-search methods based on positive spanning sets 40
2.4.2 Directional direct search based on simplex derivatives 41
2.4.3 Simplicial direct-search methods 42

2.5 Conclusion and references for Chapter 2 42

3 Direct search using probabilistic descent 45
3.1 Probabilistic quantities in derivative-free optimization 46
3.2 A direct-search scheme based on probabilistic descent directions 46

3.2.1 Algorithm . 46
3.2.2 A preliminary numerical illustration 47

3.3 Global convergence theorems . 49
3.3.1 Preliminary results at the realization level 49
3.3.2 A submartingale and its associated property 51
3.3.3 Main convergence theorem . 53

5

3.3.4 A stronger convergence result . 54
3.4 Complexity results . 57

3.4.1 Measuring the gradient evolution for a direct-search method 58
3.4.2 Main complexity results and comparison with the deterministic

setting . 62
3.4.3 Additional complexity properties 66

3.5 A practical implementation of a probabilistic descent set sequence 69
3.6 Numerical experiments . 72

3.6.1 Practical satisfaction of the probabilistic descent property 73
3.6.2 A meaningful comparison between deterministic and randomized

polling . 73
3.7 Conclusion and references for Chapter 3 75

4 Trust-region methods based on probabilistic models for derivative-free
optimization 77
4.1 Deterministic derivative-free trust-region algorithms 78
4.2 Convergence of trust-region methods based on probabilistic models 80

4.2.1 Preliminary deterministic results 81
4.2.2 Probabilistically fully linear models and first-order properties . . . 83

4.3 Complexity study of trust-region methods based on probabilistic models . 84
4.4 Practical insights on probabilistic models 85
4.5 Conclusion and references for Chapter 4 86

5 Probabilistic feasible descent techniques for bound-constrained and
linearly-constrained optimization 87
5.1 Handling bounds and linear constraints in direct-search methods 88
5.2 Probabilistic polling strategies for bound-constrained problems 89

5.2.1 The coordinate set and its associated feasible descent properties . 90
5.2.2 A probabilistic technique based on the coordinate set 92
5.2.3 Using subspaces to reduce the number of directions 93
5.2.4 Theoretical properties of the probabilistic variants 96

5.3 Probabilistic feasible descent for linear equality constraints 99
5.3.1 Subspace-based direction generation techniques 99
5.3.2 Convergence and complexity study 101
5.3.3 Addressing linear inequality constraints 103

5.4 Numerical results . 103
5.4.1 Bound-constrained problems . 104
5.4.2 Linearly-constrained problems . 104

5.5 Conclusion of Chapter 5 . 108

6 Second-order results for deterministic direct search 109
6.1 Exploiting negative curvature in a derivative-free environment 110
6.2 Weak second-order criticality measure and associated results 110

6.2.1 Second-order in a general direct-search framework 110

6

6.2.2 Weak second-order global convergence results 113
6.3 A provably second-order globally convergent direct-search method 115

6.3.1 Using a Hessian approximation to determine additional directions 116
6.3.2 Second-order global convergence of the new method 116
6.3.3 Complexity properties . 120

6.4 Numerical study of the second-order framework 125
6.5 Conclusion of Chapter 6 . 133

7 De-coupled first/second-order steps strategies for nonconvex derivative-
free optimization 135
7.1 Motivations . 136
7.2 A trust-region method with de-coupling process 136

7.2.1 A de-coupled trust-regions approach 137
7.2.2 Convergence and complexity analysis 139

7.3 A de-coupled direct search with improved complexity results 142
7.3.1 Algorithmic process and convergence properties 143
7.3.2 Complexity analysis . 145

7.4 Towards randomization . 149
7.4.1 De-coupled trust regions with probabilistic first-order models . . . 149
7.4.2 De-coupled direct search based on probabilistic first-order descent 150

7.5 Numerical study of the de-coupled approach 151
7.5.1 Preliminary experiments on the de-coupled trust-region method . . 151
7.5.2 Numerical study of the de-coupled direct-search framework 153

7.6 Conclusions for Chapter 7 . 158

8 Probabilistic second-order descent 161
8.1 Second-order convergence in numerical optimization 162
8.2 A class of second-order probabilistic properties 162
8.3 Probabilistic analysis of a direct-search scheme based on second-order

descent . 163
8.4 Full second-order properties . 167

8.4.1 The case of negative curvature directions 167
8.4.2 A particular case based on a randomized Hessian approximation . 169

8.5 Practical satisfaction of mixed first and second-order properties 170
8.5.1 Experiments on toy quadratics . 170
8.5.2 Practical satisfaction within a direct-search run 171

8.6 Conclusion for Chapter 8 . 172

9 Conclusion 175

Appendix A Elements of probability theory 177
A.1 Probability space and random elements in an optimization method 177
A.2 Conditional expectation, conditioning to the past and martingales 178

7

Appendix B List of CUTEst test problems 183
B.1 Nonconvex test problems . 183
B.2 Linearly-constrained test problems . 183

Bibliography 183

8

List of Figures

5.1 Performance of three variants of Algorithm 5.1 versus MATLAB patternsearch
on bound-constrained problems. 105

5.2 Performance of three variants of Algorithm 5.1 versus MATLAB patternsearch
on problems with linear equality constraints, with or without bounds. . . 107

6.1 Performance of the methods with polling choices 0/1, given a budget of
2000n evaluations. 128

6.2 Performance of the methods with polling choices 2/3, given a budget of
2000n evaluations. 129

6.3 Second-, first- and weakly second-order direct-search methods, with polling
choice 2 and a budget of 2000n evaluations. 130

6.4 Second-, first- and weakly second-order direct-search methods, with polling
choice 3 and a budget of 2000n evaluations. 131

6.5 Comparison of the ahds methods, given a budget of 2000n evaluations. . 132

7.1 Performance of the derivative-free trust-region methods for εf = 10−3. . . 152
7.2 Performance of the derivative-free trust-region methods for εf = 10−6. . . 152
7.3 Performance of the derivative-free trust-region methods for εf = 10−9. . . 153
7.4 Performance of the dsds methods (same settings), given a budget of

2000n evaluations. γα = γβ. 154
7.5 Performance of the dsds methods (same settings), given a budget of

2000n evaluations. γα > γβ. 156
7.6 Performance of deterministic and probabilistic methods given a budget of

2000n evaluations, εf = 10−3. 157
7.7 Performance of deterministic and probabilistic methods given a budget of

2000n evaluations, εf = 10−6. 157
7.8 Performance of deterministic and probabilistic methods given a budget of

2000n evaluations, εf = 10−9. 158

8.1 Percentage of directions satisfying the desired assumptions, for α between
1 and 10−10. Here ‖g‖ = ε2, λ = −ε and H g = λ g. 173

8.2 Percentage of directions satisfying the desired assumptions, for α between
1 and 10−10. Here ‖g‖ = ε2, λ = −ε and g is orthogonal to Eλ. 174

9

List of Tables

3.1 Notations for direct search with randomly generated directions. 47
3.2 Relative performance for different sets of polling directions (n = 40). . . . 48
3.3 Relative performance for different sets of polling directions (n = 40). . . . 74
3.4 Relative performance for different sets of polling directions (n = 100). . . 75

5.1 Number of evaluations and final value on problems with linear equality
constraints. 106

6.1 The different polling set choices for Algorithm 6.1. 126

B.1 Nonconvex test problems from CUTEst. 184
B.2 Bound-constrained test problems from CUTEst. 185
B.3 Linearly-constrained test problems (linear equalities and possibly bounds)

from CUTEst. 186

11

List of Algorithms

2.1 Basic directional Direct-Search method (BDS) 32

3.1 Direct Search method based on Probabilistic Descent (DSPD) 47

4.1 Basic Derivative-Free Trust-Region framework 80
4.2 Derivative-Free Trust-Region based on Probabilistic Models 81

5.1 Direct Search based on Probabilistic Feasible Descent (DSPFD) 89

6.1 Approximate Hessian-based Direct-Search algorithm (AHDS) 117

7.1 Basic Second-Order Derivative-Free Trust-Region framework 137
7.2 DE-coupled Steps in a Trust-REgionS Strategy (DESTRESS) 138
7.3 De-coupled Step sizes Direct-Search method (DSDS) 144

13

Abstract

Randomization has had a major impact on the latest developments in the field of numer-
ical optimization, partly due to the outbreak of machine learning applications. In this
increasingly popular context, classical nonlinear programming algorithms have indeed
been outperformed by variants relying on randomness. The cost of these variants is
usually lower than for the traditional schemes, however theoretical guarantees may not
be straightforward to carry out from the deterministic to the randomized setting. Com-
plexity analysis is a useful tool in the latter case, as it helps in providing estimates on
the convergence speed of a given scheme, which implies some form of convergence. Such
a technique has also gained attention from the deterministic optimization community
thanks to recent findings in the nonconvex case, as it brings supplementary indicators
on the behavior of an algorithm.

In this thesis, we investigate the practical enhancement of deterministic optimization
algorithms through the introduction of random elements within those frameworks, as
well as the numerical impact of their complexity results. We focus on direct-search
methods, one of the main classes of derivative-free algorithms, yet our analysis applies
to a wide range of derivative-free methods. We propose probabilistic variants on classical
properties required to ensure convergence of the studied methods, then enlighten their
practical efficiency induced by their lower consumption of function evaluations. First-
order concerns form the basis of our analysis, which we apply to address unconstrained
and linearly-constrained problems. The observed gains incite us to additionally take
second-order considerations into account. Using complexity properties of derivative-free
schemes, we develop several frameworks in which information of order two is exploited.
Both a deterministic and a probabilistic analysis can be performed on these schemes. The
latter is an opportunity to introduce supplementary probabilistic properties, together
with their impact on numerical efficiency and robustness.

Keywords: derivative-free optimization, probabilistic properties, complexity analy-
sis, direct-search methods.

15

Résumé

L’utilisation d’aspects aléatoires a contribué de façon majeure aux dernières avancées
dans le domaine de l’optimisation numérique; cela est dû en partie à la recrudescence
de problèmes issus de l’apprentissage automatique (machine learning). Dans un tel con-
texte, les algorithmes classiques d’optimisation non linéaire, reposant sur des principes
déterministes, se révèlent en effet bien moins performants que des variantes incorporant
de l’aléatoire. Le coût de ces dernières est souvent inférieur à celui de leurs équivalents
déterministes ; en revanche, il peut s’avérer difficile de maintenir les propriétés théoriques
d’un algorithme déterministe lorsque de l’aléatoire y est introduit. Effectuer une ana-
lyse de complexité d’une telle méthode est un procédé très répandu dans ce contexte.
Cette technique permet d’estimer la vitesse de convergence du schéma considéré et par
là même d’établir une forme de convergence de celui-ci. Les récents travaux sur ce sujet,
en particulier pour des problèmes d’optimisation non convexes, ont également contribué
au développement de ces aspects dans le cadre déterministe, ceux-ci apportant en effet
un éclairage nouveau sur le comportement des algorithmes.

Dans cette thèse, on s’intéresse à l’amélioration pratique d’algorithmes d’optimisation
sans dérivées à travers l’introduction d’aléatoire, ainsi qu’à l’impact numérique des ana-
lyses de complexité. L’étude se concentre essentiellement sur les méthodes de recherche
directe, qui comptent parmi les principales catégories d’algorithmes sans dérivées ; cepen-
dant, l’analyse sous-jacente est applicable à un large éventail de ces classes de méthodes.
On propose des variantes probabilistes des propriétés requises pour assurer la conver-
gence des algorithmes étudiés, en mettant en avant le gain en efficacité induit par ces
variantes : un tel gain s’explique principalement par leur coût très faible en évaluations
de fonction. Le cadre de base de notre analyse est celui de méthodes convergentes au pre-
mier ordre, que nous appliquons à des problèmes sans ou avec contraintes linéaires. Les
bonnes performances obtenues dans ce contexte nous incitent par la suite à prendre en
compte des aspects d’ordre deux. À partir des propriétés de complexité des algorithmes
sans dérivées, on développe de nouvelles méthodes qui exploitent de l’information du
second ordre. L’analyse de ces procédures peut être réalisée sur un plan déterministe ou
probabiliste: la deuxième solution nous permet d’étudier de nouveaux aspects aléatoires
ainsi que leurs conséquences sur l’efficacité et la robustesse des algorithmes considérés.

Mots-clés: optimisation sans dérivées, propriétés probabilistes, analyse de com-
plexité, méthodes de recherche directe.

17

Acknowledgments

First and foremost, I am very thankful to my two advisors, Serge Gratton and Lúıs
Nunes Vicente. Serge gave me the opportunity to start a thesis quite early, believing in
the quiet ENSEEIHT student I was back then. He provided me with a great working
environment, and always ended up being there when I really needed it. I learnt a lot
about research, teaching and academia thanks to him (sometimes the hard way!). Lúıs
welcomed me in the amazing city of Coimbra during my master thesis, introducing me
to the world of optimization and the fruitfulness of international collaboration. This was
the start of a three-year journey where I got to experience his kindness as well as his
rigor, through numerous friendly yet intense discussions. I hope that this thesis reflects
the positive influence both of them had on me, and I certainly expect it to continue in
the future. Merci pour tout, Serge. Muito obrigado, Lúıs.

I am grateful to Professors Samir Adly and Amir Beck for agreeing to review this
thesis. Thank you for your reports: I am honoured that you considered this work worthy
of a PhD. I would like to thank Jean-Baptiste Hiriart-Urruty for acting as the president
of the jury and perfectly chairing the defence: it was an honour to have you in my
commitee. I also thank Anne Gazaix for agreeing to be an examiner of my work. I am
glad that you took interest in my work, and I hope you got more familiar with the topic.

I am indebted to Jean-Baptiste Caillau, both for being part of my jury and giving me
my very first experience with research. It was in the Mathematical Institute of Burgundy,
in Dijon, and it was a milestone in my (short) career. Since then, Jean-Baptiste has been
very supportive in every occasion our paths crossed, were it in Toulouse or Dijon. Merci
beaucoup, Jean-Baptiste.

The work in this thesis started in collaboration with Zaikun Zhang in Coimbra and
afterwards in Toulouse. His help during my first steps in the optimization community,
as well as his friendship and support, were instrumental to my accomplishments, and he
truly deserved to be cited here, on a professional but most of all on a humane point of
view. 谢谢 , Zaikun.

I would also like to thank Stefan Wild and Jeffrey Larson, who welcomed me at
Argonne National Laboratory during the beginning of 2016. In addition to being a first
research experience in the US, it was a change of air I needed before diving back into
the last months of my PhD in Toulouse. Thanks to you both.

This thesis was mostly written in my office at ENSEEIHT, and I would like to
acknowledge all the people with whom I have shared this office, in appearing order:

19

Mohamed Zenadi, Florent Lopez, Théo Mary (probably the one that had the hardest
time in my presence!), Damien Goubinat, Charlie Vanaret and Luce Le Gorrec. For
all the discussions, the laughter, and the bitterness, thanks, guys. Thanks also to El
Houcine Bergou, Youssef Diouane, Jean-Baptiste Latre, Nacer Soualmi and Thibaud
Vandamme for our exchanges, at CERFACS or elsewhere.

During those years, I shared my time between research in the APO team at IRIT,
and teaching in the IMA department of ENSEEIHT. For the first part, I thank the
entire team for their support, particularly Chiara Puglisi for her kindness and Patrick
Amestoy for all the early morning encounters. Sylvie “SAM” Armengaud-Metche, Sylvie
Eichen and Annabelle Sansus kindly helped me not to get (too) lost in administrative
paperwork: they definitely deserve my thanks. On the teaching side, I am grateful to our
department chair Joseph Gergaud for the opportunities I had, and to Muriel De Guibert
for her help. My thanks also go to Alfredo Buttari, Ronan Guivarch, Daniel Ruiz,
Ehouarn Simon and Xavier Vasseur who helped me in learning this job, and eventually
liking it. I am finally indebted to Patrick Altibelli for our collaboration prior to his
retirement: it was certainly a privilege for me.

This thesis has been inspired by many people: not only those who I already men-
tioned, but people that I have interacted with during, before and after my PhD. Of
course, the list starts with my family: my parents, my sister, my grandmother, as well
as the Toulouse branch of the tree (uncle, aunt, cousins, great-cousins, the list keeps
growing). Thank you for all the support you gave me at all times.

After six years in Toulouse, trying to mention all the people I met there and not to
forget anyone would clearly be too risky. Let thus Alex, Baptiste and Pedro be your
representatives of these years, a role they fully assumed during my defence. By thanking
them, I (a.k.a., Geb) thank all of you for every moment we shared, in our school or
elsewhere, even though there could have been a lot more of those.

A special thanks to my partner in crime, Pierre Marighetto, who accompanied me
from Bordeaux to Toulouse to North America (well, that will be for 2017). Thanks to
him, I opened up, came to realize what I was good at, and had some of the craziest and
funniest times of my life. Until we meet again, old friend!

I also thank the trios that go way back: Alexia, Alice and Clément (the Bordeaux
belote crew), Guillaume, Hugo and Olivier (the high school clan), Emilie, Lucile and
Sébastien (the JBJ team). Even with distance, we were always connected, there is no
reason for that to change.

Last but not least, I am deeply grateful to the musicians that I have met during
the last years, mostly members of the Trous Balourds and the Gimmick Five Syndicate.
Thank you for every rehearsal, every set, every note that I got to play, especially when
I did not feel like it. I still have a long way to go, but this part of the road could not
have been done without you by my side. You kept me in tune and rhythm, you backed
me up on solos, and you certainly know how to get busy in love.

20

To the jokes that still make me smile

21

Thesis soundtrack

Breakbot - By Your Side

Eddie Daniels - Morning Thunder

Miles Davis & Robert Glasper - Everything’s Beautiful

Electro Deluxe - Hopeful, Play, Live in Paris, Home

Gimmick Five Syndicate - Live in Toulouse (December 8, 2012)

Robert Glasper Trio - Covered

Robert Glasper Experiment - Black Radio, Black Radio 2, ArtScience, Tiny Desk Con-
cert, Live with the Metropol Orkest 2014

Bill Laurance - Flint, Swift, Aftersun

Hocus Pocus - 73 touches, Place 54, 16 pièces

Marcus Miller - Renaissance, Afrodeezia, Live with the Metropol Orkest 2013

Panam Panic - The Black Monk

Snarky Puppy - Tell Your Friends, Ground Up, We Like It Here, Family Dinner Vol.
1 and 2, Culcha Vulcha, Live at Stockholm Jazz Festival 2013, Live at Java Jazz
2014, Live sets at the Funky Biscuit 2015, Lives World Tour 2015

Snarky Puppy and the Metropol Orkest - Sylva, Live in Coutances 2015

22

Chapter 1

Introduction

Numerical optimization has recently faced a change of paradigm due to the outbreak of
algorithms based on randomness. One of the main reasons for such an evolution lies in
the efficiency of these randomized schemes in solving problems arising in machine learn-
ing applications [19]. Indeed, in those problems, randomized first-order algorithms have
proved more effective than traditional deterministic frameworks. The large dimension of
the problems to be addressed in machine learning is one possible source of improvement
through randomization. Indeed, in such a large-scale setting, it is very likely that at-
tempting to use the whole available data (say, in a gradient step) is unnecessary as the
information may present some redundancy. In these situations, randomization might be
of assistance.

The main drawback of randomization is that it can jeopardize the deterministic con-
vergence properties of the algorithm at hand. Still, theoretical analysis of those schemes
can be performed, one way being the derivation of complexity results. Given some con-
vergence criterion, the goal of such an analysis is to provide a worst-case estimate of the
rate of decrease of this criterion, deterministically or in expectation, which can then re-
sult in convergence guarantees. Although such global rates are common in deterministic
or randomized optimization methods applied to convex problems, results in the non-
convex setting have only arisen in the last decade, mainly due to the analysis of cubic
regularization methods to that respect [23].

In the case of complex functions, a supplementary issue may prevent the application
of classical first and second-order methods: the unavailability of the derivatives within
the algorithmic process. In this setting, one may resort to derivative-free algorithms,
which we describe in the next paragraph. For such methods, the study of their potential
for randomization and the interest in performing their complexity analysis is then a
natural question.

A brief description of derivative-free optimization

The general problem we consider in this thesis is the minimization of a numerical function
f of n real parameters. When no constraints are enforced on the problem variables, the

23

commonly adopted formulation is the following:

min
x∈Rn

f(x). (1.1)

The function f , called the objective function, is assumed to be computable at every
point in Rn, where n is a positive integer.

In many situations, this minimization problem cannot be solved with derivative-based
state-of-the art numerical optimization methods. Indeed, typical algorithmic schemes
such as line-search [101] or trust-region methods [33] are based on the gradient vector,
which is the representation of the first-order derivative in the variable space. Those
methods may additionally require the computation of the Hessian matrix, associated
with the second-order derivative. Therefore, whenever access to derivative information
is not possible, such algorithms cannot be applied. This is problematic as the objec-
tive function can present itself in a complex form that does not allow to compute the
first-order derivative. This is for instance the case whenever the expense of a gradient
computation is extremely elevated: the cost of this derivative can forbid its exploitation
in an algorithmic framework. Another possibility is that the gradient simply does not
exist, which can occur when one attempts to optimize a function that has different ex-
pressions depending on the intervals in which the optimization parameters lie. Last but
not least, a common situation in practice is the so-called black-box problems, for which
the objective function is available as an oracle, typically of the form of a proprietary
simulation code. In that setting, the user can only input the variable x and obtain the
corresponding function value as an output, without any insight on the computation of
this value. As a result, no explicit formula for the derivative is available, which prevents
the user from accessing the corresponding values. When the code itself is only avail-
able as an executable file, techniques such as automatic differentiation cannot even be
considered.

In order to tackle the above issues, one thus has to rely on optimization algorithms
that only exploit the objective values. Such methods are qualified as zeroth-order or
derivative-free, and remain very attractive among practitioners who have limited knowl-
edge about the structure of their problem. Indeed, the aforementioned techniques often
rely on elementary ideas (such as direct comparison of the function values to determine
a better one), thus facilitating their immediate, albeit naive, implementation. In the
last two decades, convergence and complexity results have been established for a wide
range of derivative-free algorithms, thereby motivating further their popularity in prac-
tice through theoretical justifications. Derivative-free optimization (DFO) is now well
established as a optimization category of its own [38].

Numerous derivative-free methods are not deterministic, in that their algorithmic
process involves a certain form of randomness. The corresponding algorithms are some-
times called stochastic or randomized algorithms, and are typically used for global op-
timality purposes, i.e. when the goal of the user is to compute the global optimum of
the objective [116]. The stochastic nature of the algorithms enables the exploration of
the whole variable space, by allowing to escape the vicinity of a local optimum [108].
However, it may also prevent them from exhibiting theoretical guarantees other than

24

those based on density arguments. They can also require a significant budget of func-
tion evaluations to perform efficiently, which can preclude their use in certain contexts.
This partly explains why some of them are not endowed with a convergence analysis,
nor are they studied from a worst-case point of view.

For these reasons, our starting point when designing our methods will be determin-
istic schemes with local optimality purposes, for which the theoretical analysis has been
well established. Two paradigms are essentially of use in deterministic DFO algorithms.
The first one encompasses the class of model-based methods, which are often inspired by
existing schemes relying on derivatives (trust-region, Levenberg-Marquardt, etc). When
in a derivative-based context, those algorithms can make use of the first-order (and some-
times second-order) Taylor expansion(s) to build such models. Derivative-free methods,
on the other hand, must construct approximations of the objective function based solely
on sampled evaluations of that function. Polynomial approximation techniques have
proven useful in providing models with a quality comparable to that of the Taylor mod-
els [35, 36]. However, ensuring a good quality of such models is a complicated task,
that has repercussions on both the formulation and implementation of these algorithms
(see [38, Chapter 6] for more details). Still, we will present results for a simplified
subclass of derivative-free trust-region methods in Chapters 4 and 7.

In the thesis, we will concentrate on direct-search-type methods, which form the
second main class of deterministic DFO algorithms. Those frameworks proceed by ex-
ploring the space along appropriately selected sets of directions, and move towards points
that are able to reduce the current function value. The simplicity of this approach par-
tially explains why those methods are among the oldest in numerical optimization, and
remain a popular approach to overcome the lack of derivatives. We provide a more
detailed analysis of direct search in Chapter 2.

Contribution of the thesis

This thesis proposes a theoretical and numerical study of derivative-free algorithms in
which classical features are relaxed by requiring properties to be satisfied in probability
or in the aim of providing improved complexity guarantees.

The first main contribution of the thesis is the proposal of an analytic tool that
enables to study direct-search algorithms based on randomly generated directions. We
describe both a martingale argument that helps in deriving convergence results and a new
complexity proof technique leading to probabilistic worst-case complexity bounds, which
can be adapted to several other algorithmic frameworks relying on random elements. In
the case of direct-search methods, both analyses can also be extended from the uncon-
strained setting (which constitutes the basis of our results) to the bound-constrained
and linearly-constrained cases.

The second contribution of this work is the study of second-order aspects in derivative-
free algorithms, mostly driven by their complexity analysis. We provide a detailed study
of second-order behavior in direct-search methods, thereby deriving the first worst-case
complexity bounds related to second-order optimality in DFO. Such a investigation is

25

then completed by the introduction of a de-coupling technique, that is analyzed for two
classes of zeroth-order schemes: improvement of existing complexity bounds is estab-
lished, and practical implications of the new approaches are discussed.

The third contribution we identify builds on the previous ones by looking at second-
order algorithms relying on probabilistic properties. The de-coupled framework reveals
itself prone to randomization, and we propose an hybridization of probabilistic and
deterministic guarantees that is shown to improve numerical efficiency while enabling
to prove convergence. While the first results of the thesis can directly be applied in
that setting, additional quality of the directions with respect to a second-order criterion
requires further study. We thus provide a general context in which randomization has a
positive impact in theory, as well as a comparison on the difficulty of satisfying several
specific instances of such a property.

Structure of the thesis

This thesis is structured in two parts, that mainly differ by the level of smoothness we
consider for the targeted objective function.

The first part of the thesis (Chapters 2 to 5) is concerned with the probabilistic anal-
ysis of derivative-free methods, mostly of direct-search type, with first-order convergence
in mind. We review the core features of these directional schemes in Chapter 2, where
we provide the necessary ingredients for a deterministic analysis. We then propose to
replace the main property required to derive proper theoretical proofs by a probabilistic
equivalent. This is the purpose of Chapter 3, in which we detail the convergence and
complexity results that can be obtained, while providing numerical illustrations of the
interest of our approach. Chapter 4 describes the application of our original complexity
proof technique to a derivative-free trust-region method, and contains a short introduc-
tion to this class of algorithms. In Chapter 5, we discuss the extension of the direct-search
scheme to bounds and linear constraints problems, by proposing probabilistic strategies
that can offer significant improvement over a state-of-the-art implementation.

In the second part of the thesis (Chapters 6 to 8), we attempt to make use of the
economy induced by our probabilistic approach to consider additional local information,
of second-order type. To do so, we first propose in Chapter 6 a thorough study of
deterministic properties of direct-search methods, which identifies the key aspects that
allow for a second-order convergence analysis. A method that additionally presents
convergence guarantees is proposed, and its practical qualities on tackling nonconvex
problems are established. We then take a first step towards probabilistic variants of a
second-order reasoning, by developing a dissociated treatment of first and second-order
information: this is done in Chapter 7 using both a trust-region and a direct-search
framework. Such an approach is shown to be beneficial in terms of worst-case behavior
and numerical robustness, especially as probabilistic treatment of the first-order aspects
without compromising the second-order ones becomes possible. We complement this
study by proposing in Chapter 8 a general probabilistic second-order assumption that
encompasses various deterministic properties, and we discuss its practical significance in

26

a derivative-free setting.
Chapter 9 concludes the main body of the thesis by summarizing its findings and

highlighting several perspectives for future research, and is followed by two appendices.
Appendix A describes the tools and results from probability theory that are applied
throughout the thesis, while Appendix B provides a list of the test problems used in our
numerical experiments.

Terminology and notations

We list below several conventions that will be adopted in the rest of the thesis.
A probabilistic analysis of an algorithm is defined as a theoretical study (typically

related to the convergence) of this algorithm, performed thanks to arguments from prob-
ability theory. The associated method may or may not rely on random elements, yet a
probabilistic analysis could be derived in both cases as long as appropriate distributions
can be defined. More generally, the adjective probabilistic will qualify a concept or a
result that involves probability theory.

A randomized algorithm is a method obtained from a deterministic one by introducing
random aspects. In that sense, the algorithms to be developed in this thesis can be
considered as randomized. Nevertheless, it can still be possible to derive a deterministic
analysis of a randomized method. Since we are concerned with probabilistic analysis of
the algorithms we propose, we will not refer to our algorithms as being randomized, but
rather put the emphasis on the probabilistic properties that characterize them.

We qualify an optimization algorithm as globally convergent when its convergence
properties do not depend on the chosen starting point, as opposed to locally convergent
methods [101]. This property is related to convergence towards local first-order or second-
order stationary points.

Notations Throughout the thesis, any set of vectors V = {v1, . . . , vm} ∈ (Rn)m will
be identified to the matrix [v1 · · · vm] ∈ Rn×m. We will thus allow ourselves to write
v ∈ V even though we may manipulate V as a matrix. For a set of vectors V , we will
denote by span(V) the subspace generated by linear combinations of the vectors in V ,
and by pspan(V) the set of nonnegative linear combinations of those vectors. We will
use ‖ · ‖ to denote both the Euclidean norm of a vector x ∈ Rn, and the associated
matrix norm ‖A‖ = max‖x‖6=0

‖Ax‖
‖x‖ for a matrix A ∈ Rn×n. For a symmetric matrix H,

we will use λmin(H) to denote its minimum eigenvalue.
When considering sequences arising from the execution of an optimization algorithm,

we will use a subscript to indicate the related iteration. More generally, {i, j, k, l} will
be our preferred notations for indexes of (sub)sequences.

Finally, the notation O(Q) will indicate a constant times Q, where the constant
contained in O(·) does not depend explicitly on the quantities present in Q.

27

Chapter 2

Directional direct-search
optimization methods

This thesis presents an analysis essentially revolving around the direct-search class of
optimization methods. In addition to forming one of the most popular categories of
derivative-free algorithms, it offers simple frameworks in which the main concepts of the
probabilistic analysis derived in the thesis can be clearly enlightened.

In this chapter, we describe in detail a class of direct-search methods, with the
associated theoretical results. We first provide useful tools to cope with the absence
of derivatives and describe the main algorithmic framework in Section 2.1. Section 2.2
presents the associated convergence theory of the method, while Section 2.3 details the
recent advances related to its complexity properties. Section 2.4 gives a brief overview
of other methods belonging to the direct-search class.

29

2.1 General directional direct-search algorithmic frame-
work

Direct-search methods are characterized by the fact that they rely solely on function
value comparison to look for the optimum of an objective function. The set of directions
to be used for selecting new points is one fundamental component of the method, so is
the process that defines and iteratively updates the step size.

In this section, we describe the basic concept of a direct-search method of directional
type. The presented algorithm is slightly less general than the one that can be found in
classical references [37, 75], but we adopt this formulation in order to conform with the
methods that will be developed throughout the thesis. Beforehand, we develop prelimi-
nary notions that are fundamental in the theoretical analysis of our class of methods.

2.1.1 Positive spanning sets and cosine measure

In direct-search methods, the variable space is explored through suitably chosen sets of
directions. In order for those directions to yield sufficiently relevant information about
the whole space, it is often required that they form a Positive Spanning Set, as defined
below.

Definition 2.1 Let D = {d1, . . . , dm} ⊂ Rn a set of vectors in Rn. D is called a Positive
Spanning Set (PSS) if it can span the entire space by nonnegative linear combinations.

Definition 2.2 A set of vectors is called positively independent if no vector in the set
can be expressed as a nonnegative linear combination of the others.

A Positive Spanning Set D is called a positive basis if it is a set of positively inde-
pendent vectors.

Example 2.1 Let {e1, . . . , en} be the canonical basis of Rn. Then

i) D⊕ = {e1, . . . , en, -e1, . . . , -en} is a positive basis.

ii) Vn+1 =
{
e1, . . . , en, - 1√

n

∑n
i=1 ei

}
is a positive basis.

The earliest rigorous study of PSS was performed by Davis [43]. We mention below
its essential features.

Proposition 2.1 Let D = {d1, . . . , dm} be a set of vectors in Rn.

i) If D is a PSS, m ≥ n+ 1;

ii) If D is a positive basis, n+ 1 ≤ m ≤ 2n.

Positive bases with n + 1 and 2n vectors are called minimal and maximal positive
bases, respectively. One thus sees that there is a lower bound on the size of a PSS, which
is of order of the problem dimension.

30

By considering a PSS (or a positive basis), one may thus resort only to nonnegative
linear combinations of vectors in this set and still be able to generate the whole space.
This already is an interesting property, but in the prospect of approximating specific
vectors in the space, we would like to have a measure of the quality of a given set of
directions (not necessarily a PSS). This is the sense of Definition 2.3.

Definition 2.3 Let D be a set of (nonzero) vectors in Rn. We define the cosine measure
of D as the quantity

cm(D) = min
v∈Rn
v 6=0

max
d∈D

d> v

‖d‖‖v‖
, (2.1)

which lies between −1 and 1.

The cosine measure quantifies the ability of a given set to approximate any vector in
the associated space.

There is an important link between the cosine measure and the positive spanning set
property, as established by the following proposition.

Proposition 2.2 D is a Positive Spanning Set in Rn if and only if cm(D) > 0.

In other words, for any vector in the space and any PSS, there is always one element
of the PSS that makes an acute angle with this vector. This is of particular interest
since one of the goals of optimization schemes is to determine descent directions, that
by definition make an acute angle with the negative gradient [101].

2.1.2 Algorithmic description

Algorithm 2.1 presents the basic scheme of our method, enlightening the process of one
iteration. The method may start with a Search Step, in which several points are chosen
and the poll step is skipped if one of those points yields an improved function value,
as determined by (2.2). If none of those points happens to improve the objective, then
a Poll Step is applied. Its decrease condition (2.3) is the same as for the search step,
yet this step is fundamentally different. Indeed, the (polling) directions must possess
specific properties in order to guarantee convergence of the framework: those are not
required for the search directions.

Depending on whether a better point has been encountered or not, the iteration is
identified as successful or unsuccessful. In the first case, the new point becomes the next
iterate, and the step size is (possibly) increased; in the second one, the current point
(also called the current iterate) does not change, and the step size has to be reduced.

We make several remarks about this method. First, the search step present in Al-
gorithm 2.1 is optional in that it does not intervene in the theoretical analysis of the
method. It can therefore be ignored for the convergence and complexity proofs. This
being said, we point out that such a step is frequently used by practitioners, e.g. to test
trial steps generated outside of the direct-search process, and that it may be the actual
step of interest in some cases.

31

Algorithm 2.1: Basic directional Direct-Search method (BDS)

Choose an initial point x0 ∈ Rn, as well as 0 < θ < 1 ≤ γ, 0 < α0 < αmax.
Define a forcing function ρ : R+ → R+.
for k = 0, 1, 2, . . . do

Search Step (optional)
Determine a set of search directions Ds

k in Rn. If there exists d ∈ Ds
k such that

f(xk + αk d)− f(xk) < −ρ(αk ‖d‖), (2.2)

declare the iteration successful, set xk+1 = xk + αk d and skip the poll step.
Otherwise, go to the poll step.
Poll Step
Compute a polling set Dk.
If there exists d ∈ Dk such that

f(xk + αk d)− f(xk) < −ρ(αk ‖d‖), (2.3)

declare the iteration successful and set xk+1 = xk + αk d.
Otherwise, declare the iteration as unsuccessful and set xk+1 = xk.
Step Size Update
If the iteration is successful, (possibly) increase the step size by setting
αk+1 = min {γ αk, αmax}.

Otherwise, decrease the step size by setting αk+1 = θ αk.
end

32

Secondly, the presence of αmax is not necessary for establishing convergence; however,
it is commonly adopted in practice, and a requirement to derive the upcoming complexity
results. We thus chose to make it appear in the algorithm from the start.

Thirdly, the polling process performed in Algorithm 2.1 is opportunistic by default,
i.e. we stop evaluating through the directions in Dk when we found one satisfying the
sufficient decrease condition, in which case we move on to the next iteration.

Finally, note that practical implementations use a stopping criterion rather than a
for loop, that often consists in specifying a maximum budget of function evaluations
and/or a minimum tolerance for the step size. Relevance of the latter criterion will be
discussed further in Section 2.2, and examples will be described in the numerical sections
of this thesis.

2.1.3 Variations on the proposed framework

The above method covers two families of algorithms, namely those for which the forcing
function ρ is equal to zero, and those for which ρ(α) > 0 for α > 0.

The second option corresponds to enforcing sufficient decrease, i.e., accepting a new
point y if it decreases the function value by a certain amount measured through the
function ρ

f(y) < f(xk)− ρ(αk ‖dk‖). (2.4)
It is one paradigm that, together with the use of Positive Spanning Sets, endows

a directional direct-search algorithm with convergence properties. We will provide a
detailed analysis of this setting in the rest of the chapter.

Several popular schemes rather rely on the first alternative, called simple decrease,
meaning that the method will accept any new point that satisfies

f(y) < f(xk), (2.5)

where xk is the current iterate. Such a decrease condition is the basis of the earliest
direct-search methods, and the associated algorithms are often termed Pattern Search
methods. Their convergence theory, essentially based on integer lattices and a finite
number of polling sets, was first established by Torczon [109] in a smooth setting (as-
suming existence and Lipschitz continuity of the first-order derivative of the function
f). An analysis for Generalized Pattern Search algorithms was then presented by Audet
and Dennis [10], who derived a convergence analysis for various levels of smoothness
of the objective function. The work in [10] can be considered as seminal for the later
introduction of the Mesh Adaptive Direct Search (MADS) framework by the same au-
thors [8]. The underlying analysis of this algorithm shows that the MADS-type methods
generate sequences of iterates which possess guarantees at their limit points. For such
schemes, global convergence to a first-order stationary point is ensured whenever the
polling directions are asymptotically dense within the unit sphere, an assumption that
can be satisfied deterministically [4].

Other similar approaches can be connected to Algorithm 2.1. Initiated by the
work of Coope and Price, the Grid/Frame-based Search techniques (see [39] and refer-
ences therein) have been successfully applied to both smooth and nonsmooth problems.

33

Garćıa-Palomares and Rodŕıguez [59] presented a framework derived from the pattern
search framework but with sufficient decrease conditions, that was described in both se-
quential and parallel versions. It exploits the minimal frame theory of the Frame-based
methods in order to guarantee convergence.

2.2 Global convergence theory

In this section, we derive classical global convergence proofs for Algorithm 2.1. Those
proofs require the following assumptions on the objective function.

Assumption 2.1 The function f is continuously differentiable on Rn, and its gradient
is Lipschitz continuous, of Lipschitz constant νg.

Assumption 2.2 The objective function f is bounded from below on its level set at x0
given by L(x0) = {x ∈ Rn : f(x) ≤ f(x0)}, and we denote by flow a lower bound.

A necessary assumption on the directions that are used is given below. Note that
this property is required for for both the polling sets and the (possibly non-empty) sets
of search directions.

Assumption 2.3 There exists positive constants dmin and dmax such that every direc-
tion d that is considered for a poll step, or a search step when it is present, satisfies

dmin ≤ ‖d‖ ≤ dmax.

A common way of satisfying Assumption 2.3 is by generating the polling sets so that
they only contain unitary directions.

We end this series of assumptions by a requirement concerning the forcing function.

Assumption 2.4 The forcing function is positive, non-decreasing on (0,+∞), and sat-
isfies ρ(α) = o(α) when α→ 0+.

Standard choices for such a forcing function are ρ (α) = c αq, with c > 0, q > 1.
Note that our framework adopts the sufficient decrease approach.

2.2.1 Standard, liminf-type result

We begin this section by a useful lemma, that does not depend on the directions we use
at every iteration (as long as those directions are bounded in norm).

Lemma 2.1 Let Assumptions 2.2, 2.3 and 2.4 hold. Then, the step size sequence pro-
duced by Algorithm 2.1 satisfies

lim
k→∞

αk = 0. (2.6)

34

Proof. Suppose first that there are a finite number of successful iterations, and let
k0 denote the last index of those. Then, for every k ≥ k0, we have by the updating rule
on the step size that

αk = γ θk−k0−1 αk0 ,

that goes to zero when k goes to infinity, so in this case (2.6) holds.
Suppose now that there are infinitely many successful iterations. If there exists ᾱ > 0

such that ∀ k, αk > ᾱ, then it also exists ρ̄ > 0 such that ρ(αk ‖dk‖) ≥ ρ(αk dmin) > ρ̄
for all k. Let k be the index of a successful iteration; one has:

f(xk)− f(xk+1) > ρ(αk ‖dk‖) > ρ̄,

hence, by summing on all successful iterations and using Assumption 2.2, we arrive at

f0 − flow >
∑

k successful
ρ̄ = ∞. (2.7)

We thus arrive at a contradiction, from which we deduce that lim infk αk = 0.
Suppose now that limk αk 6= 0; then, for every ε > 0, it exists a subsequence {ki}

such that ∀ i, αki > ε. Since there are infinitely many successful iterations, we can
assume without loss of generality that {ki} is a subsequence of successful iterations. As
a result, by the same argument as before, it exists ρε > 0 such that for all i, ρ(αki) > ρε.
Thus

f(xki)− f(xki+1) > f(xki)− f(xki + 1) > ρ(αki) > ρε,

and we obtain a contradiction similar to (2.7). �
Note that for some direct-search instances that are not based on sufficient decrease,

the above result is only true for a subsequence of the step sizes in the general case. This
still suffices to establish a convergence result. Note also that Lemma 2.1 does not assume
any smoothness property on f , which makes this result an important one for practical
purposes.

The next argument for our proof is related to the guarantees we have whenever an
iteration is unsuccessful.

Lemma 2.2 Suppose that Assumption 2.1 and 2.3 holds, and consider the index k of
an unsuccessful iteration. Then, if Dk is a PSS, we have

‖∇f(xk)‖ ≤
1

cm(Dk)

(
ρ(αk dmax)
αk dmin

+ νg
2 αk dmax

)
. (2.8)

Proof. The proof is a classical result of the direct-search literature. If ∇f(xk) = 0,
the result trivially holds, thus we assume in what follows that ∇f(xk) 6= 0. Since the
iteration is unsuccessful, for each d ∈ Dk, one has

−ρ(αk) ≤ f(xk + αk d)− f(xk). (2.9)

35

Thus, a first-order Taylor expansion of f(xk +αk d) together with Assumption 6.1 leads
to

−ρ(αk) ≤ αk∇f(xk)> d+ αk

∫ 1

0
[∇f(xk + tαk d)−∇f(xk)]> d dt

≤ αk∇f(xk)> d+ νg
2 α2

k.

Hence
−d>∇f(xk) ≤

ρ(αk)
αk

+ νg
2 αk. (2.10)

Let dk be a direction of Dk such that

−d>k ∇f(xk) = max
d∈Dk

−d>∇f(xk) ≥ cm(Dk) ‖∇f(xk)‖.

By considering this direction in (2.10) and using cm(Dk) > 0, one obtains (2.8). �
Lemma 2.2 provides an upper bound the gradient norm on unsuccessful iterations.

This bound goes to zero as αk does, provided the sequence of cosine measures does not
degenerate. The following assumption ensures that this is not the case.

Assumption 2.5 It exists a constant κ ∈ (0, 1) such that for any index k, cm(Dk) ≥ κ.

Assumption 2.5 implies that at any iteration for which the current gradient is not
zero, there will be a direction inDk making an acute angle with the negative gradient, but
an angle that does not get asymptotically close to π

2 . This is critical even in derivative-
based methods based on the use of descent directions [101].

We now have all the necessary ingredients to derive the standard convergence result
of Algorithm 2.1, which is given in Theorem 2.1 (see [75, Theorem 3.11] for a proof).

Theorem 2.1 Let Assumptions 2.1, 2.2, 2.4 and 2.5 hold. Then, the sequence of iterates
generated by Algorithm 2.1 satisfies

lim inf
k→+∞

‖∇f(xk)‖ = 0.

One thus sees that the decrease of the gradient norm (on unsuccessful iterations) is
a consequence of the step size going to zero. This motivates one of the usual stopping
criteria in direct-search methods, which is

αk < αtol, (2.11)

where αtol is a positive tolerance. Thanks to Lemma 2.2, we know that whenever (2.11)
holds at an unsuccessful iteration, then the gradient norm cannot be higher than a certain
(albeit unknown) function of αtol. This justifies further the choice of this criterion as an
indicator of convergence.

36

2.2.2 A stronger, lim-type property

The results established in Section 2.2.1 can be strengthened by a change on the polling
strategy. More precisely, we will assume that a complete polling is performed at every
iteration, i.e. that the function is evaluated along all directions in Dk and only the point
with the best function value is considered as a potential new iterate. This guarantees
that any sufficient decrease that is accepted will be as important as the one obtained by
the direction closest to the negative gradient.

In that case, we have the following additional result on successful iterations.

Proposition 2.3 Suppose that we are in the assumptions of Theorem 2.1 and that com-
plete polling is performed at every iteration. Then, for any successful iteration k of Al-
gorithm 2.1 and any η > 0, there exists δ > 0 and σ > 0 that do not depend on k such
that if ‖∇f(xk)‖ > η and αk < δ, then

f(xk+1) ≤ f(xk)− σ αk ‖∇f(xk)‖.

Proof. Let d denote a direction such that

−d>∇f(xk) = cm(Dk) ‖d‖ ‖∇f(xk)‖ ≥ κ dmin ‖∇f(xk)‖.

As before, a Taylor expansion of f(xk + αk d)− f(xk) yields

f(xk + αk d)− f(xk) ≤ −αk κ ‖∇f(xk)‖+ νg
2 α

2
k.

Consequently, if we define δ = κ dmin η
νg

and assume that αk < δ, we arrive at

f(xk + αk d)− f(xk) ≤ −αk κ dmin ‖∇f(xk)‖+ νg
2 αk

κ dmin
νg

η (2.12)

≤ −αk κ dmin ‖∇f(xk)‖+ 1
2αk κ dmin ‖∇f(xk)‖ (2.13)

= −κ dmin
2 αk ‖∇f(xk)‖. (2.14)

Because of the complete polling assumption, we know that the chosen direction dk verifies

f(xk + αk dk)− f(xk) ≤ f(xk + αk d)− f(xk),

hence the result with σ = κ dmin
2 . �

This leads to a new convergence result presented in Theorem 2.2. The proof is a
standard one, that can be found for instance in [75, Theorem 3.14].

Theorem 2.2 Under the same assumptions as in Theorem 2.1, if complete polling is
performed at every iteration, the sequence of iterates satisfies

lim
k→∞

‖∇f(xk)‖ = 0.

Note that the cost of a complete polling strategy can be prohibitive in practical appli-
cations if a single function evaluation is already expensive. For this reason, opportunistic
polling is more often applied, despite its weaker theoretical guarantees.

37

2.3 Worst-case complexity

Complexity analysis has recently gained interest in the derivative-free community, fol-
lowing the outbreak of results for nonlinear nonconvex programming methods (see for
instance [17, 24] and the references therein). In the case of direct search, Vicente [114]
proved that a direct-search method based on sufficient decrease needs at most O

(
n ε−2)

iterations to drive the gradient norm below some threshold ε ∈ (0, 1). This result matches
in terms of power of ε the iteration complexity bound obtained for steepest descent
methods, with or without line search [22, 28]. It is also of the same order than clas-
sical optimization schemes such as standard trust-region [69] or Levenberg-Marquardt
schemes [111]. Regularization methods have been shown to enjoy better complexity
bounds [17, 26], a property shared by a recently proposed trust-region method [40].

In derivative-free optimization, the evaluation complexity bounds are also of interest,
possibly even more than the iteration complexity ones. Indeed, since a derivative-free
algorithm relies solely on the values of the objective function, its performance is often
assessed based on its consumption of those function values. Even though the function
may not be expensive to evaluate, the amount of evaluations needed by a method to
reach a target value or to reduce the current value is generally a good performance indi-
cator [95]. An asymptotic study of this cost might provide useful guidance in identifying
the most economical (yet efficient) methods.

One can distinguish two types of results, that either look at the global decaying rate
of the minimum gradient norm or estimate the number of iterations needed in the worst
case to drive the norm of the gradient below a given tolerance. The resulting properties
are termed global rates and worst-case complexity bounds, respectively.

2.3.1 Complexity analysis in the smooth, nonconvex case

In this section, we briefly state the arguments from [114] that allow for the derivation
of a worst-case complexity bound. The idea is to focus first on the number of successful
iterations, then to show that the number of unsuccessful ones is essentially of the same
order than the number of successful ones. We will conduct a similar, detailed analysis
in Chapter 6.

In [114], the author assumes that the forcing function is of the form ρ(α) = c αq with
c > 0 and q > 1, which we will also do in the rest of this section. It is then shown that
the choice q = 2 minimizes the complexity bound.

The general results are given below.

Theorem 2.3 Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Suppose further that the
sequence of cosine measures {cm(Dk)} is bounded below by κ ∈ (0, 1) (therefore every
Dk is a PSS).

Then, the number of iterations needed by Algorithm 2.1 to reduce the gradient norm
below some threshold ε ∈ (0, 1) is at most

O
(
κ
− q

min(q−1,1) ε
− q

min(q−1,1)
)
,

38

with the constant in O(·) depending on α0, f(x0), flow, νg, dmin, dmax, θ, γ, c, q.
This bound is minimal when q = 2, in which case the bound is O

(
κ−2 ε−2).

In classical derivative-based methods, the iteration complexity can be directly as-
sociated with the evaluation complexity, that is, there exist bounds on the number of
derivative or function evaluations that follows from the bound on the number of iter-
ations. The bounds often correspond one-to-one: for instance, in a basic trust-region
method, only one evaluation of the function, gradient and Hessian are required per iter-
ation. In derivative-free optimization, one can also obtain results regarding the number
of function evaluations needed by the method to satisfy an approximate form of sta-
tionarity. Such bounds are of critical importance, since they represent a (worst-case)
performance indicator of the consumption of the algorithm.

In the case of direct search, the result derived from Theorem 2.3 is the following.

Corollary 2.1 Under the assumptions of Theorem 2.3, the number of function evalua-
tions needed by Algorithm 2.1 to drive the gradient below ε ∈ (0, 1) is

O
(
mκ

− q
min(q−1,1) ε

− q
min(q−1,1)

)
,

with the constant in O(·) depending on α0, f(x0), flow, νg, dmin, dmax, θ, γ, c, q.
Again, this bound is minimized by the choice q = 2, in which case it becomes

O
(
mκ−2 ε−2

)
.

A classical polling choice is the coordinate set Dk = D⊕; in that case, we have
m = 2n and κ = 1√

n
, so the above bounds become O(n ε−2) and O(n2 ε−2), respectively.

Dodangeh, Vicente and Zhang have shown that such a dependence in n is optimal
for direct-search methods based on Positive Spanning Sets [48]. Regarding the depen-
dence on ε, Cartis, Gould and Toint [26] have developed a derivative-free method with
a complexity bound in ε−3/2 (note that this does not imply that the bound from The-
orem 2.3 is always worse, see the last section of [26] for a discussion on this topic).
Despite this result, it can be argued that direct-search methods have more in common
with steepest descent methods, for which ε−2 is the optimal power of ε that can be
obtained. Vicente [114] remarks that the pathological example from [22] in dimension
1 can also serve in the derivative-free case to demonstrate the sharpness of the ε−2 for
smooth nonconvex functions.

2.3.2 Other complexity bounds

The bounds established in Section 2.3.1 are valid for any smooth, nonconvex optimiza-
tion problem. Dodangeh and Vicente [47] provided a iteration complexity bound for
Algorithm 2.1 in O

(
n ε−1) in the case of a convex objective, and O (n |log ε|) for a

strongly convex objective (see also Konečný and Richtárik [78] in a simplified setting).
Interestingly, numerical experimentation presented in [47] showed that a direct-search

39

scheme based upon Algorithm 2.1 outperformed methods that were tailored for convex
optimization problems [53, 99], even though they presented similar or improved com-
plexity bounds in terms of power of the tolerance ε.

In the nonsmooth case, it was shown by Garmanjani and Vicente [61] that a smooth-
ing direct-search method (minimizing a sequence of smooth problems converging to the
nonsmooth one) would require at most O

(
n |log ε| ε−3) iterations to drive the smoothing

parameter under ε.
Given that the convergence analyses in the (strongly) convex and nonsmooth cases

are also based on PSSs, the evaluation complexity bound corresponds to the iteration
complexity increased by a factor of the order of the dimension n, thus resulting in a total
dependence in the square of the dimension. As a result, the dependence on the dimension
for the number of function evaluations is not altered by the smoothness properties of
the objective function.

2.4 Other types of direct-search methods

In this section, we briefly cover other main classes of direct-search algorithms, stressing
out the common aspects between these classes and the one at the heart of our study.

2.4.1 Line-search methods based on positive spanning sets

Line search is one technique that can be used to ensure global convergence of optimiza-
tion methods such as the steepest descent algorithm or Newton’s method [101]. In a
derivative-free setting, the line search has the same function but must be coupled with
another guarantee (search along directions obtained either by a PSS or through a model)
in order to arrive at a convergence result.

We remark that in the literature, those methods are more often referred to as
derivative-free line-search methods rather than direct-search ones, the latter being pre-
cisely used to emphasize the absence of line search. We will adopt a similar terminology
in the rest of the thesis.

A typical derivative-free line-search method relies on iteratively evaluating the ob-
jective function on a set of directions, aiming for sufficient decrease (of the order of α2,
where α is the step size). Thus, those methods initially behave like the ones we pre-
sented in Section 2.1, but they look deeper into successful steps. Indeed, when a step
producing a sufficient decrease has been identified, a line search is performed to look for
improvement with larger (yet not arbitrarily) step sizes. In a deterministic setting, such
a strategy is usually applied with a fixed set of directions with associated step sizes.

For line-search algorithms relying on directions originating from a PSS, the conver-
gence results were actually established prior to those for directional direct-search without
line search [70]. An analysis covering both classes of methods was then developed by
Lucidi and Sciandrone [88]. Those results enlighten the closeness between the two ap-
proaches. Still, they may give rise to optimization methods with significantly different
consumptions of function evaluations and, consequently, distinct practical performances.

40

2.4.2 Directional direct search based on simplex derivatives

The use of simplex derivatives as indicators of promising search directions has been
investigated in the directional direct-search setting, both with and without performing
a line search on such vectors.

Definition 2.4 Let Y =
{
y0, . . . , ym

}
be a set of affine independent points in Rn, i.e.

such that its affine hull

aff (Y) =
{

m∑
i=0

βi yi

∣∣∣∣∣
m∑
i=0

βi = 1
}

has dimension m.
The convex hull of Y , defined by

conv (Y) =
{

m∑
i=0

βi yi

∣∣∣∣∣βi ≥ 0,
m∑
i=0

βi = 1
}

is called a simplex of dimension m. The vectors y0, . . . , ym are called the vertices of the
simplex.

Simplices are helpful in defining approximations of the derivatives of the function f
when those exist.

Definition 2.5 Let Y =
{
y0 · · · ym

}
be a set of points in Rn and assume that the matrix

LY =
[
y1 − y0 · · · ym − y0

]>
is of full rank, i.e. rank(LY) = min{n,m}. Then, the simplex gradient of f at y0 is
defined as the solution of the system

LY ∇sf
(
y0
)

= δ(f, Y). (2.15)

where δ(f, Y) =
[
f(y1)− f(y0), . . . , f(ym)− f(y0)

]>.

Whenever m > n, the system is solved in the least-squares sense; in that situation,
the simplex gradient is sometimes referred to as the stencil gradient [74].

The implicit filtering method [74] is a direct-search method based on an approximate
quasi-Newton direction, computed from the simplex (or stencil) derivatives established
using a positive basis (typically D⊕). Contrary to the previous section, the line search
performed here is a backtracking process, that looks for a step size satisfying a sim-
ple decrease in the function values. The stencil gradient is also used as a measure of
stationarity to terminate the algorithm.

Custódio and Vicente considered a pattern search method [42] in which a simplex
gradient was built using previous function evaluations. This vector is not directly em-
ployed as a poll direction, but is used as a descent indicator to order the directions of

41

the polling sets so that the closest to this gradient estimate is considered first in the poll
step. The resulting methods were shown to consume less function evaluations in practice.
Following this study, Custódio proposed two algorithms based on simplex derivatives to
determine descent directions, one being an hybridization of backtracking line search and
direct search based on sufficient decrease [41, Chapter 7].

2.4.3 Simplicial direct-search methods

So far we have presented directional direct-search algorithms, that form an important
subclass of the direct search one as they encompass all the frameworks we described in
the previous sections. Simplicial direct-search methods represent another direct-search
subclass that focuses on using simplices rather than polling sets while searching for an
optimal solution. One significant difference with the approaches presented above is that
the simplicial algorithms typically move away from the worst known point instead of
moving to the best point. This process is justified by the use of a simplex at every
iteration, supposedly helpful in capturing information about the geometry.

One of the most famous direct-search methods of simplicial type (and one of the
most popular optimization methods) is the Nelder-Mead algorithm [98]. This algorithm
proceeds by evaluating the function at each iteration on a simplex, adapting this simplex
afterwards in order to approximate the curvature of the function. One inconvenient of
the use of simplices is that the simplex sequence generated by the method may yield
arbitrary flat or needle-like shapes. This generally leads to stagnation of the algorithm,
thus preventing the iterate sequence from converging. Such behavior can be observed
on simple two-dimensional examples (note that global convergence is guaranteed in di-
mension 1).

Despite its lack of general convergence analysis, the Nelder-Mead algorithm has been
successfully applied on a wide range of problems (see [38, Chapter 8] and references
therein). Besides, globally convergent variants on the Nelder-Mead framework have been
developed, such as the variants based on sufficient decrease proposed by Tseng [110] or
the Multidirectional search (MDS) method [44].

Although the Nelder-Mead algorithm is known to fail to converge on simple problems,
it is still a method of choice for practitioners, due to its simplicity of implementation
and testing. It is interesting to note that the same features are shared by most methods
from the direct-search family.

2.5 Conclusion and references for Chapter 2

Direct-search methods have been extensively studied in derivative-free optimization, and
ever since their introduction, remain a popular choice of algorithms to tackle problems
for which derivatives cannot be obtained. Thanks to their easily understandable and im-
plementable paradigms, they can often serve as a first attempt to address a minimization
problem. When simple strategies are adopted to choose the directions used for explo-
ration of the space, it is possible to derive a convergence as well as a complexity study

42

of those frameworks. Such rather recent advances have contributed to distinguish this
class of methods from pure heuristics: consequently, direct search also regained interest
from a theoretical point of view.

We presented a directional direct-search framework to serve as a reference basis in
the rest of the thesis. For such a simple scheme, both convergence and complexity results
hold in a smooth setting. We identified the main arguments that intervene in the related
proofs, and provided examples of polling strategies that satisfy the requirements of the
convergence theory.

For a thorough description of the directional direct-search family of methods, we re-
fer to the review paper by Kolda, Lewis and Torczon [75] and references therein. Details
on other classes of direct-search algorithms, as well as descriptions of the approxima-
tion tools, can be found in the textbook by Conn, Scheinberg and Vicente [38], where
the direct-search class is presented in the larger context of deterministic derivative-free
optimization.

Nota Bene: In the rest of the thesis, by a direct-search algorithm we will always mean
one of directional type, and, unless explicitly stated otherwise, its algorithmic framework
will follow the template given in Section 2.1.

43

Chapter 3

Direct search using probabilistic
descent

Direct-search methods generally suffer from an increase in the dimensionality of the
problems that are to be solved. One of the explanations for such a behavior lies in
the enforced requirements on the polling directions. Indeed, the classical convergence
analysis involves the use of Positive Spanning Sets, which implies that at least n + 1
directions are considered at every iteration in dimension n. As this number grows linearly
with the dimension, the cost of a direct-search run may become prohibitive; in the
worst case, the amount of evaluations needed in order to perform the (approximate)
minimization of an objective function may even increase quadratically with respect to
the dimension.

This chapter describes a probabilistic approach that is able to reduce this dependence
on the dimension, by certifying quality of the polling sets only in probability. After re-
placing this study in its context in Section 3.1, we describe and motivate the proposed
algorithmic framework in Section 3.2. Section 3.3 provides a convergence analysis of
the method, distinguishing between the results that follow from the deterministic case,
and those that are obtained using tools from probability theory. A complexity analy-
sis is derived in Section 3.4, which illustrates the potential benefits of the probabilistic
technique. Practical satisfaction of the desired properties is guaranteed through a dis-
tribution of the directions detailed in Section 3.5. The related results are then put in
perspective with the performance of a practical implementation in Section 3.6.

45

3.1 Probabilistic quantities in derivative-free optimization

Rather than developing algorithms that fall into the category of stochastic DFO methods,
our goal is to design algorithms that lie in between the deterministic and stochastic
classes. To this end, we propose the following definition and terminology. Our goal is
to propose a method that originates from a deterministic framework, in which one key
component of the theoretical analysis is turned into a random variable or process. We
emphasize the fact that such an algorithm will have a deterministic counterpart with (in
particular) a well-established convergence theory. We expect to be able to maintain the
associated properties, while improving the practical performance of the method.

To this respect, the work of Bandeira, Scheinberg and Vicente [14] can be seen as
seminal, since it contains a convergence analysis of a derivative-free trust-region method
based on random models. The arguments in [14] were then adapted in other trust-
region contexts, essentially addressing noisy or stochastic problems [30, 79] (see also [15]
for an extension to a Levenberg-Marquardt algorithm). The contribution presented
in this chapter [67] also used the same tool to prove convergence for a direct-search
scheme, then proposed a technique for establishing a probabilistic worst-case complexity
bound, which is applicable to the trust-region framework of [14]. More recently, Cartis
and Scheinberg [29] have proposed a different complexity analysis for line-search and
cubic regularization methods based on probabilistic models, thereby also establishing
convergence properties for the corresponding algorithms.

3.2 A direct-search scheme based on probabilistic descent
directions

We present a variant on the direct-search framework of Algorithm 2.1, where randomness
is introduced at every iteration by means of randomly generated polling sets, in an inde-
pendent fashion. At first glance, such a variation is only impacting the reproducibility
of the results, and does not necessarily represent any improvement. However, we present
experimentations produced by the execution of both deterministic and random variants
in MATLAB [90] that encourage using considerably less directions that what is imposed
in the deterministic analysis of Chapter 2.

3.2.1 Algorithm

Algorithm 3.1 gives the formal statement of our method. Note that we removed the
search step, since it does not interfere in our theoretical analysis. A comparison based
solely on poll steps will allow us to study the impact of our new probabilistic polling
strategy. Note, however, that the upcoming analysis still holds even if a search step is
included in Algorithm 3.1, and possibly taken. The analysis would then consider Dk

defined at all iterations even if the poll step is skipped.
Apart from that change, one can see that Algorithm 3.1 relies on the same ideas as

Algorithm 2.1, only with randomly generated polling sets. This not only implies that

46

Algorithm 3.1: Direct Search method based on Probabilistic Descent (DSPD)

Choose an initial point x0 ∈ Rn, as well as 0 < θ < 1 ≤ γ, 0 < α0 < αmax.
Define a forcing function ρ : R+ → R+.
for k = 0, 1, 2, . . . do

Poll Step
Compute a set of random independent vectors Dk.
If there exist d ∈ Dk such that

f(Xk +Ak d)− f(Xk) < −ρ(Ak ‖d‖),

declare the iteration successful and set Xk+1 = Xk +Ak d;
Otherwise declare the iteration as unsuccessful and set xk+1 = xk.
Step Size Update
If the iteration is successful, (possibly) increase the step size by setting
Ak+1 = min {γAk, αmax};

Otherwise, decrease the step size by setting Ak+1 = θAk.
end

the polling sets and directions are sets of random vectors, but it also means that every
iterate and step size (save for the initial ones) is a random vector or variable, respectively.
Table 3.1 summarizes the relevant notations.

Element Random notation Realization notation
Polling set Dk Dk

Step size Ak αk
Iterate Xk xk

Table 3.1: Notations for direct search with randomly generated directions.

3.2.2 A preliminary numerical illustration

The motivation behind Algorithm 3.1 is the possible gain that one may achieve by us-
ing directions that were generated in a random fashion. To better identify this potential
improvement, we conducted a preliminary experiment by running a MATLAB implemen-
tation of Algorithm 3.1 for different choices (deterministic and random) of the polling
directions. The test problems were taken from the CUTEr [64] collection (now available
as CUTEst [65]) with dimension n = 40. We set αmax = Inf, α0 = 1, θ = 0.5, γ = 2,
and ρ(α) = 10−3α2. The algorithm terminated when either αk was below a tolerance of
10−10 or a budget of 2000n function evaluations was exhausted.

The first three columns of Table 3.2 correspond to three PSS choices for the polling
directions Dk: D⊕ represents the columns of the identity matrix of size n; QD⊕ means

47

Table 3.2: Relative performance for different sets of polling directions (n = 40).

D⊕ QD⊕ QkD⊕ 2n n+ 1 n/2 n/4 2 1
arglina 3.42 8.44 16.67 10.30 6.01 3.21 1.88 1.00 –
arglinb 20.50 10.35 11.38 7.38 2.81 2.35 1.85 1.00 2.04

broydn3d 4.33 6.55 11.22 6.54 3.59 2.04 1.28 1.00 –
dqrtic 7.16 9.37 19.50 9.10 4.56 2.77 1.70 1.00 –

engval1 10.53 20.89 23.96 11.90 6.48 3.55 2.08 1.00 2.08
freuroth 56.00 6.33 1.33 1.00 1.67 1.33 1.67 1.00 4.00
integreq 16.04 16.29 18.85 12.44 6.76 3.52 2.04 1.00 –

nondquar 6.90 30.23 17.36 7.56 4.23 2.76 1.87 1.00 –
sinquad – – 2.12 1.65 2.01 1.26 1.00 1.55 –
vardim 1.00 3.80 3.30 1.80 2.40 2.30 1.80 1.80 4.30

the columns of Q and −Q, where Q is an orthogonal matrix obtained by the QR decom-
position of a random vector, uniformly distributed on the unit sphere of Rn, generated
before the start of the algorithm and then fixed throughout the iterations; QkD⊕ con-
sists of the columns of Qk and −Qk, where Qk is a matrix obtained in the same way as Q
except that it is generated independently at each iteration. We point out that although
some of those sets are randomly generated at every iteration, they always form a PSS,
thus the deterministic analysis of Chapter 2 holds. This illustrates that a randomized
approach does not necessarily require a probabilistic analysis. In the cases of D⊕ and
QD⊕, a cyclic polling procedure was applied to accelerate descent, by starting polling
at the direction that led to previous success (if the last iteration was successful) or at
the direction right after the last one used (if the last iteration was unsuccessful). This
technique has been shown to improve the performance of (deterministic) direct-search
methods [42].

In the remaining columns of Table 3.2, Dk is a random set (hence the change of
notation) consisting of m independent random vectors uniformly distributed on the
unit sphere in Rn, with m = 2n, n + 1, n/2, n/4, 2, 1. Those vectors are independently
generated at every iteration.

For every polling choice, we counted the number of function evaluations taken to
drive the function value below flow + ε [f(x0)− flow], where flow is the true minimal
value of the objective function f , and ε is a tolerance set to 10−3. Given a test problem,
we present in each row the ratio between the number of function evaluations taken by
the corresponding version and the number of function evaluations taken by the best
version. Because of the random nature of the computations, the number of function
evaluations was obtained by averaging over ten independent runs, except for the first
column. The symbol ‘–’ indicates that the algorithm failed to solve the problem to the
required precision at least once in the ten runs.

48

When Dk is randomly generated on the unit sphere (columns m = 2n, n+1, n/2, n/4,
2, 1 in Table 3.2), we know that the vectors in Dk do not form a PSS when m ≤ n, and
there is no guarantee that they do when m > n. However, we can clearly see from
Table 3.2 that randomly generating the polling directions in this way performed better,
despite the fact that their use is not covered by the classical theory of direct search. This
evidence motivates the derivation of a convergence theory of Algorithm 3.1 covering the
case when the polling directions are randomly generated.

3.3 Global convergence theorems

In what follows, we consider the random process generating the polling directions of
Algorithm 3.1. Our objective is to identify properties of those directions that can ensure
convergence of the framework, hopefully reducing to the deterministic assumptions of
Section 2.2 when the sets are actually deterministically generated.

When performing a probabilistic study of an algorithm, one can obtain several types
of results, holding with various levels of certainty. We identify thereafter a hierarchy of
such properties.

A result holding for any realization of an algorithm is a result that does not involve
arguments sensitive to the random nature of the method. It essentially holds whether
we perform a deterministic or a probabilistic analysis of the algorithm.

A property established almost surely or with probability one holds except for a set of
realizations that can be neglected (of probability measure equal to zero). It often is a
consequence of a theoretical probability result that can be stated with probability one.
Note that if a property holds for all realizations (i.e., deterministically), then it holds
almost surely.

Finally, the weakest type of results we will consider will only be guaranteed to hold
with a minimum probability. Again, one may notice that an almost-sure result (and, con-
sequently, one holding for any realization) holds with any minimum probability between
0 and 1.

3.3.1 Preliminary results at the realization level

A typical convergence proof in direct search relies on two elements: the convergence of
(at least) a step size subsequence to zero, and a property linking the polling directions
and the negative gradient on a related subsequence.

In Section 2.2, we saw that the proof of αk → 0 did not require any assumption on
the polling sets [75]. A similar result can thus be derived by applying exactly the same
argument to a realization of direct search now based on probabilistic descent, which
yields the following lemma.

Lemma 3.1 For each realization of Algorithm 3.1, limk→∞ αk = 0.

Since we aim at generating sets with less than n+ 1 directions, we know that those
sets cannot positively span the variable space. However, one can take a closer look at

49

the positive spanning property and identify the part of this property that is relevant for
a convergence proof.

Definition 3.1 Consider a set of (nonzero) vectors D ⊂ Rn and a vector v ∈ Rn. Let
κ ∈ (0, 1); the set D is called a κ-descent set at v if

cm(D, v) = max
d∈D

d> v

‖d‖‖v‖
≥ κ, (3.1)

where we set cm(D, 0) = 1.

The quantity cm(D, v) is called the cosine measure of D at v. It is directly related
to the cosine measure we presented in Section 2.1.1 by

cm(D) = min
‖v‖6=0

cm(D, v).

(Note that we may also include the case v = 0.)
One thus sees a PSS D is also a κ-descent set for any nonzero vector in the space

and any κ ≤ cm(D). On the other hand, for a specific v, there exist sets of vectors that
are not PSSs and yet satisfy (3.1) for some κ (the simplest example being D = {v}).

In the rest of this chapter, we will make the following simplifications.

Assumption 3.1 For any k ≥ 0, the polling set Dk is formed by unitary vectors.

Lemma 3.2 illustrates why the κ-descent property is as suitable as using Positive
Spanning Sets. It can be proven the same way as Lemma 2.2.

Lemma 3.2 Let Assumption 2.1 and 3.1 hold, and consider the k-th iteration of a
realization of Algorithm 3.1. Let gk = ∇f(xk) and suppose that Dk is a κ-descent set at
−gk, satisfying Assumption 2.3. Then,

‖gk‖ ≤ κ−1
[
ρ(αk)
αk

+ νg
2 αk

]
. (3.2)

Therefore, using κ-descent sets, it is possible to arrive at the same convergence
analysis than in the case of deterministic direct search based on Positive Spanning Sets.

In order to make the algebra more concise, we will use a simplified notation for (3.2).
For each t > 0, the value

ϕ(t) = inf
{
α : α > 0, ρ(α)

α
+ νg

2 α ≥ t

}
(3.3)

is well defined, and the set of all values defines a non-decreasing function ϕ. Note that
Assumption 2.4 ensures that ϕ(t) > 0 for t > 0. When ρ(α) = c α2/2, for instance, one
obtains ϕ(t) = 2t/(c+ νg).

Using this function, we can then reformulate Lemma 3.2 as follows.

50

Lemma 3.3 Consider a realization of Algorithm 3.1 under the assumptions of Lemma 3.2.
Its k-th iteration is successful if

cm(Dk,−gk) ≥ κ and αk < ϕ(κ‖gk‖).

Proof. According to the definition of cm(Dk,−gk), there exists d∗k ∈ Dk satisfying

d∗>k gk = − cm(Dk,−gk)‖d∗k‖‖gk‖ ≤ −κ‖gk‖.

Thus, by Taylor expansion,

f(xk + αk d
∗
k)− f(xk) ≤ αk d

∗>
k gk + νg

2 α2
k ≤ −καk ‖gk‖+ νg

2 α2
k.

Using the definition of ϕ, we obtain from αk < ϕ(κ‖gk‖) that

ρ(αk)
αk

+ νg
2 αk < κ‖gk‖,

hence f(xk + αk d
∗
k) < f(xk)− ρ(αk), and thus the k-th iteration is successful. �

This reformulation will be of use for both the convergence results and the complexity
analysis of Section 3.4.

So far we have established deterministic results, holding for all realizations. Although
Lemma 3.1 does not depend on the way we choose the polling sets, the other results
involve the κ-descent property, which may not be satisfied if we generate the directions
at random. In order to obtain a convergent behavior, we will need to consider sets that
satisfy this property “sufficiently often” for the method to eventually provide the same
guarantees as in the deterministic case.

3.3.2 A submartingale and its associated property

The following concept of probabilistically descent sets of polling directions is critical
to our analysis. We use it to describe the quality of the random polling directions in
Algorithm 3.1. Recalling that gk = ∇f(xk), let Gk be the random variable corresponding
to gk.

Definition 3.2 The sequence {Dk} in Algorithm 3.1 is said to be p-probabilistically
κ-descent, or (p, κ)-descent in short, if

P (cm(D0,−G0) ≥ κ) ≥ p

and, for each k ≥ 1,

P (cm(Dk,−Gk) ≥ κ | σ (D0, . . . ,Dk−1)) ≥ p, (3.4)

where σ (D0, . . . ,Dk−1) is the σ-algebra generated by the random sets D0, . . . ,Dk−1.

51

Definition 3.2 requires the cosine measure cm(Dk,−Gk) to be favorable in a proba-
bilistic sense rather than deterministically. It was inspired by the definition of probabilis-
tically fully linear models (to be described in Chapter 4). Inequality (3.4) involves the no-
tion of conditional probability (see [106, Chapter II]) and says essentially that the prob-
ability of the event {cm(Dk,−Gk) ≥ κ} is not smaller than p, no matter what happened
with D0, . . . ,Dk−1. It is stronger than merely assuming that P (cm(Dk,−Gk) ≥ κ) ≥ p.

For every index k ≥ 0, we now define Yk as the indicator function of the event

{the k-th iteration is successful} .

Furthermore, Zk will be the indicator function of the event

{cm(Dk,−Gk) ≥ κ} ,

where we point out that κ ∈ (0, 1) is independent of the iteration counter. The Bernoulli
processes {Yk} and {Zk} will play a major role in our analysis. Their realizations are
denoted by {yk} and {zk}. Notice, then, that Lemma 3.3 can be restated as follows:
given a realization of Algorithm 3.1 and k ≥ 0, if αk < ϕ(κ‖gk‖), then yk ≥ zk.

Lemmas 3.1 and 3.3 lead to a critical observation presented below as Lemma 3.4. We
observe that such a result holds without any assumption on the probabilistic behavior
of {Dk}.

Lemma 3.4 For the stochastic processes {Gk} and {Zk}, where Gk = ∇f(Xk) and Zk
is the indicator of the event of Dk being κ-descent, it holds that{

lim inf
k→∞

‖Gk‖ > 0
}
⊂
{ ∞∑
k=0

[Zk ln γ + (1− Zk) ln θ] = −∞
}
. (3.5)

Proof. Consider a realization of Algorithm 3.1 for which lim infk→∞ ‖gk‖ is not zero
but a positive number ε. There exists a positive integer k0 such that for each k ≥ k0 it
holds ‖gk‖ ≥ ε/2 and αk < ϕ(κε/2) (because αk → 0 and ϕ(κε/2) > 0), and consequently
αk < ϕ(κ‖gk‖). Hence we can obtain from Lemma 3.3 that yk ≥ zk. Additionally, we
can assume that k0 is large enough to ensure αk ≤ γ−1αmax for each k ≥ k0. Then the
stepsize update of Algorithm 3.1 gives us

αk = αk0

k−1∏
l=k0

(
γylθ1−yl

)
≥ αk0

k−1∏
l=k0

(
γzlθ1−zl

)
for all k ≥ k0. This leads to

∏∞
l=0
(
γzlθ1−zl

)
= 0, since αk0 > 0 and αk → 0. Taking

logarithms, we conclude that
∞∑
l=0

[
zl ln γ + (1− zl) ln θ

]
= −∞,

which completes the proof. �

Given Lemma 3.4, we need only prove that the right-side event of (3.5) has a prob-
ability zero of occurrence. This is possible under the following assumption.

52

Assumption 3.2 The polling set sequence is a (p, κ)-descent sequence with p ≥ p0,
where

p0 = ln θ
ln(γ−1θ) . (3.6)

Assumption 3.2 means that the probability of the variable Zk to be equal to 1, no
matter what happened for Z0, . . . , Zk−1, is higher than p0. It can then be checked that
the random process {

k∑
l=0

[
Zl ln γ + (1− Zl) ln θ

]}

is a submartingale with bounded increments (see Appendix A for a precise definition).

Proposition 3.1 Let Assumption 3.2 hold. The sequence of random variables

Wk =
k∑
l=0

[
Zl ln γ + (1− Zl) ln θ

]
is a submartingale for the filtration {σk = σ (D0, . . . ,Dk−1)}k, with bounded increments.

Proof. It is clear that the sequence {Wk} has bounded increments. Moreover, by
definition, Wk is σk−1-measurable and E|Wk| <∞. Finally, we have that

E [Wk|σk−1] = E [Wk−1|σk−1] + (ln γ − ln θ)E [Zk|σk−1] + ln θ
= Wk−1 + (ln γ − ln θ)P (Zk = 1|σk−1) + ln θ
≥ Wk−1 + (ln γ − ln θ) p− ln θ
≥ Wk−1,

using Assumption 3.2. �
From Theorem 5.3.1 and Exemple 5.3.1 of [54], we thus have that

P [Wk → c ∈ R ∪ lim supWk =∞] = 1.

As the increment of Wk is either ln γ or ln θ, it cannot converge (as it cannot remain
arbitrary close to any real value), which implies that the second event happens with
probability 1, i.e.,

P (lim supWk = ∞) = 1. (3.7)

Hence the event on the right-hand side of (3.5) has probability zero.

3.3.3 Main convergence theorem

In the previous sections, we detailed all the necessary ingredients to prove a convergence
result for Algorithm 3.1, in a similar fashion than [14] for the case of trust-region methods
based on probabilistic models. We are now ready to state our main convergence result.

53

Theorem 3.1 Let Assumptions 2.1, 2.2, 2.4, 3.1 and 3.2 hold. Then, the sequence of
iterates produced by Algorithm 3.1 satisfies

P
(

lim inf
k→∞

‖∇f(Xk)‖ = 0
)

= 1. (3.8)

Theorem 3.1 shows a convergence result that is almost as strong as the deterministic
one, in the sense that the set of realizations of Algorithm 3.1 for which it does not hold
is of measure zero. We can thus say that almost every run of the method will converge
to a first-order stationary point.

We point out that this lim inf-type global convergence result is also implied by the
global rate theory of the next section, under a slightly stronger assumption (see [67] for
details).

3.3.4 A stronger convergence result

We now extend the convergence analysis derived in [67]. Similarly to the deterministic
case, we can show that the whole sequence of gradient norms goes to zero. The proof
follows the reasoning of the trust-region case [14], and requires the following additional
assumption.

Assumption 3.3 The polling in Algorithm 3.1 is complete, meaning we perform all m
function evaluations at each iteration.

With the complete polling assumption, we know that whenever the polling set satis-
fies the κ-descent property, the decrease can be expressed as a function of the gradient
norm. This is the statement of the following proposition, which is a variation on Propo-
sition 2.3 tailored to the probabilistic setting of this chapter.

Proposition 3.2 Let Assumptions 2.1, 3.1 and 3.3 hold. Given a realization of Algo-
rithm 3.1, for any η > 0, if ‖∇f(xk)‖ > η, αk < η κ

νg
and Dk is κ-descent at a successful

iteration k, then
f(xk+1) ≤ f(xk)−

κ

2 αk ‖∇f(xk)‖. (3.9)

We thus need for (3.9) to be satisfied sufficiently often so that assuming that the
gradient does not go to zero will yield a contradiction. To show that it is indeed the
case, we will again rely on an argument from probability theory, that we state below
and prove in Appendix A.

Lemma 3.5 Let {Yk} be a sequence of nonnegative uniformly random variables, and
{Γk} a sequence of Bernoulli random variables taking the values ln γ and ln θ, such that

P [Γk = ln γ | σ(Γ0, . . . ,Γk−1), σ(Y0, . . . , Yk)] ≥ p0.

We define P as the set of indexes k such that Γk = ln γ and N = N \ P . Then

P
[{∑

i∈P
Yi <∞

}⋂{∑
i∈N

Yi =∞
}]

= 0.

54

This property will be invoked in the proof of Lemma 3.6, which ensures that on
iterations for which the gradient norm is not too small, the growth of the associated step
size sequence is not too fast.

Lemma 3.6 Let the assumptions of Theorem 3.1 hold, and assume further that As-
sumption 3.3 is satisfied. Let ε > 0, and {Ki} be the random sequence of indexes for
which ‖∇f(XKi)‖ > ε. Then

P
(∑

i

AKi <∞
)

= 1. (3.10)

Proof. Consider a realization of our algorithm, and {ki} the corresponding real-
ization for the random sequence {Ki}. We divide the sequence {Ki} into {Pi}, the
subsequence of {Ki} for which the κ-descent property is verified, and {Ni}, that is the
remaining subsequence. These subsequences are originally random: their realizations
will be denoted by {pi} and {ni}, respectively.

We begin by showing that the series
∑
pi αpi converges. If the sequence {pi} is finite,

such a result is immediate. Otherwise, by Lemma 3.1, we know that there exists a index
j such that

αk < min
{
ϕ(κ ε), κ ε2ν

}
if k ≥ j. The first term in the minimum implies that for each index pi ≥ j, the
assumptions of Lemma 3.3 (Dpi is κ-descent and αpi < ϕ(κ ε) ≤ ϕ(κ ‖∇f(xpi)‖)) will
be satisfied at the corresponding iteration. Consequently, every iteration of this type
is successful. Besides, thanks to the second term in the minimum, we also are in the
assumptions of Proposition 3.2. Thus, we have:

∀ i, pi ≥ j, f(xpi)− f(xpi+1) ≥ κ

2αpi ‖∇f(xpi)‖ ≥
κ ε

2 αpi .

By summing on all iterations similarly to Lemma 3.1, we obtain that

∑
i,pi≥j

αpi ≤
2(f0 − flow)

κ ε
<∞ ⇒

∑
i

αpi <∞.

This implies that the event {
∑
iAPi <∞} has probability 1.

We conclude by applying Lemma 3.5 with {Ak} as {Yk}, {ln γ Zk + (1− Zk) ln θ} as
{Γk}, with P = {Pi} and N = {Ni}. The assumptions of the lemma are satisfied, and
this gives us

P

∑
Pi

APi <∞

⋂
∑

Ni

ANi =∞

 = 0,

hence the result. �

55

Theorem 3.2 Consider the sequence {Xk} of the iterates of Algorithm 3.1, under the
same assumptions as Theorem 3.1. Suppose that Assumption 3.3 also holds; then

P
[

lim
k→∞

‖∇f(Xk)‖ = 0
]

= 1. (3.11)

Proof. The proof follows the one proposed in [14, Theorem 4.3] for trust-region
methods based on probabilistic models. We suppose that the result does not hold,
which by definition means that

P (∃ ε > 0, ∃K ⊂ N, |K| =∞, ∀ k ∈ K, ‖∇f(Xk)‖ > γ ε) > 0. (3.12)

We thus also have

P (∃ ε > 0, ∃K ⊂ {Ki} ⊂ N, |K| =∞, ∀ k ∈ K,
‖∇f(Xk)‖ > γ ε & ∀ i, ‖∇f(XKi)‖ > ε) > 0

(3.13)

where {Ki} is the random sequence we considered in Lemma 3.6.
Considering a pair of random indexes (W,W ′) that satisfies the following relations:

• 0 < W < W ′;

• ‖∇f(XW ′)‖ ≤ ε, ‖∇f(XW ′+1)‖ > ε, ‖∇f(XW ′′)‖ > γ ε;

• ∀W ∈ (W ′,W ′′), ε < ‖∇f(XW)‖ ≤ γ ε.

Because we are in the assumptions of Theorem 3.2, we know that there are infinitely
many such intervals of this type when the event described by (3.13) happens, in which
case {W ′+ 1, . . . ,W ′′} ⊂ {Ki} and we define (W ′

l ,W
′′
l)l as the sequence of such couples.

We thus place ourselves in a realization where the event described in (3.13) hap-
pens and denote by {ki} and {(w′l , w

′′
l)}l the realizations of {Ki} and

{
(W ′

l ,W
′′
l)
}
l
,

respectively. For all l, one has:

ε < |‖∇f(x
w
′
l
)‖ − ‖∇f(x

w
′′
l

)‖| ≤
w
′′
l −1∑
j=w′

l

|‖∇f(xj)‖ − ‖∇f(xj+1)‖|

≤ νg

w
′′
l −1∑
j=w′

l

‖xj − xj+1‖

≤ νg

αw′
l

+
w
′′
l −1∑
j=w′

l

αj

 .
As {αk} goes to 0, for l large enough, one has α

w
′
l
< ε

2 νg , hence

w
′′
l −1∑

j=w′
l
+1

αj >
ε

2 > 0 ⇒
∑

j∈{ki}
αj =∞.

56

Without loss of generality, we can assume that ε is the inverse of some natural number
nε. If we put the previous result in probability, it gives us:

P

∃nε ∈ N,
∑

j∈{Ki}
Aj =∞

 > 0 (3.14)

where {Ki} is defined according to nε. Now, from Lemma 3.6, we know that for any
nε ∈ N,

P

 ∑
j∈{Ki}

Aj =∞

 = 0,

where {Ki} is defined the same way as in (3.14). Since the probability of a countable
union of events with probability zero is still an event of probability zero, we obtain

P

 ⋃
nε∈N

 ∑
j∈{Ki}

Aj =∞

 = 0, (3.15)

where {Ki} is the same random sequence than in (3.14), defined according to nε. We
are thus faced with contradictory statements, from which we draw the conclusion that
limk ‖∇f(Xk)‖ = 0 with probability 1. �

Like in deterministic direct search, we will rather rely on opportunistic polling than
on complete polling, thus the above results will not hold. For this reason, we will
develop the complexity analysis in the next section based on the convergence result of
Theorem 2.1.

3.4 Complexity results

After establishing that Algorithm 3.1 shares (almost) the same convergence properties
than its deterministic counterpart, we would like to provide a worst-case estimate of its
performance in terms of consumption of function evaluations. Given a tolerance ε > 0,
we aim at bounding the number of iterations (and calls to the objective) necessary to
satisfy

inf
0≤l≤k

‖∇f(Xl)‖ < ε.

Since the infimum is a random quantity, and convergence is guaranteed with probability
one, a complexity result will likely hold with a given probability: this is the first type of
result we will establish. Several complexity results have also been proposed that make
use of the expected value on some criterion [29, 99] or derive worst-case estimates tailored
to a minimum probability of satisfaction [104]. We will provide those types of results as
well.

Ideally, a complexity analysis of Algorithm 3.1 would follow that of Vicente [114] for
the deterministic case. However, such a study relies on guarantees provided at the iter-
ation level through the use of PSSs or κ-descent sets. In our probabilistic environment,

57

it is possible that these guarantees are not met at a given iteration, thereby preventing
the study of the corresponding gradient. Indeed, in this case, we may encounter an
unsuccessful polling step due to the poor quality of the polling set rather than to a step
size that is not small enough.

For measuring the global rate of decay of the gradient, we consider the gradient g̃k
with minimum norm among g0, g1, . . . , gk, and denote by G̃k the corresponding random
variable. Given ε > 0, we define kε as the smallest integer k such that ‖gk‖ ≤ ε, and
denote the corresponding random variable by Kε. We are thus interested in providing
lower bounds on the probabilities P(‖G̃k‖ ≤ O(1/

√
k)) (global rate) and P(Kε ≤ O(ε−2))

(worst-case complexity bound), as close to one as possible.
We carry out the proofs in two steps. First, we identify the properties of Algo-

rithm 3.1 that relate the number of iterations for which the polling sets are of good
quality. Then, we use a probabilistic tool in conjunction with the (p, κ)-descent prop-
erty to obtain our desired bounds.

3.4.1 Measuring the gradient evolution for a direct-search method

We start by looking at a realization of Algorithm 3.1. Without any assumption on the
quality of the polling sets, it is possible to consider the variables zk as realizations of the
random Bernoulli variables Zk, defined at every iteration k by

zk =
{

1 if cm(Dk,−gk) ≥ κ,
0 otherwise.

(3.16)

These variables will measure the quality of our polling sets. In a deterministic setting,
it is possible to define a polling sequence such that there exists a κ for which every zk
is equal to 1. In a probabilistic setting, however, we would like to bound the number of
zk that are equal to 1, since it appears strongly connected to the ability of the method
to produce decrease in the function value and, eventually, in the gradient norm.

Assumption 3.4 There exist two constants (θ̄, γ̄) satisfying 0 < θ̄ < 1 ≤ γ̄ such that
for any α > 0,

ρ (θ α) ≤ θ̄ ρ (α) , ρ (γ α) ≤ γ̄ ρ (α) .

Note that Assumption 3.4 is satisfied by classical choices of forcing function such as
the monomials ρ (α) = c αq, with c > 0 and q > 1. Thanks to this assumption, we are
able to provide an extension of Lemma 3.1 through the result below.

Lemma 3.7 Let Assumption 2.2, 2.4 and 3.4 hold. Then, independently of the choice of
the polling sets, the step size sequence produced by a realization of Algorithm 3.1 satisfies

∞∑
i=0

ρ(αk) ≤ β = γ̄

1− θ̄

[
ρ
(
γ−1 α0

)
+ (f0 − flow)

]
. (3.17)

58

Proof. Consider a realization of Algorithm 3.1. We focus on the case of infinitely
many successful iterations as the reasoning easily follows in the other case.

Let ki be the index of the i-th successful iteration (i ≥ 1). Define k0 = −1 and
α−1 = γ−1α0 for convenience. Let us rewrite

∑∞
k=0 ρ(αk) as

∞∑
k=0

ρ(αk) =
∞∑
i=0

ki+1∑
k=ki+1

ρ(αk), (3.18)

and study first
∑ki+1
k=ki+1 ρ(αk). According to Algorithm 3.1 and the definition of ki, it

holds {
αk+1 ≤ γαk, k = ki,

αk+1 = θαk, k = ki + 1, . . . , ki+1 − 1,

which gives
αk ≤ γθk−ki−1αki , k = ki + 1, . . . , ki+1.

Hence, by the monotonicity of ρ and Assumption 3.4, we have

ρ(αk) ≤ γ̄θ̄k−ki−1ρ(αki), k = ki + 1, . . . , ki+1.

Thus
ki+1∑

k=ki+1
ρ(αk) ≤

γ̄

1− θ̄
ρ(αki). (3.19)

Inequalities (3.18) and (3.19) imply
∞∑
k=0

ρ(αk) ≤
γ̄

1− θ̄

∞∑
i=0

ρ(αki). (3.20)

Inequality (3.20) is sufficient to conclude the proof because

αk0 = γ−1α0 and
∞∑
i=1

ρ(αki) ≤ f(x0)− flow,

according to the definition of ki. �
Using the above bound, we can establish an upper bound on the sum

∑k−1
l=0 zl, that

is, on the number of times the quality of the polling sets is in our favor.

Lemma 3.8 Given a realization of Algorithm 3.1 and a positive integer k,

k−1∑
l=0

zl ≤
β

ρ (min {γ−1α0, ϕ (κ ‖g̃k‖)})
+ p0 k.

Proof. Consider a realization of Algorithm 3.1. For each l ∈ {0, 1, . . . , k − 1}, define

vl =
{

1 if αl < min
{
γ−1α0, ϕ(κ‖g̃k‖)

}
,

0 otherwise.
(3.21)

59

A key observation for proving the lemma is

zl ≤ (1− vl) + vl yl. (3.22)

When vl = 0, inequality (3.22) is trivial; when vl = 1, Lemma 3.3 implies that yl ≥ zl
(since ‖g̃k‖ ≤ ‖g̃k−1‖ ≤ ‖g̃l‖), and hence inequality (3.22) holds. It suffices then to
separately prove

k−1∑
l=0

(1− vl) ≤
β

ρ(min {γ−1α0, ϕ(κ‖g̃k‖)})
(3.23)

and
k−1∑
l=0

vl yl ≤ p0 k. (3.24)

Because of Lemma 3.7, inequality (3.23) is justified by the fact that

1− vl ≤
ρ(αl)

ρ(min {γ−1α0, ϕ(κ‖g̃k‖)})
,

which in turn is guaranteed by the definition (3.21) and the monotonicity of ρ.
Now consider inequality (3.24). If vl = 0 for all l ∈ {0, 1, . . . , k − 1}, then (3.24)

holds. Consider thus that vl = 1 for some l ∈ {0, 1, . . . , k − 1}. Let l̄ be the largest one
of such integers. Then

k−1∑
l=0

vl yl =
l̄∑
l=0

vl yl, (3.25)

and we can estimate the sum on the right-hand side. For each l ∈
{

0, 1, . . . , l̄
}

, Algo-
rithm 3.1 together with the definitions of vl and yl gives{

αl+1 = min{γ αl, αmax} = γαl if vl yl = 1,
αl+1 ≥ θαl if vl yl = 0,

which implies

αl̄+1 ≥ α0

l̄∏
l=0

(
γvlylθ1−vlyl

)
. (3.26)

On the other hand, since vl̄ = 1, we have αl̄ ≤ γ−1α0, hence αl̄+1 ≤ α0. Consequently,
by taking logarithms, one can obtain from inequality (3.26) that

0 ≥ ln(γ θ−1)
l̄∑
l=0

vl yl + (l̄ + 1) ln θ,

which leads to
l̄∑
l=0

vl yl ≤
ln θ

ln (γ−1θ)(l̄ + 1) = p0(l̄ + 1) ≤ p0k (3.27)

60

since ln(γ−1θ) < 0. Inequality (3.24) is finally obtained by combining inequalities (3.25)
and (3.27). �

We have thus a direct relationship between the sum of the zl and the minimum
gradient norm at every iteration. Note that this is a deterministic result, that generalizes
the reasoning made by Vicente [114] for the worst-case complexity of deterministic direct
search with respect to the forcing functions. Indeed, it applies to more general choices of
ρ than monomials, as long as they satisfy Assumption 3.4, however it requires to choose
γ > 1.

The following proposition provides the equivalent of Theorem 2.3 in our framework.
Here again, the deterministic property is obtained through a reasoning on realizations.

Proposition 3.3 Assume that γ > 1 and consider a realization of Algorithm 3.1.
If, for each k ≥ 0,

cm(Dk,−gk) ≥ κ (3.28)

and
ε ≤ γ

κα0
ρ(γ−1α0) + νg α0

2κ γ , (3.29)

then
kε ≤

β

(1− p0)ρ[ϕ(κ ε)] .

Proof. By the definition of kε, we have ‖g̃kε−1‖ ≥ ε. Therefore, from Lemma 3.8
(which holds also with ‖g̃k‖ replaced by ‖g̃k−1‖) and the monotonicity of ρ and ϕ, we
obtain

kε−1∑
l=0

zl ≤
β

ρ (min {γ−1α0, ϕ(κ ε)}) + p0 kε. (3.30)

According to (3.28), zk = 1 for each k ≥ 0. By the definition of ϕ, inequality (3.29)
implies

ϕ(κε) ≤ ϕ

[
ρ(γ−1α0)
γ−1α0

+ νg
2 γ
−1α0

]
≤ γ−1α0. (3.31)

Hence (3.30) reduces to

kε ≤
β

ρ [ϕ(κ ε)] + p0 kε.

Since γ > 1, one has, from (3.6), p0 < 1, and the proof is completed. �

3.4.2 Main complexity results and comparison with the deterministic
setting

We now come back to the probabilistic setting, and study the probability P(‖G̃k‖ ≤ ε)
(and equivalently P(Kε ≤ k)) with the help of Lemma 3.8. First we present a universal
lower bound for this probability, which holds without any assumption on the probabilistic
behavior of {Dk}.

61

Using this bound, we prove that P(‖G̃k‖ ≤ O(1/
√
k)) and P(Kε ≤ O(ε−2)) are

overwhelmingly high when ρ(α) = c α2/2 (Corollaries 3.1 and 3.2), which will be given
as special cases of the results for general forcing functions (Theorems 3.3 and 3.4).

Lemma 3.9 If
ε ≤ γ

κα0
ρ(γ−1α0) + νg α0

2κ γ , (3.32)

then
P
(
‖G̃k‖ ≤ ε

)
≥ 1− πk

(
β

kρ[ϕ(κ ε)] + p0

)
, (3.33)

where πk(λ) = P
(∑k−1

l=0 Zl ≤ λk
)

.

Proof. According to Lemma 3.8 and the monotonicity of ρ and ϕ, we have

{
‖G̃k‖ ≥ ε

}
⊂
{
k−1∑
l=0

Zl ≤
β

ρ(min {γ−1α0, ϕ(κ ε)}) + p0 k

}
. (3.34)

Again, as in (3.31), by the definition of ϕ, inequality (3.32) implies ϕ(κ ε) ≤ γ−1α0.
Thus we rewrite (3.34) as

{
‖G̃k‖ ≥ ε

}
⊂
{
k−1∑
l=0

Zl ≤
β

ρ[ϕ(κ ε)] + p0 k

}
,

which gives us inequality (3.33) according to the definition of πk. �

This lemma enables us to lower bound P(‖G̃k‖ ≤ ε) by just focusing on the func-
tion πk, which is a classical object in probability theory. Various lower bounds can then
be established under different assumptions on {Dk}.

Given the assumption that {Dk} is (p, κ)-descent, Definition 3.2 implies that

P(Z0 = 1) ≥ p and P (Zk = 1 | Z0, . . . , Zk−1) ≥ p (k ≥ 1). (3.35)

It is known that the lower tail of
∑k−1
l=0 Zl obeys a Chernoff type bound, even when

conditioning to the past replaces the more traditional assumption of independence of
the Zk’s (see, for instance, [52, Problem 1.7] and [49, Lemma 1.18]). We present such a
bound in Lemma 3.10 below and reserve its proof for Appendix A.

Lemma 3.10 Suppose that {Dk} is (p, κ)-descent and λ ∈ (0, p). Then

πk(λ) ≤ exp
[
−(p− λ)2

2p k

]
. (3.36)

We can now present the main results of this section. To this end, we will assume
that {Dk} is (p, κ)-descent with p > p0, which cannot be fulfilled unless γ > 1 (since
p0 = 1 if γ = 1).

62

Theorem 3.3 Suppose that {Dk} is (p, κ)-descent with p > p0 and that

k ≥ (1 + δ)β
(p− p0)ρ[ϕ(κ ε)] , (3.37)

for some positive number δ, and where ε satisfies

ε ≤ γ

κα0
ρ(γ−1α0) + νg α0

2κ γ . (3.38)

Then
P
(
‖G̃k‖ ≤ ε

)
≥ 1− exp

[
−(p− p0)2δ2

2p(1 + δ)2 k

]
. (3.39)

Proof. According to Lemma 3.9 and the monotonicity of πk,

P
(
‖G̃k‖ ≤ ε

)
≥ 1− πk

(
β

kρ[ϕ(κ ε)] + p0

)
≥ 1− πk

(
p− p0
1 + δ

+ p0

)
.

Then inequality (3.39) follows directly from Lemma 3.10. �

Theorem 3.3 reveals that, when ε is an arbitrary number but small enough to ve-
rify (3.38) and the iteration counter satisfies (3.37) for some positive number δ, the norm
of the gradient is below ε with overwhelmingly high probability. Note that ε is related
to k through (3.37). In fact, if ρ◦ϕ is invertible (which is true when the forcing function
is a multiple of αq with q > 1), then, for any positive integer k, sufficiently large to
satisfy (3.37) and (3.38) all together, one can set

ε = 1
κ

(ρ ◦ ϕ)−1
((1 + δ)β
p− p0

1
k

)
, (3.40)

and what we have in (3.39) can then be read as (since ε and k satisfy the assumptions
of Theorem 3.3)

P
(
‖G̃k‖ ≤ κ−1(ρ ◦ ϕ)−1(O(1/k))

)
≥ 1− exp(−C k),

with C a positive constant.
A particular case is when the forcing function is a multiple of the square of the step

size
ρ(α) = 1

2c α
2,

where it is easy to check that
ϕ(t) = 2 t

c+ νg
.

One can then obtain the global rate ‖G̃k‖ ≤ O(1/
√
k) with overwhelmingly high proba-

bility, matching [114] for deterministic direct search, as it is shown below in Corollary 3.1,
which is just an application of Theorem 3.3 for this particular forcing function. For sim-
plicity, we will set δ = 1.

63

Corollary 3.1 Suppose that {Dk} is (p, κ)-descent with p > p0, ρ(α) = c α2/2, and

k ≥ 4γ2β

c(p− p0)α2
0
. (3.41)

Then

P
(
‖G̃k‖ ≤

(
β

1
2 (c+ νg)

c
1
2 (p− p0)

1
2κ

)
1√
k

)
≥ 1− exp

[
−(p− p0)2

8p k

]
. (3.42)

Proof. As in (3.40), with δ = 1, let

ε = 1
κ

(ρ ◦ ϕ)−1
(2β
p− p0

1
k

)
. (3.43)

Then, by straightforward calculations, we have

ε =
(

β
1
2 (c+ νg)

c
1
2 (p− p0)

1
2κ

)
1√
k
. (3.44)

Moreover, inequality (3.41) gives us

ε ≤ β
1
2 (c+ νg)

c
1
2 (p− p0)

1
2κ

(
4γ2β

c(p− p0)α2
0

)− 1
2

= (c+ νg)α0
2κ γ . (3.45)

Definition (3.43) and inequality (3.45) guarantee that k and ε satisfy (3.37) and (3.38)
for ρ(α) = c α2/2 and δ = 1. Hence we can plug (3.44) into (3.39), which finally
yields (3.42). �

Based on Lemmas 3.9 and 3.10 (or directly on Theorem 3.3), one can lower bound
P(Kε ≤ k) and arrive at a worst-case complexity result.

Theorem 3.4 Suppose that {Dk} is (p, κ)-descent with p > p0 and

ε ≤ γ

κα0
ρ(γ−1α0) + νg α0

2κ γ .

Then, for each δ > 0,

P
(
Kε ≤

⌈ (1 + δ)β
(p− p0)ρ[ϕ(κ ε)]

⌉)
≥ 1− exp

[
− β(p− p0)δ2

2p(1 + δ)ρ[ϕ(κ ε)]

]
. (3.46)

Proof. Letting
k =

⌈ (1 + δ)β
(p− p0)ρ[ϕ(κ ε)]

⌉
we have P(Kε ≤ k) = P(‖G̃k‖ ≤ ε) and then inequality (3.46) follows from Theorem 3.3
as

k ≥ (1 + δ)β
(p− p0)ρ[ϕ(κ ε)] .

64

�

Since ρ(α) = o(α) (from the definition of the forcing function ρ) and ϕ(κ ε) ≤ 2ν−1
g κ ε

(from the definition of ϕ), it holds that the lower bound in (3.46) goes to one faster than
1 − exp(−ε−1). Hence, we conclude from Theorem 3.4 that direct search based on
probabilistic descent exhibits a worst-case complexity bound in number of iterations of
the order of 1/ρ[ϕ(κ ε)] with overwhelmingly high probability, matching Proposition 3.3
for deterministic direct search. To see this effect more clearly, we present in Corollary 3.2
a specification of Theorem 3.4 when ρ(α) = c α2/2, taking δ = 1 as in Corollary 3.1.
The worst-case complexity bound is then of the order of 1/ε2 with overwhelmingly high
probability, matching [114] for deterministic direct search. The same matching happens
when ρ(α) is a power of α with exponent q, where the bound is O(ε−

q
min{q−1,1}).

Corollary 3.2 Suppose that {Dk} is (p, κ)-descent with p > p0, ρ(α) = c α2/2, and

ε ≤ (c+ νg)α0
2κ γ .

Then

P
(
Kε ≤

⌈
β (c+ νg)2

c(p− p0)κ2 ε
−2
⌉)
≥ 1− exp

[
−β(p− p0)(c+ νg)2

8c p κ2 ε−2
]
. (3.47)

It is important to understand how the worst-case complexity bound (3.47) depends
on the dimension n of the problem. For this purpose, we first need to make explicit the
dependence on n of the constant in Kε ≤ dβ (c+ νg)2/[c(p− p0)κ2]ε−2e, which can only
come from p and κ and is related to the choice of Dk.

One can choose Dk as m directions uniformly independently distributed on the unit
sphere, with m independent of n, in which case p is a constant larger than p0 and
κ = τ/

√
n for some constant τ > 0 (both p and τ are totally determined by γ and θ

without dependence on m or n; see Section 3.5). In such a case, from Corollary 3.2,

P
(
Kε ≤

⌈
β (c+ νg)2

c (p− p0) τ2

(
n ε−2

)⌉)
≥ 1− exp

[
−β (p− p0)(c+ νg)2

8 c p κ2 ε−2
]
.

To derive a worst-case complexity bound in terms of the number of function evaluations,
one just needs then to see that each iteration of Algorithm 3.1 costs at most m func-
tion evaluations. Thus, if Kf

ε represents the number of function evaluations within Kε

iterations, we obtain

P
(
Kf
ε ≤

⌈
β (c+ νg)2

c (p− p0) τ2

(
n ε−2

)⌉
m

)
≥ 1− exp

[
−β(p− p0)(c+ νg)2

8 c p τ2 n ε−2
]
. (3.48)

We observe from the expression of β determined in Lemma 3.7 that its value does not
depend on the problem dimension, nor on the number of evaluations. As mentioned
above, p, τ and p0 do not depend on n nor m. In our general setting, there is also no

65

reason to assume that the Lipschitz constant depends on the dimension, while c is chosen
independently of it. As a result, the worst-case complexity bound is then O

(
mnε−2)

with overwhelmingly high probability, which is clearly better than the corresponding
bound O(n2ε−2) for deterministic direct search presented in Section 2.3 if m is chosen
an order of magnitude smaller than n.

3.4.3 Additional complexity properties

High probability iteration complexity Given a confidence level P , the following
theorem presents an explicit bound for the number of iterations which can guarantee
that ‖G̃k‖ ≤ ε holds with probability at least P . Bounds of this type are interesting in
practice and have been considered in the theoretical analysis of randomized algorithms
(see, for instance, [100, 104]).

Theorem 3.5 Suppose that {Dk} is (p, κ)-descent with p > p0. Then for any

ε ≤ γ

κα0
ρ(γ−1α0) + νg α0

2κ γ

and P ∈ (0, 1), it holds P(‖G̃k‖ ≤ ε) ≥ P whenever

k ≥ 3β
2(p− p0)ρ[ϕ(κ ε)] −

3 p ln(1− P)
(p− p0)2 . (3.49)

Proof. By Theorem 3.3, P(‖G̃k‖ ≤ ε) ≥ P is achieved when

k ≥ max
{

(1 + δ)β
(p− p0)ρ[ϕ(κ ε)] ,−

2p(1 + δ)2 ln(1− P)
δ2(p− p0)2

}
(3.50)

for some positive number δ. Hence it suffices to show that the right-hand side of (3.49)
is bigger than that of (3.50) for properly chosen δ. For simplicity, denote

c1 = β

(p− p0)ρ[ϕ(κ ε)] , c2 = −2p ln(1− P)
(p− p0)2 .

Let us consider the positive number δ such that

(1 + δ)c1 = (1 + δ)2

δ2 c2.

It is easy to check that

δ = 1
2c1

(
c2 +

√
c2

2 + 4c1c2

)
≤ 1

2 + 3c2
2c1

.

Thus
max

{
(1 + δ)c1,

(1 + δ)2

δ2 c2

}
= (1 + δ)c1 ≤

3
2(c1 + c2),

which completes the proof. �

66

Expected minimum norm gradient We now study how E
[
‖G̃k‖

]
behaves relatively

to the iteration counter k. For simplicity, we consider the special case of the forcing
function ρ(α) = c α2/2; we then have the following result.

Proposition 3.4 Suppose that {Dk} is (p, κ)-descent with p > p0, ρ(α) = c α2/2, and

k ≥ 4γ2β

c(p− p0)α2
0
.

Then
E
[
‖G̃k‖

]
≤ c3k

− 1
2 + ‖g0‖ exp (−c4 k) ,

where

c3 = β
1
2 (c+ νg)

c
1
2 (p− p0)

1
2κ
, c4 = (p− p0)2

8 p .

Proof. Let us define a random variable Hk as

Hk =
{
c3 k

− 1
2 if ‖G̃k‖ ≤ c3 k

− 1
2 ,

‖g0‖ otherwise.

Then ‖G̃k‖ ≤ Hk, and hence

E
[
‖G̃k‖

]
≤ E [Hk] ≤ c3 k

− 1
2 + ‖g0‖P

(
‖G̃k‖ > c3 k

− 1
2
)
.

Therefore it suffices to notice

P
(
‖G̃k‖ > c3 k

− 1
2
)
≤ exp(−c4 k),

which is a straightforward application of Corollary 3.1. �

Recall that in deterministic direct search employing a forcing function ρ(α) = c α2/2,
‖g̃k‖ decays with O(k−

1
2) when k tends to infinity. Proposition 3.4 shows that E

[
‖G̃k‖

]
behaves in a similar way in direct search based on probabilistic descent, in that its
decaying rate gets asymptotically close to the deterministic one.

Expected number of iterations and function evaluations Complementary to the
study of the expected gradient norm, we analyze the expected behavior of Kε. Cartis
and Scheinberg [29] provide such results for line-search and adaptive cubic regularization
frameworks based on probabilistic models.

Proposition 3.5 Suppose {Dk} is (p, κ)-descent with p > p0, ρ(α) = c α2/2, and

ε ≤ (c+ νg)α0
2κ γ .

67

Then
E [Kε] ≤ c5ε

−2 + 1
1− exp(−c4) ,

where
c5 = c2

3 = β (c+ νg)
c (p− p0)κ2 ,

and c3, c4 are defined as in Proposition 3.4.

Proof. Since Kε takes integer values, one has:

E [Kε] =
∑

k<c5 ε−2

P (Kε > k) +
∑

k≥c5 ε−2

P (Kε > k)

≤ c5 ε
−2 +

∑
k≥c5 ε−2

P (Kε > k)

≤ c5 ε
−2 +

∑
k≥c5 ε−2

P
(
‖G̃k‖ > ε

)
.

Then, for terms in the sum, we have that

k ≥ c5 ε
−2 ≥ β (c+ νg)

c (p− p0)κ2

[(c+ νg)α0
2κ γ

]−2
= 4β γ2

c(p− p0)α2
0
,

so we are in the assumptions of Corollary 3.1 and this gives

P (Kε > k) = P
(
‖G̃k‖ > ε

)
≤ P

(
‖G̃k‖ > c3 k

− 1
2
)
≤ exp(−c4 k)

holds. It then suffices to bound the resulting geometric progression by the sum on all
k ∈ N to arrive at the desired result. �

It immediately follows that the expected number of function evaluations satisfies the
bound stated below:

E
[
Kf
ε

]
≤ O

(
mκ−2 ε−2

p− p0

)
+mO(1). (3.51)

The bound obtained matches those of Cartis and Scheinberg [29] for line-search
schemes in terms of powers of ε; we also emphasize that both our bound and theirs
exhibit a dependence on the inverse of p− p0.

3.5 A practical implementation of a probabilistic descent
set sequence

We describe below how the use of uniformly distributed directions on the unit sphere
allows to define a probabilistically descent sequence. We start by providing a bound of
the cosine measure of such a set, expressed at a given (deterministic) vector.

68

Lemma 3.11 Let Dk be a set of m random vectors independently and identically dis-
tributed on the unit sphere, v ∈ Rn and τ ∈ [0,

√
n]. One has:

P
(

cm (Dk, v) ≥ τ√
n

)
≥ 1−

(1
2 + τ√

2π

)m
. (3.52)

Proof. From the definition of cm (D, v), the result trivially holds if v = 0. Therefore
in the rest of the proof we assume that ‖v‖ 6= 0 (and without loss of generality, that
‖v‖ = 1). One thus has:

P
(

cm (Dk, v) ≥ τ√
n

)
= 1−

[
1− P

(
d> v ≥ τ√

n

)]m
,

where d is a random vector uniformly distributed on the unit sphere.
Since the distribution of d is uniform on the unit sphere, the probability we are

interested in is proportional to the area A of the spherical cap{
d ∈ Rn : ‖d‖ = 1 and d> v ≥ κ

}
of unit radius and height

h = 1− κ.

Recalling the area formula for spherical caps, we have

A = 1
2An I

(
2h− h2,

n− 1
2 ,

1
2

)
= 1

2An I
(

1− κ2,
n− 1

2 ,
1
2

)
,

where An is the area of the unit sphere in Rn, and I denotes the regularized incomplete
Beta function [1] defined by

I (u, a, b) = 1
B(a, b)

∫ u

0
ta−1(1− t)b−1dt, (3.53)

with B being the Beta function. Hence

%(κ) = 1
2 I
(

1− κ2,
n− 1

2 ,
1
2

)
, (3.54)

and our goal is to establish that

%(κ) ≥ 1
2 − κ

√
n

2π . (3.55)

When n = 2, by plugging (3.53) into (3.54), calculating the integral, and noticing
B(1

2 ,
1
2) = π, we have

%(κ) = 1
2 I
(

1− κ2,
1
2 ,

1
2

)
= 1

π
arcsin

√
1− κ2 = 1

2 −
1
π

arcsin κ ≥ 1
2 −

κ

2 ,

69

and therefore inequality (3.55) is true. To prove (3.55) in the situation of n ≥ 3, we
examine (3.53) and find that

I (u, a, b) = 1− 1
B(a, b)

∫ 1

u
ta−1(1− t)b−1dt

≥ 1− 1
B(a, b)

∫ 1

u
(1− t)b−1dt

= 1− (1− u)b

bB(a, b)

when a ≥ 1. Hence, using equation (3.54), we obtain

%(κ) ≥ 1
2 −

κ

B(n−1
2 , 1

2)

when n ≥ 3. Thus we can arrive at inequality (3.55) as long as

B
(
n− 1

2 ,
1
2

)
≥
√

2π
n
. (3.56)

Inequality (3.56) is justified by the facts

B
(
n− 1

2 ,
1
2

)
=

Γ(n−1
2) Γ(1

2)
Γ(n2) =

Γ(n−1
2)

Γ(n2)
√
π,

and

Γ
(
n

2

)
≤
[
Γ
(
n− 1

2

)
Γ
(
n+ 1

2

)] 1
2

=
√
n− 1

2 Γ
(
n− 1

2

)
,

the second of which coming from the fact that Γ is log-convex, meaning that ln Γ is
convex [7, Theorem 2.1].

�

The above results are valid when the vector v is deterministic; in our algorithmic
framework, we study the cosine measure expressed at random vectors with conditioning
to the past. The result still holds, as proved in the following theorem.

Theorem 3.6 Consider a set sequence {Dk}k, where all Dk are drawn independently
from the same distribution, as described in Proposition 3.11. Consider that this sequence
is used in Algorithm 3.1. Then, for any τ ∈ [0,

√
n]:

P
(

cm (Dk,−Gk) >
τ√
n

∣∣∣∣σk−1

)
≥ 1−

(1
2 + τ√

2π

)m
. (3.57)

where σk−1 = σ (D0, . . . ,Dk−1) (with the convention that σ−1 represents conditioning on
the whole set of events, i.e. the absence of conditioning).

70

Proof. Consider the couple of variables (Dk, Gk). By definition, Gk is independent
of Dk. Let Ψ be defined as follows:

Ψ : Rn × Rn×m 7→ {0, 1}
(g,D) 7→ 1 (cm (D, g) > κ) .

One has E [|Ψ(Gk,Dk)|] < ∞. From [54, Example 5.1.5] (see also [32, page 148]), we
know that:

P
(

cm (Dk,−Gk) >
τ√
n

∣∣∣∣σ(Gk)
)

= P
(

cm (Dk,−Gk) >
τ√
n

∣∣∣∣Gk)
= E [Ψ(Gk, Dk)] = h(Gk),

where h is defined as follows:

h : Sn−1 7→ R
g 7→ h(g) = E(Ψ(gk,Dk)).

Now, using Lemma 3.11, we obtain for any unitary vector g:

h(g) = 1× P
(

cm (Dk,−g) > τ√
n

)
+ 0× P

(
cm (Dk,−g) ≤ τ√

n

)
≥ 1−

(1
2 + τ√

2π

)m
,

so h is constant on all realizations of Gk. This leads to

P
(

cm (Dk,−Gk) >
τ√
n

∣∣∣∣Gk) ≥ 1−
(1

2 + τ√
2π

)m
, (3.58)

so this random variable has a constant value.
What is left to prove is that conditioning to Gk gives the same result as conditioning

to σk−1. Because Gk can be seen as a function of D0, . . . ,Dk−1, one has:

σ(Gk) ⊂ σk−1.

Besides, as the random variable P
(
cm (Dk,−Gk) > τ√

n

∣∣∣Gk) = g(Gk) is a constant, it
is σk−1-measurable. We thus are in the assumptions of [54, Theorem 5.1.5] and we can
conclude that

P
(

cm (Dk,−Gk) >
τ√
n

∣∣∣∣σk−1

)
= P

(
cm (Dk,−Gk) >

τ√
n

∣∣∣∣Gk) ,
from which the result (3.57) follows. �

A first consequence of Theorem 3.6 is that one can construct a set sequence satisfying
the probabilistic descent property.

71

Corollary 3.3 Let the assumptions of Theorem 3.6 hold. Given τ ∈ [0,
√
n], the polling

sets {Dk} form a (p, τ/
√
n)-descent sequence with

p ≤ 1−
(1

2 + τ√
2π

)m
. (3.59)

Thanks to Theorem 3.6, we can also give a condition on the number m of search
directions generated at each step to verify the (p, κ)-descent property.

Corollary 3.4 Let the assumptions of Theorem 3.6 hold. Then, by choosing the number
of directions to be

m > log2

(
1− ln θ

ln γ

)
, (3.60)

it exists p ≥ p0 and τ > 0 determined by θ and γ such that the polling set sequence is
(p, τ/

√
n)-descent.

Proof. Let m0 be the minimal integer that satisfies

m0 > log2

(
1− ln θ

ln γ

)
. (3.61)

Then m ≥ m0. Given inequality (3.61), we have

1−
(1

2

)m0

> 1−
(

1− ln θ
ln γ

)−1
= p0.

Thus, there exists a sufficiently small positive constant τ such that

1−
(1

2 + τ√
2π

)m0

> p0.

Let
p = 1−

(1
2 + τ√

2π

)m0

.

Then
p ≤ 1−

(1
2 + τ√

2π

)m
,

and it is easy to check that both τ and p can be totally determined by γ and θ. The
proof is concluded by applying Corollary 3.3. �

3.6 Numerical experiments

The global rate analysis of the previous section roots in favor of using less directions in
practice than the number usually required in deterministic direct search. In this section,
we make use of a lower bound on this number to design an efficient strategy, that is
shown to outperform its deterministic counterparts.

72

3.6.1 Practical satisfaction of the probabilistic descent property

Corollary 3.4 sheds a new light on the numerical testing we conducted at the beginning of
this chapter. Remember that we tested Algorithm 3.1 by choosing Dk as m independent
random vectors uniformly distributed on the unit sphere in Rn. This is a simple distribu-
tion to compute as such directions can be obtained by normalizing independent random
vectors from the standard normal distribution in Rn [97]. In addition, the almost-sure
global convergence of Algorithm 3.1 is guaranteed as long as m > log2[1− (ln θ)/(ln γ)],
as it can be concluded from Theorem 3.1. For example, when γ = 2 and θ = 0.5,
the algorithm converges with probability 1 when m ≥ 2, even if such values of m are
much smaller than the number of elements of the positive spanning sets with smallest
cardinality in Rn, which is n+ 1 (41 in the cases tested in Section 3.2.2).

Towards optimality of the number of directions Given a unit vector v ∈ Rn and
a number κ ∈ [0, 1], it is easy to see that the event {cm(Dk, v) ≥ κ} is the union of
{d>v ≥ κ} and {-d>v ≥ κ}, whose intersection has probability zero, and therefore

P
(

cm(Dk, v) ≥ κ
)

= P
(
d>v ≥ κ

)
+ P

(
-d>v ≥ κ

)
= 2%,

% being the probability of {d>v ≥ κ}. One then sees that {Dk} defined in this way
is (2%, κ)-descent. Given any constants γ and θ satisfying 0 < θ < 1 < γ, we can
pick κ > 0 sufficiently small so that 2% > (ln θ)/[ln(γ−1θ)], similarly to what is stated
in Corollary 3.4. Algorithm 3.1 then conforms to the theory presented in Sections 3.3
and 3.4. Moreover, the set {d, -d} turns out to be optimal among all the sets D consist-
ing of 2 random vectors uniformly distributed on the unit sphere, in the sense that it
maximizes the probability P

(
cm(D, v) ≥ κ

)
for each κ ∈ [0, 1]1. In fact, if D = {d1, d2}

with d1 and d2 uniformly distributed on the unit sphere, then

P
(

cm(D, v) ≥ κ
)

= 2%− P
(
{d>1 v ≥ κ} ∩ {d>2 v ≥ κ}

)
≤ 2%,

and the maximal value 2% is attained when D = {d, -d} as already discussed. We tested
the set {d, -d} numerically (with γ = 2 and θ = 1/2), and it performed even better
than the set of 2 independent vectors uniformly distributed on the unit sphere (yet the
difference was not substantial), which illustrates again our theory of direct search based
on probabilistic descent.

Note that extensions of this reasoning to a number of polling directions greater than
2 constitutes a non-trivial geometrical problem (see [48] for a discussion on this topic,
in a deterministic yet relevant setting).

3.6.2 A meaningful comparison between deterministic and randomized
polling

The techniques described in the previous section, as well as the complexity theory we
developed in Section 3.4, only apply when γ > 1. On the other hand, for deterministic

1As mentioned in [67], thanks are due to Professor Nick Trefethen for pointing out this property.

73

direct search based on positive spanning sets (PSSs), setting γ = 1 tends to lead to
better numerical performance (see, for instance, [115]). In this sense, our introductory
experiment of Section 3.2.2 appears biased in favor of probabilistic descent. To be fairer,
we designed a new experiment by keeping γ = 1 when the sets of polling directions
are guaranteed PSSs (which is true for the versions corresponding to D⊕, QD⊕, and
QkD⊕), while setting γ > 1 for direct search based on probabilistic descent. All the
other parameters were selected as in Subsection 3.2.2.

In the case of direct search based on probabilistic descent, we pick now γ = 2 and
γ = 1.1 as illustrations, and as for the cardinality m of Dk we simply take the smallest
integers satisfying m > log2[1− (ln θ)/(ln γ)], which are 2 and 4 respectively. Table 3.3
presents the results of the redesigned experiment with n = 40. Table 3.4 shows what
happened for n = 100. The data is organized in the same way as in Table 3.2.

We can see from the tables that direct search based on probabilistic descent still
outperforms (for these problems) the direct-search versions using PSSs, even though the
difference is not so considerable as in Table 3.2. We note that such an effect is even more
visible when the dimension is higher (n = 100), which is somehow in agreement with the
fact that (3.48) reveals a worst-case complexity in function evaluations of O(mnε−2),
as this bound is more favorable than O(n2ε−2) for deterministic direct search based on
PSSs when m is significantly smaller than n.

Table 3.3: Relative performance for different sets of polling directions (n = 40).

D⊕ QD⊕ QkD⊕ 2 (γ = 2) 4 (γ = 1.1)
arglina 1.00 3.17 37.19 5.86 6.73
arglinb 34.12 5.34 32.56 1.00 2.02

broydn3d 1.00 1.91 5.96 2.04 3.47
dqrtic 1.18 1.36 28.32 1.00 1.48

engval1 1.05 1.00 16.44 2.29 2.89
freuroth 17.74 7.39 7.48 1.35 1.00
integreq 1.54 1.49 5.36 1.00 1.34

nondquar 1.00 2.82 8.02 1.37 1.73
sinquad – 1.26 – 1.00 –
vardim 20.31 11.02 2.97 1.00 1.84

74

Table 3.4: Relative performance for different sets of polling directions (n = 100).

D⊕ QD⊕ QkD⊕ 2 (γ = 2) 4 (γ = 1.1)
arglina 1.00 3.86 105.50 5.86 7.58
arglinb 138.28 107.32 106.23 1.00 1.99

broydn3d 1.00 2.57 12.07 1.92 3.21
dqrtic 3.01 3.25 – 1.00 1.46

engval1 1.04 1.00 43.00 2.06 2.84
freuroth 31.94 17.72 12.42 1.36 1.00
integreq 1.83 1.66 13.46 1.00 1.22

nondquar 1.18 2.83 23.15 1.00 1.17
sinquad – – – – –
vardim 112.22 19.72 8.04 1.00 2.36

3.7 Conclusion and references for Chapter 3

By using randomly independently generated polling sets within a direct-search frame-
work, one relaxes the assumptions on the polling directions, while allowing the use of
smaller sets than in the classical, deterministic setting. Still, provided those sets have
a minimum probability of containing one descent direction, we proved that the conver-
gence properties of the deterministic case hold with probability one. The worst-case
performance of the algorithm was also investigated: the associated results hold with
overwhelming probability, and enlighten a potential gain in the worst-case number of
function evaluations when using fewer directions than necessary for satisfying the deter-
ministic assumptions.

An implementation based on uniformly distributed directions was proposed, and was
found to outperform the deterministic variants based on a finite or infinite number of
Positive Spanning Sets. This performance can be explained by the economy realized on
the number of directions used per iteration. Indeed, the minimum number of vectors to
use for guaranteeing (almost-sure) global convergence can be chosen independently of
the problem dimension, contrary to the deterministic case. As a result, iteration cost in
terms of calls to the objective is much lower, thereby compensating the possibly poor
quality of the directions. In particular, the choice of two directions uniformly distributed
in the unit sphere was investigated and shown to be the optimal strategy for common
values of algorithmic parameters.

The material in this chapter was previously published in SIAM Journal on Opti-
mization [67], with the exception of the lim result of Theorem 3.2 and the bound on the
expected number of evaluations of Proposition 3.5 which we have introduced for the first
time here in the thesis. We also mention that an implementation of Algorithm 3.1 based
on the uniform generation technique was recently tested on an engineering problem [21].

75

Chapter 4

Trust-region methods based on
probabilistic models for
derivative-free optimization

The previous chapter provides both a convergence and a complexity analysis of a direct-
search algorithm. The principles that are used for the probabilistic proofs can actually be
applied to a wider range of methods, as long as appropriate elements of randomization
have been identified. In particular, model-based algorithms can be studied in such a
perspective, even though they significantly differ in nature from the class of direct-search
schemes.

In this chapter, we develop a short study of derivative-free trust-region algorithms
centered on the probabilistic case. After describing the deterministic features of such
algorithms, tailored to model building via sampled values, in Section 4.1, we provide a
convergence study of a derivative-free trust-region method relying on probabilistic mo-
dels in Section 4.2. Such results are completed by novel probabilistic complexity results,
that are established in Section 4.3 following the same process as in the direct-search
case. We end this chapter by discussing the practicality of the considered properties in
Section 4.4.

77

4.1 Deterministic derivative-free trust-region algorithms

Along with the direct-search methodology, model building is arguably one of the most
famous techniques to address derivative-free optimization problems. The associated
model-based class of algorithms relies on using sampled points to build a model of the
objective function around the current iterate, typically by quadratic interpolation. Pro-
vided the resulting model is a sufficiently good approximation of the objective, it will
resemble this function on a small neighborhood. The trust-region method is then parti-
cularly relevant to such a setting. It iteratively attempts to minimize a model constructed
with previously computed function values within a trust-region, generally defined as a
Euclidean ball of the type

B(xk; δk) = {xk + s ∈ Rn : ‖s‖ ≤ δk } ,

where xk denotes the current iterate and δk the current trust-region radius. Trust-region
algorithms have been widely studied in the derivative-based case [33], where models
originated from Taylor expansions are common choices.

In DFO, the models are typically chosen as polynomials, that are built by fitting a
sample set using interpolation or regression. Their quality is measured by the accuracy
they provide relatively to a Taylor expansion. Models that are as accurate as first-order
(resp. second-order) Taylor ones are then called fully linear (resp. fully quadratic) [37].
We precise these notions in the two following definitions.

Definition 4.1 Given a function f continuously differentiable, x ∈ Rn and δ > 0, a
function m : Rn → R is called a (κg, κf)-fully linear model of f on B(x, δ), the ball
of center x and radius δ, if it exists two positive constants κf and κg such that for all
x ∈ B(0, δ),

‖m(s)− f(x+ s)‖ ≤ κf δ
2,

‖∇m(s)−∇f(x+ s)‖ ≤ κg δ.

Note that although linear polynomials can form fully linear models, quadratic func-
tions are often preferred.

Definition 4.2 Given a function f twice continuously differentiable, x ∈ Rn and δ > 0,
a function m : Rn → R is called a (κh, κg, κf)-fully quadratic model of f on B(x, δ), if
it exists three positive constants κf , κg and κh such that for every s ∈ B(0, δ),

‖m(s)− f(x+ s)‖ ≤ κf δ
3,

‖∇m(s)−∇f(x+ s)‖ ≤ κg δ
2,

‖∇2m(s)−∇2f(x+ s)‖ ≤ κh δ.

The construction of fully linear/quadratic models based on sampled sets raises a
number of geometrical questions. Conn, Scheinberg and Vicente provided the first sys-
tematic approach to the subject of deterministic sampling geometry in [35, 36, 38], where

78

they specifically derived error bounds on polynomial interpolation and regression mod-
els, provided a certain quality of the sample sets (called poisedness) can be assessed.
Later studies have then established that although the need of controlling geometry can
be questionable for general purposes [55], model improvement (typically through gener-
ation of a better shaped sample set) is at least required whenever the size of the model
gradient becomes small (a procedure known as the “criticality step”, which ensures that
the trust-region radius converges to zero) [105]. In this chapter, we will focus on a
general, elementary trust-region method to serve as reference for our study. It will not
involve the criticality step mentioned above, however the results can be extended to
consider such a process. To lighten the notations and the upcoming proofs, we rather
adopt this simplified setting, which is better suited for our purpose.

A typical derivative-free trust-region method can be shown to converge to a first-order
stationary point, provided the models are fully linear and a fraction of Cauchy decrease
(see Section 4.2) is satisfied by the trust-region step. In terms of complexity results, it
can be established that such a derivative-free trust-region method will requireO(κ−2

g ε−2)
iterations and O(r κ−2

g ε−2) function evaluations to drive the minimum gradient norm
under some threshold ε [60], with r being the number of points used to compute a model
at an iteration. Since typical interpolation techniques ensure that κg = O(

√
n) with

r = n+ 1, we recover a bound in O(n2 ε−2), as for classical deterministic direct search.
One can also design second-order globally convergent trust-region algorithms for DFO.
To do so, one must rely on fully quadratic models at every iteration, while computing
a step that satisfies both a fraction of Cauchy decrease and a fraction of eigendecrease
(related to the potential negative curvature of the model). The criticality measure in
the update formulas also has to be changed, from the norm of the model gradient to the
maximum of the model gradient norm and the opposite of the minimum eigenvalue of
the model Hessian. In that case, one can obtain a complexity bound in O

(
n5 ε−3) on

the number of function evaluations needed to decrease this mixed criterion under the
threshold ε. Such a result can be found in the thesis [73]. Note that contrary to the
first-order one, it does not always match the derivative-based case [25].

The context of expensive function evaluations, endemic in DFO, often makes it un-
affordable to construct a deterministic model that is guaranteed to be fully quadratic,
as such a process requires (n+1)(n+2)

2 function evaluations. Practical approaches rely
on considerably less points (but at least n + 1 to preserve fully linearity), and use the
remaining degrees of freedom to minimize the norm of the model Hessian or its dis-
tance with the previous one. The most studied example is the minimum Frobenius norm
update [34, 103], yet recent advances have proposed to apply the theory of sparse `1-
recovery to build quadratic models based on random sampling [13]. Such models were
proved to be fully quadratic even when considerably less points than (n+1)(n+2)

2 were
used, depending on the sparsity pattern of the Hessian of the objective. Such findings
called for a probabilistic analysis of derivative-free trust-region algorithms, which then
led to the consideration of trust-region methods where the accuracy of the models is
given with some positive probability. A study of this kind was performed in [14], and is
described in the next section for first-order globally convergent trust-region methods.

79

4.2 Convergence of trust-region methods based on proba-
bilistic models

Algorithm 4.1 describes the deterministic trust-region framework we will use throughout
the chapter. Note that the trust-region radius plays a role similar to that of the step size
parameter in Algorithm 2.1, while the quality of the models has the same importance
than the quality of the polling sets.

Algorithm 4.1: Basic Derivative-Free Trust-Region framework

Define positive parameters η1, η2, 0 < γ1 < 1 < γ2 and 0 < δ0 < δmax.
for k = 0, 1, 2, . . . do

Approximate the function f in B(xk, δk) by
mk(xk + s) = f(xk) + g>k s+ 1

2s
>Hk s.

Compute sk by approximately minimizing mk in B(xk, δk), and let

ρk = f(xk)− f(xk + sk)
mk(xk)−mk(xk + sk)

.

If ρk ≥ η1, set xk+1 = xk + sk, and

δk+1 =
{

min {γ2 δk, δmax} if ‖gk‖ ≥ η2 δk,

γ1 δk otherwise.

Otherwise, set xk+1 = xk and δk+1 = γ1 δk.
end

As mentioned in the previous section, if we suppose that the models mk are fully
linear at every iteration, it is possible to derive a (first-order) convergence analysis of
Algorithm 4.1. In this section, we will present the results established by Bandeira,
Scheinberg and Vicente [14] in a setting where the quality of the models is only required
to be favorable with a given probability. Note that we slightly extend their framework
by using two different parameters (namely γ1 and γ2) to update the trust-region radius,
instead of using one and its inverse. As we will see, these parameters have a significant
impact on the minimum probability with which our probabilistic properties need to be
satisfied.

Algorithm 4.2 restates the method while conveniently introducing the appropriate
random notations. Note that additional randomness is introduced at every iteration
through the generation of the random model Mk (or, equivalently, the vector Gk and
the symmetric matrix Hk). This implies that the current point xk, the trust-region
step sk and the trust-region radius δk also are of random nature. Thus, in the rest of
this chapter, these random quantities will be denoted by Mk, Gk,Hk, Xk, Sk,∆k, while
mk, gk, Hk, xk, sk and δk will indicate their respective realizations.

80

Algorithm 4.2: Derivative-Free Trust-Region based on Probabilistic Models

Define positive parameters η1, η2, 0 < γ1 < 1 < γ2 and 0 < δ0 < δmax.
for k = 0, 1, 2, . . . do

Approximate the function f in B(Xk,∆k) by a randomly generated model
Mk(Xk + s) = f(Xk) +G>k s+ 1

2s
>Hk s.

Compute Sk by approximately minimizing Mk in B(Xk,∆k), and let

ρk = f(Xk)− f(Xk + Sk)
Mk(Xk)−Mk(Xk + Sk)

.

If ρk ≥ η1, set Xk+1 = Xk + Sk, and

∆k+1 =
{

min {γ2 ∆k, δmax} if ‖Gk‖ ≥ η2 ∆k,

γ1 ∆k otherwise.

Otherwise, set xk+1 = xk and δk+1 = γ1 δk.
end

4.2.1 Preliminary deterministic results

We place ourselves in the smooth context of Assumption 2.1 (i.e., f is continuously
differentiable with Lipschitz continuous gradient) and assume that the models satisfy
the following properties.

Assumption 4.1 It exists BH > 0 such that for every realization of Algorithm 4.2, the
sequence of model Hessians satisfies

∀ k, ‖Hk‖ ≤ BH .

Assumption 4.2 For all realizations of Algorithm 4.2, the step sk of the k-th iteration
is computed so that it satisfies a fraction of Cauchy decrease, i.e.

m(xk)−m(xk + sk) ≥
τ

2 ‖gk‖ min
{ ‖gk‖
‖Hk‖

, δk

}
, (4.1)

for some τ ∈ (0, 1), and with the convention that ‖gk‖‖Hk‖ =∞ if ‖Hk‖ = 0.

Lemma 4.1 For any realization of Algorithm 4.2, the series of trust-region radii is
bounded as follows:

∞∑
k=0

δ2
k ≤ β := γ2

2
1− γ2

1

[
δ2

0
γ2

2
+ f0 − flow

ξ

]
, (4.2)

with f0 = f(x0) and
ξ = η1 η2

τ

2 min
{
η2
BH

, 1
}
.

As a result, limk→∞ δk = 0.

81

Proof. We focus on the case where there are infinitely many iterations at which the
trust-region radius is possibly increased. Let K ⊂ N denote the set of such indexes.

For any k ∈ K, we have by definition ρk ≥ η1 and ‖gk‖ ≥ η2 δk. Thus,

f(xk)− f(xk + sk) ≥ η1 (mk(xk)−mk(xk + sk))

≥ η1
τ

2 min
{
η2
BH

, 1
}
η2 δ

2
k = ξ δ2

k

thanks to Assumption 4.2.
Consequently, if we sum on a finite set of consecutive very successful iterations, we

obtain:

ξ
∑
j∈K
j≤k

δ2
j ≤

∑
j∈K
j≤k

f(xj)− f(xj+1) ≤
∑
j≤k

f(xj)− f(xj+1) ≤ f0 − f(xk+1) ≤ f0 − flow,

which leads to ∑
k∈K

δ2
k ≤

f0 − flow
ξ

.

We now denote by {ki}i∈N the very successful iterations, defining k0 = −1 and
δ−1 = δ0/γ2. The sum

∑∞
k=0 δ

2
k can thus be rewritten as follows:

∞∑
k=0

δ2
k =

∞∑
i=0

ki+1∑
k=ki+1

δk.

Besides, one has for each index i:

δk ≤ γ2 (γ1)k−ki−1 δki

for k = ki + 1, . . . , ki+1. Thus,
ki+1∑

k=ki+1
δ2
k ≤

γ2
2

1− γ2
1
δ2
ki .

We finally obtain:
∞∑
k=0

δ2
k ≤

γ2
2

1− γ2
1

∞∑
i=0

δ2
ki ≤

γ2
2

1− γ2
1

[
δ2

0
γ2

2
+ f0 − flow

ξ

]
,

hence the result. �
We now provide an equivalent of Lemma 3.3 tailored to the trust-region case.

Lemma 4.2 Consider a realization of Algorithm 4.2 and an index k for which the model
mk is (κg, κf)-fully linear on B(xk, δk). Provided

δk < min
{
‖gk‖
BH

,
τ(1− η1)‖gk‖

4κf
,
‖gk‖
η2

}
(4.3)

holds at the k-th iteration, we have xk+1 = xk + sk and δk+1 = min {γ2 δk, δmax}.

82

Proof. See [38, Proof of Lemma 10.6] for a proof that (4.3) implies that ρk ≥ η1
and thus that the iterate is updated. Since we also have ‖gk‖ ≥ η2 δk, the trust-region
radius is increased. �

Whenever the models all satisfy the same fully linear property, the above lemmas
are sufficient to derive a convergence analysis [37]. In the next section, we derive its
probabilistic counterpart.

4.2.2 Probabilistically fully linear models and first-order properties

The key assumption to perform a convergence analysis of Algorithm 4.2 is that the ran-
dom models exhibit fully linear properties with sufficiently high probability, as described
below.

Definition 4.3 We say that a sequence of random models {Mk} is (p, κg, κf)-fully linear
for a corresponding sequence {B(Xk,∆k)} if the events

Sk = {Mk is a (κg, κf)-fully linear model of f on B(Xk,∆k)}

satisfy the following submartingale-like condition

P(S0) ≥ p, and ∀ k ≥ 1, P (Sk|σ (M0, . . . ,Mk−1)) ≥ p.

Assumption 4.3 The model sequence is a (p, κg, κf)-fully linear sequence, with p ≥ p0
and

p0 = ln(γ1)
ln (γ1/γ2) .

As for Assumption 3.2 in the direct-search case, Assumption 4.3 is the key in esta-
blishing a suitable submartingale (with bounded increments) ensuring that the minimum
gradient norm cannot stay bounded away from zero. Depending on the values of γ1 and
γ2, p0 need not necessarily be bigger than 0.5. This is an important point that was not
considered in [14], although the results for γ1 = γ−1

2 easily extend to the general setting.
This leads to the following convergence result.

Theorem 4.1 (see [14, Theorem 4.2]) Consider Algorithm 4.1 applied to an objec-
tive function satisfying Assumptions 2.1 and 2.2. Suppose further that a random sequence
of models is used throughout the method, and that said sequence satisfies Assumptions 4.1
to 4.3. Then, the sequence of random iterates produced by Algorithm 4.1 satisfies

P
(

lim inf
k→∞

‖∇f(Xk)‖ = 0
)

= 1.

It is also possible to establish a lim-type result. Unlike in the direct-search case, no
additional assumptions are required. The proof follows the lines of Section 3.3.4.

Theorem 4.2 ([14, Theorem 4.3]) Under the assumptions of Theorem 4.1, the se-
quence of iterates also satisfies

P
(

lim
k→∞

‖∇f(Xk)‖ = 0
)

= 1.

83

4.3 Complexity study of trust-region methods based on
probabilistic models

Following Section 3.4, it is possible to carry out a complexity analysis of a randomized
trust-region framework based on probabilistically fully linear models. In the direct-
search setting, we saw that Lemma 3.8 was the main argument leading to the global rate
results of Section 3.4. It was based only on the two following elements of a realization
of Algorithm 3.1:

1. if the k-th iteration is successful, then f(xk)− f(xk+1) ≥ ρ(αk) (in which case αk
is increased), and

2. if cm(Dk,−gk) ≥ κ and αk < ϕ(κ ‖gk‖), then the k-th iteration is successful.

One can easily identify similar elements in a realization of the trust-region framework
of Algorithm 4.2. Letting

K = {k ∈ N : ρk ≥ η1 and ‖gk‖ ≥ η2 δk} ,

one can find positive constants µ1 and µ2 such that:

1. if k ∈ K, then f(xk) − f(xk+1) ≥ µ1 δ
2
k and δk is increased (by definition of the

method and Assumption 4.2 on the model decrease), and

2. if mk is (κg, κf)-fully linear and δk < µ2 ‖gk‖, then k ∈ K (see Lemma 4.2).

One sees that δk and K play the same roles as αk and the set of successful iterations for
the analysis of Section 3.4.

It is then straightforward to mimic the analysis of Section 3.4, by first bounding the
number of iterations at which (κg, κf)-fully linear models appear.

Lemma 4.3 Let Zl be the indicator function of the random event

{ Ml is (κg, κf)− fully linear on B(Xl,∆l) } ,

and denote its realization by zl. Consider a realization of Algorithm 4.2 and an index
k ≥ 1; one has

k−1∑
l=0

zl ≤
β

µ2 max
{
γ2

2µ
2

δ2
0
,

1
‖∇f(x̃k)‖2

}
+ p0 k, (4.4)

where

µ = ζ

2(1 + κg ζ) , ζ = min
{

1
η2
,

1
BH

,
τ(1− η1)

4κf

}
;

and
‖∇f(x̃k)‖ = inf

0≤l≤k
‖∇f(xl)‖.

84

We can then derive the following complexity bounds, that can be viewed as equiva-
lents of Corollaries 3.1 and 3.2 for trust-region methods.

Theorem 4.3 Under Assumptions of Theorem 4.1, suppose that the model sequence is
(p, κf , κg)-descent with p > p0, with p0 defined as in Assumption 4.3. Then, if one has

k ≥ 2β γ2
2

(p− p0) δ2
0
, (4.5)

the minimum gradient norm ‖∇f(X̃k)‖ satisfies

P
(
‖∇f(X̃k)‖ ≤

√
2β

1
2 (p− p0)

1
2

µ

1√
k

)
≥ 1− exp

[
−(p− p0)2

8 p k

]
. (4.6)

Theorem 4.4 Under Assumptions of Theorem 4.1, suppose that the model sequence is
(p, κf , κg)-descent with p > p0, with p0 defined as in Assumption 4.3. Then, provided

ε <
δ0
µγ2

, (4.7)

the (random) first iteration index Kε for which ‖∇f(XKε+1)‖ < ε satisfies

P
(
Kε ≤

⌈ 2β
(p− p0)µ2 ε2

⌉)
≥ 1− exp

[
−β (p− p0) δ2

4 p µ2 ε2

]
. (4.8)

Note that by the definition of µ, one obtains a bound on the number of iterations is
of order of O

(
κ−2
g ε−2

)
with overwhelming probability.

4.4 Practical insights on probabilistic models

Generating fully linear models in a deterministic fashion essentially requires O(n) func-
tion evaluations corresponding to a poised sample set. In a randomized setting, as noted
in [14], it is possible to use random sample sets, e.g. following a standard Gaussian
distribution. By generating n vectors of this type (plus an additional zero vector to use
the value of the objective at the current point), one can bound the probability of the re-
sulting sample set to be Λ-poised [38]. In that setting, there exist positive constants with
respect to which the sequence of models built from the sample sets is probabilistically
fully linear.

Although this result roots in favor of random models, their use has been surprisingly
limited. In practice, most methods based on random models aim to address stochastic
or noisy optimization problems, and it is generally assumed that the lack of quality of
the models come from the inaccuracy of the function values rather than the sampling
strategy. As a result, some instances of probabilistically fully-linear models can be
obtained for specific cases of noisy functions [79] or evaluations subject to computational
failures [30], but the size of the sample set to be used is never taken to be less than the

85

minimal number of points needed to build a (deterministic) fully linear model. To the
best of our knowledge, only the presence of sparsity in the Hessian matrix has been
proved to have an impact on the sample size. Indeed, it has been shown that random
sample sets of O

(
n (logn)4) vectors could yield fully quadratic interpolations models.

We refer to [13] and [14, Section 6.2] for further discussion on these sparsity aspects.
Nevertheless, it should be emphasized that the convergence theory derived in Sec-

tion 4.2 sheds a new light on the issue of bad quality models in derivative-free trust-
region methods. Indeed, by considering that every model generated by the algorithm
has a minimum probability of being fully linear, one can still obtain theoretical guar-
antees. Therefore, one could apply the previous analysis on an algorithm that does not
systematically check the quality of the model and still be able to certify its convergence
(almost surely).

4.5 Conclusion and references for Chapter 4

In derivative-free optimization, the applicability of trust-region algorithms is tailored
to the quality of the models that are iteratively constructed, generally by means of a
polynomial approximation. When such a Taylor-like accuracy is ensured with a suffi-
ciently high probability, convergence and complexity analyses can still be derived, yield-
ing theoretical results that compare to the deterministic case. The similarities between
the corresponding analysis and the one presented in Chapter 3 are not incidental: they
illustrate the strength of the probabilistic reasoning that is applied in both cases.

Unlike the direct-search case, no practical implementation has been proposed in
the general case that would satisfy the desirable property at a certifiably lower cost.
Still, techniques relying on the same order of expense than for the deterministic setting
have been proposed. The corresponding implementations may then rely on a simplified
algorithmic framework, which might ease their use by a non-specialist.

The convergence theory of this chapter was presented by Bandeira et al [14], however
we point out that the complexity analysis was not derived until the work described in
Chapter 3 was completed. In [67], it was indeed provided a sketch of the application of
the probabilistic complexity proof technique to a wider class of derivative-free methods,
which we further developed in this chapter.

86

Chapter 5

Probabilistic feasible descent
techniques for bound-constrained
and linearly-constrained
optimization

Most optimization problems appear under a constrained form, in that the variables on
which the optimization process is applied are subject to one or several constraints, typi-
cally due to physical or budget limitations. The resulting problems are likely to become
harder to solve, as one must take feasibility (i.e., satisfaction of the constraints) into
account, and consider a trade-off between feasibility and minimization of the objective.
In the case of simple constraints such as positivity of the variables, it is common to
require that only feasible points are considered for function evaluation. In that case, the
possibilities for exploring the variable space can be significantly reduced.

In this chapter, we detail several probabilistic strategies to handle simple constraints
on the variables, namely bounds on those variables and linear equalities, within a direct-
search framework. We open the chapter by Section 5.1, that shortly introduces the
treatment of such constrained problems in the deterministic direct-search literature. We
then focus on the bound-constrained case in Section 5.2, where we present two strategies
based upon random variants on the deterministic setting, and derive the associated prob-
abilistic analysis. Section 5.3 is dedicated to linear equality constraints, and enlightens
the similarities between such a context and the unconstrained one from a probabilistic
point of view. An implementation of the resulting method is proposed in Section 5.4,
where it is favorably compared to a built-in MATLAB function.

87

5.1 Handling bounds and linear constraints in direct-search
methods

When no constraints are enforced on the variables, the polling directions used in a
direct-search method must provide good approximations of all vectors in the space: this
is guaranteed by assuming that the polling vectors span the space by nonnegative linear
combinations, and it is a key argument to derive suitable global convergence properties
of the methods. Under the presence of constraints, the properties of such directions
are closely related to the shape of the feasible domain. As a result, the quality of the
polling sets at a particular point is generally based on the nearby constraints. When
the boundary of the feasible domain is sufficiently simple, it is possible to design polling
strategies such that there always exists a direction along which decrease in the function
value is possible while remaining in the feasible domain [75].

Bound constraints are a classical example of such a setting. Direct-search methods
tailored to these constraints have been widely studied [58, 74, 81, 87], mostly basing
themselves on moves along the coordinate axes. Interestingly, this still forms the state-
of-the-art polling choice for solving bound-constrained problems. To the best of our
knowledge, no deterministic direct-search method that intends to exploit the geometry
of bound constraints has avoided considering this type of directions. As for general linear
constraints, they are often dealt with through an active-set approach based on identifying
nearby constraints, corresponding to a portion of the feasible domain boundary that is
close to the current iterate. Although such techniques are sensitive to degeneracy [5] and
might require the use of tools from computational geometry [80], they have been shown to
perform quite well in practice, while being supported by a theoretical analysis extending
the unconstrained case. Indeed, the active-set strategies iteratively define cones that
correspond to sets of feasible directions. The generators of such cones thus positively
span feasible directions, which makes them a suitable choice for polling [77, 80, 82].

Most of the above references consider problems with linear inequality constraints, and
rely on the active-set identification properties of the direct-search optimization process
to eventually identify the constraints that are active at a stationary point [83]. Still,
specific treatment of linear equality constraints has also been proposed, one way being
to reformulate the problem so that those constraints are removed and (possibly) fewer
variables are actually involved in the minimization process [9, 51]. It can be argued
that this reformulation has a negative practical impact, in that it can give rise to a
less separable problem: this is especially true for algorithms that transform the equality
constraints into two additional inequality constraints [77]. Another possibility is to
design the algorithm to work in the null space of the linear equality constraints, which
is also equivalent to solving the problem in a lower-dimensional subspace [85].

All the aforementioned algorithms involve deterministic generation of the polling
sets, in that those only depend on the constraints currently classified as approximately
active. Even when coupled with global exploration strategies [46, 112, 113], the polling
process must ensure some form of covering of the feasible descent area, either through de-
terministic generation or by a density argument (which is also a way to handle arbitrary

88

constraints). This may represent a significant expense in terms of function evaluations,
possibly even higher than using a positive spanning set at every iteration. Therefore,
it is natural to ask whether probabilistic variants of direct-search methods can be con-
structed to tackle linearly-constrained problems, albeit through dedicated treatment of
the different categories of such constraints.

Algorithm 5.1: Direct Search based on Probabilistic Feasible Descent (DSPFD)

Choose an initial point x0 ∈ Rn, as well as 0 < θ < 1 ≤ γ, 0 < α0 < αmax.
Define a forcing function ρ : R+ → R+.
for k = 0, 1, 2, . . . do

Poll Step
Compute a set of random independent vectors Dk.
If there exists d ∈ Dk such that Xk +Ak d is a feasible point and

f(Xk +Ak d)− f(Xk) < −ρ (Ak ‖d‖) ,

declare the iteration successful and set Xk+1 = Xk +Ak d;
Otherwise declare the iteration as unsuccessful and set xk+1 = xk.
Step Size Update
If the iteration is successful, (possibly) increase the step size by setting
Ak+1 = min {γAk, αmax};

Otherwise, decrease the step size by setting Ak+1 = θAk.
end

Algorithm 5.1 presents the basic method of our analysis. Note that its only difference
with Algorithm 3.1 is that it enforces feasibility of all the iterates. One may notice that
this feasibility requirement does not appear when the polling sets are computed. Even
though the upcoming theoretical results will rely on directions that generate feasible
trial points, the method may attempt to evaluate f at infeasible points (in which case
infeasibility is detected prior to the function call and the evaluation is not considered).

5.2 Probabilistic polling strategies for bound-constrained
problems

In this section, we consider that only bound constraints are present. The corresponding
problem is {

min f(x)
s.t. l ≤ x ≤ u.

(5.1)

Our objective is to apply a direct-search framework such as Algorithm 5.1 in order to
generate a sequence of feasible iterates {xk} converging towards a first-order stationary
point of problem (5.1). Since feasibility has to be maintained throughout the iterates,

89

we need to identify the possible bounds of concern at every iteration, i.e., those that
may prevent a move in the corresponding directions. Once this has been done, it is
possible to adapt the polling strategy (i.e., the polling set) to cope with these “active”
constraints.

Such an approach follows what has been proposed in the direct-search literature for
general linear inequality constraints. In the case of bound constraints, however, the
situation is simplified as the directions of interest are the coordinate vectors and their
negatives. This is a key feature in the deterministic case, that determines an ad hoc
polling strategy. Our objective is to build on this technique to generate feasible descent
directions in probability.

5.2.1 The coordinate set and its associated feasible descent properties

We begin our analysis of bound-constrained problems by looking in detail at the prop-
erties of the coordinate set, which we recall is given by

D⊕ = {e1, . . . , en, -e1, . . . , -en} .

The directions in that set will be called coordinate vectors or opposite coordinate vectors.
D⊕ is a natural choice for polling if one aims to conform the search directions to the
geometry of bound constraints. Besides, the fact that D⊕ is a PSS makes it a descent
set even when no bounds actually intervene at an iteration [75, 81].

In order to study the convergence properties of direct-search schemes relying on D⊕
for solving bound-constrained problems, the cones generated by coordinate vectors are
of critical importance. Given any cone K generated by a subset of D⊕, the projection
of v ∈ Rn onto K, denoted by vK is given component-wise as follows:

∀ i ∈ {1, . . . , n} , [vK]i =

[v]i if [v]i > 0 and ei ∈ K,

[v]i if [v]i < 0 and -ei ∈ K,

0 otherwise.

(5.2)

We state the result that is of most interest in Lemma 5.1, which is a mild genera-
lization of [75, Proposition 8.1].

Lemma 5.1 Consider a cone K generated by a subset of D⊕, and a vector v such that
its projection vK on K is not the zero vector. Then,

max
d∈D⊕

d> v

‖d‖‖vK‖
≥ 1√

n
, (5.3)

and this maximum is attained at a generator u ∈ D⊕ of K, for which we have

u> v = ‖vK‖∞ = max
1≤i≤n

|[vK]i| . (5.4)

90

Lemma 5.1 implies that for any cone K being positively spanned by a subset of the
coordinate vectors, those same vectors can provide information on the largest component
of the vector vK through their scalar product with the vector v. This largest component
may even be the largest of the original vector v, which increases further the quality of
this information. Such a remarkable feature can be explained by the fact that D⊕ can
be defined (not in a unique way) as the union of two orthonormal, opposite linear bases.
In order to use other types of polling sets, we would like to express the properties of D⊕
in a more general fashion.

Consider a point l ≤ xk ≤ u, and a step size αk > 0, corresponding to the k-th
iteration of a realization of Algorithm 5.1. We define the index sets of the free bound
constraints at (xk, αk) by

I+(xk, αk) = {i | [xk]i + αk ≤ ui} and I−(xk, αk) = {i | li ≤ [xk]i − αk} . (5.5)

For any index of those sets, a displacement from xk along the i-th coordinate direction
(either in the direction of ei,−ei or both) with a step size less than or equal to αk yields
a feasible point. This is of considerable interest given that Algorithm 5.1 only considers
steps of length αk. Note that the analysis can be extended by replacing αk in (5.5) by
any sequence {εk}k such that εk = o(αk) whenever k goes to infinity. Our study follows
the practical choice suggested in [80].

The approximate tangent cone at (xk, αk) is then given by

Tk ≡ T (xk, αk) = pspan
(
{ei}i∈I+(xk,αk) , {-ei}i∈I−(xk,αk)

)
. (5.6)

Such a cone is particularly useful, since we know that it contains feasible directions
(at least its generators).

We also define the approximate normal cone at (xk, αk) as follows:

Nk ≡ N(xk, αk) = pspan
(
{ei}i/∈I+(xk,αk) ∪ {-ei}i/∈I−(xk,αk)

)
. (5.7)

Nk is the polar cone to Tk, which means that for any vector v ∈ Rn there exists a
decomposition v = vTk + vNk with vTk ∈ Tk, vNk ∈ Nk and v>Tk vNk = 0 [96]. Such a
decomposition has been widely used in direct-search schemes addressing linear or bound
constraints [75, 81].

The property of interest for our analysis relates only to the approximate tangent
cone, as stated in Definition 5.1.

Definition 5.1 Let xk ∈ Rn such that l ≤ xk ≤ u and αk > 0 such that [−∇f(xk)]Tk 6= 0
if Tk 6= ∅, where Tk is defined following (5.6).
A set of vectors D is called a κ-feasible descent set for the problem (5.1) at (xk, αk) if

max
d∈D

l≤xk+αk d≤u

d> [−∇f(xk)]
‖d‖

∥∥∥[−∇f(xk)]Tk
∥∥∥ ≥ κ, (5.8)

where κ ∈ (0, 1).

91

By convention, one can consider a set as κ-feasible descent whenever the cone Tk is
empty.

Given the result of Lemma 5.1, an obvious choice for such a polling set consists in
using the coordinate vectors appearing in (5.6) (note that the size of this set can theo-
retically vary between 0 and 2n). By considering all vectors from D⊕, one thus ensures
both feasibility and descent when the step size is sufficiently small, while simultaneously
covering all possibilities in terms of approximate tangent cone [75].

Proposition 5.1 enlightens the strength of the coordinate set while dealing with
bound-constrained problems, and motivates further its extensive use within the direct-
search community.

Proposition 5.1 Let xk and αk be defined as in Definition 5.1. Then, the set D⊕ is a
1√
n

-feasible descent set, independently of the value of Tk.

The coordinate set thus provides strong guarantees in terms of descent; its main
drawback lies in its size, as using D⊕ in a direct-search method may result in 2n evalu-
ations per iteration. Since it has been shown than using (much) less than 2n directions
can still ensure convergence in probability in the unconstrained case, a natural question
to ask is whether similar properties can be derived for the bound-constrained setting.
We provide two possible answers in the next sections, by introducing polling rules that
exhibit a (probabilistic) behavior similar to that of D⊕.

5.2.2 A probabilistic technique based on the coordinate set

Let Tk = T (Xk,Ak) and Tk denote the approximate tangent cones in Algorithm 5.1 and
one of its realizations, respectively. One can make use of such random sets to propose a
probabilistic equivalent of Definition 5.1, as described below.

Definition 5.2 Under the same considerations as in Definition 5.1, let {Dk} be a se-
quence of randomly, independently generated sets, and (κ, p) ∈ (0, 1)2. Let

Ek = { Dk is a κ−feasible descent set for (5.1) at (xk, αk) } . (5.9)

The sequence {Dk} is called a (p, κ)-feasible descent sequence for problem (5.1) if

P (E0) ≥ p and ∀ k ≥ 1, P (Ek | σ (D0, . . . ,Dk−1)) ≥ p. (5.10)

A trivial way of satisfying such a property is the deterministic choice Dk = D⊕ (or
equivalently, a sequence of polling sets randomly independently drawn within a singleton
of possibilities, namely {D⊕}). Our objective is to find sets, possibly of smaller size, that
satisfy a similar probabilistic relation.

Our first proposal is a simple randomization of the deterministic strategy, that con-
sists in randomly selecting a sample of the coordinate directions to serve as polling
directions. This sample need only be drawn in the set of generators of the approximate
tangent cone in order to ensure a non-zero probability of selecting a direction of feasible
descent.

92

Suppose that the approximate tangent cone Tk at iteration k is generated by bk
vectors from the coordinate set D⊕, with 0 < bk ≤ 2n. Then, by randomly uniformly
selecting sk < bk of those directions as the polling set Dk, the results of Section 5.2.1
imply that the probability of having a 1√

n
-feasible descent set is at least of sk/bk. Recall

that when bk = 0, no move of length αk is possible in any of the coordinate directions, and
since it implies that [−∇f(Xk)]Tk = 0, we may ignore it for the analysis by considering
that the feasible descent property is satisfied no matter the value of the polling set. In
practice, however, it is often useful to try to compute a step along the directions within
the approximate normal cone in that case, ensuring that the corresponding step size
does not go below some minimum value.

For any p0 ∈ (0, 1), it is then easy to determine the minimum number of directions
required to satisfy

sk
bk

> p0 ⇔ sk ≥
⌈
bk ln θ

ln(γ−1 θ)

⌉
.

Given that the tangent cone is, in the worst case, generated by 2n directions, randomly
choosing d2n p0e coordinate directions at most (only when it is possible) would imply
that the set sequence is a feasible descent sequence as defined below.

Proposition 5.2 Let p0 ∈ (0, 1) and Dk ⊂ D⊕ be chosen as a subset of sk > dbk p0e
columns within the generators of Tk whenever Tk 6= ∅, independently drawn at every
iteration. Then, {Dk} is a

(
p, 1√

n

)
-feasible descent set sequence for any p > p0.

The advantages and disadvantages of this approach are clear from by Proposition 5.2
and the above discussion. On the one hand, by generating fewer directions than those
actually necessary to generate the entire approximate tangent cone, we might not con-
sider the one satisfying (5.3). On the other hand, such a direction may not be the only
feasible descent one. Moreover, by using a sample of the directions in D⊕, the cost of a
full poll step is cheaper than in a standard coordinate search method.

5.2.3 Using subspaces to reduce the number of directions

Our second technique is designed to decrease further the size of the polling sets. The
underlying idea is based on the results from Chapter 3, in which we have seen that direct
search using randomly generated directions in Rn can rely on a number of directions that
does not depend on the dimension of the space. Therefore, it seems possible to reduce the
minimal number of polling directions whenever the approximate tangent cone contains
a subspace.

Let T sk denote the lineality space of the approximate tangent cone Tk, i.e. the sub-
space of highest dimension contained in this cone. We then have the following decom-
position of Tk into a subspace and a cone that are orthogonal:

Tk = T sk + T ck .

93

where T sk is linearly spanned by a subset {ei}i∈Is
k

of the coordinate vectors, and T ck is a
cone positively spanned by {ei}i∈Ic+

k
∪ {-ei}i∈Ic−

k
, with

I
c+
k = I+

k \ I
s
k, I

c−
k = I−k \ I

s
k.

In what follows, T sk and T ck will represent realizations of T sk and T ck .
The first part of our polling strategy will consist in using random directions in the

lineality space T sk , together with generators of the cone T ck . For such vectors, one easily
establishes the following property thanks to the definition of the projection over Tk.

Lemma 5.2 Under the definitions above, suppose that Tk 6= ∅ and consider a direction
d belonging to

T sk
⋃
{ei}i∈Ic+

k

⋃
{-ei}i∈Ic−

k
. (5.11)

Then, for any vector v,
d> v = d> [v]Tk .

Our aim is to reach a quality of the polling sets which is comparable with the one
we obtain by using directions from D⊕. To do so, it suffices to guarantee that we can
ensure descent in the lineality space whenever needed, as shown in the following lemma.

Lemma 5.3 Consider a realization of Algorithm 5.1 and let D be a set of vectors in Rn
such that D ∩ T sk is κ-descent in the subspace T sk , i.e., for any nonzero vector w ∈ T sk ,

max
d∈D∩T s

k

d>w

‖d‖‖w‖
≥ κ.

Suppose further that D contains all generators of the cone T ck .
In that case, for any v ∈ Tk, ‖v‖ 6= 0, we have

max
d∈D

d> v

‖d‖‖[v]Tk‖
≥ κ√

n
. (5.12)

Proof. One must distinguish two cases, namely

max
d∈D⊕

d> v

‖d‖‖ [v]Tk ‖
= max

d∈D⊕∩T sk

d> v

‖d‖‖ [v]Tk ‖
(5.13)

and
max
d∈D⊕

d> v

‖d‖‖ [v]Tk ‖
= max

d∈D⊕∩T ck

d> v

‖d‖‖ [v]Tk ‖
. (5.14)

In the second case, since D contains the generators of T ck that belong to D⊕, it is clear
that we have

max
d∈D

d> v

‖d‖‖ [v]Tk ‖
≥ max

d∈D⊕∩T ck

d> v

‖d‖‖ [v]Tk ‖
≥ 1√

n
. (5.15)

94

In the first case, since D ∩ T sk is κ-descent, we have

max
d∈D∩T s

k

d> [v]T s
k

‖d‖‖[v]T s
k
‖
≥ κ. (5.16)

In addition, for any d ∈ D ∩ T sk , we have d> v = d> [v]T s
k

and

‖[v]T s
k
‖

‖vTk‖
≥ 1√

n
,

by definition of the cone Tk. This leads to

max
d∈D

d> v

‖d‖‖ [v]Tk ‖
≥ max

d∈D⊕∩T sk

d> v

‖d‖‖ [v]Tk ‖
≥ 1√

n
max

d∈D⊕∩T sk

d> v

‖d‖‖ [v]T s
k
‖
≥ κ√

n
. (5.17)

Putting (5.15) and (5.17) yields the desired result. �
From Section 3.5, we know how to generate directions in the lineality space so that

they have a probability p of being of κ-descent with κ = τ√
n

. In Section 5.2.2, we have
seen a way to determine the size of the random sample of the remaining generators of
Tk we have to draw, so as to guarantee the same probability of drawing any direction.
As a result, we obtain the following property for our strategy.

Proposition 5.3 Let p0 = ln(θ)/ ln(γ−1 θ). Consider Algorithm 5.1 and let {Dk} be
its sequence of polling sets. Then, there exist s, that depends solely on θ and γ, and a
sequence {sck}, depending on p0 and the number of generators of T ck , such that if every
Dk is generated by taking s unit vectors uniformly in T sk and sck generators of T ck , the
corresponding sequence is

(
p, τn

)
-feasible descent set for some p ≥ p0 and τ ∈ (0,

√
n]

independent of the problem dimension.

Proof. From Corollary 3.4, we know that a set formed of

s > log2

(
1− ln θ

ln γ

)

generated in the intersection of the unit sphere with T sk is τ/
√
n-descent with a proba-

bility p ≥ p0, where p and τ do not depend on n, provided the projection of the negative
gradient onto this subspace is not zero.

Meanwhile, if we sample sck = dp bcke, where bck is the number of generators of T ck , we
know that these vectors form a 1√

n
-descent set with a probability 1/

√
n.

As the two sets are independent, their union Dk has a probability at least p of being
in the assumptions of Lemma 5.3, with κ = τ√

n
. �

95

5.2.4 Theoretical properties of the probabilistic variants

This section presents a general convergence analysis of Algorithm 5.1 applied to bound-
constrained problems. Our convergence result will involve the following criticality mea-
sure:

χ(x) = max
l≤x+w≤u
‖w‖≤1

w> [−∇f(x)] . (5.18)

It is well-known that χ is a continuous, non-negative function of x, that equals 0 at
first-order stationary points of the problem (5.1).

In addition to the assumptions of Chapter 3 regarding the boundedness and the
smoothness of the objective function, we will also need the gradient to be bounded in
norm over the feasible domain. This is the sense of the following assumption, which is
standard in direct-search algorithms applied to linearly-constrained problems.

Assumption 5.1 The gradient of the objective function is bounded in norm on the
feasible set { l ≤ x ≤ u }, i.e.,

∃Bg > 0, ∀x ∈ {l ≤ x ≤ u}, ‖∇f(x)‖ ≤ Bg.

Our analysis begins with the following key lemma on unsuccessful iterations.

Lemma 5.4 Consider a realization of Algorithm 5.1 applied to problem (5.1). Suppose
that Assumptions 2.1 and 5.1 hold, and that Dk is a κ-feasible descent set at (xk, αk)
with unit directions, with k being the index of an unsuccessful iteration. Then,

∥∥∥[−∇f(xk)]Tk
∥∥∥ ≤ 1

κ

(
νg
2 αk + ρ(αk)

αk

)
(5.19)

and
χ(xk) ≤

[
νg
2κ +

√
nBg

]
αk + ρ(αk)

καk
. (5.20)

Proof. Let dk be a feasible direction in Dk satisfying

d>k [−∇f(xk)]
‖dk‖ ‖ [−∇f(xk)]Tk ‖

≥ κ.

By a first-order Taylor expansion of f(xk + αk dk), one has

−ρ(αk) ≤ f(xk + αk dk)− f(xk)
≤ −κ αk

∥∥∥[−∇f(xk)]Tk
∥∥∥+ νg

2 α
2
k,

thus (5.19) holds.

96

Besides, we have that

χ(xk) = max
l≤xk+w≤u
‖w‖≤1

w> [−∇f(xk)]

= max
l≤xk+w≤u
‖w‖≤1

(
w> [−∇f(xk)]Tk +

(
[w]Tk + [w]Nk

)>
[−∇f(xk)]Nk

)
,

≤ max
l≤xk+w≤u
‖w‖≤1

(
[w]> [−∇f(xk)]Tk + [w]>Nk [−∇f(xk)]Nk

)
,

by property of the decomposition on the cone Tk and its polar Nk.
Since ‖w‖ ≤ 1, we can use (5.19) to bound the first term on the right-hand side,

independently of w.
As for the second term, we have

[w]>Nk [−∇f(xk)]Nk ≤
∥∥∥[−∇f(xk)]Nk

∥∥∥ ∥∥∥[w]Nk
∥∥∥ .

Now, by definition of Nk, the projection of w onto this cone can be written as

[w]Nk =
∑
i/∈I+

k

β+
i ei −

∑
j /∈I−

k

β−j ej ,

where β+
i and β−j are nonnegative coefficients.

Since xk + w is feasible, we know that none of the components of w can exceed αk.
Therefore, we necessarily have ‖ [w]Nk ‖ ≤

√
nαk. By definition of the projection onto

the cones Nk, we also have

‖ [−∇f(xk)]Nk ‖ ≤ ‖ −∇f(xk)‖ ≤ Bg,

Therefore, we can obtain a bound on the second term that does not depend on w.
Together with the first one, this yields (5.20). �

Lemma 5.4 is thus the equivalent of Lemma 3.2 for the bound-constrained setting.
We can thus apply the same analysis as in Chapter 3 to establish convergence. Indeed,
Algorithm 5.1 relies on the same decrease condition and step size updates as Algo-
rithm 3.1; we can thus retain the result of Lemma 3.1, which implies that the step size
goes to zero for all realizations of the method. Provided we can guarantee satisfaction
of the κ-feasible descent property sufficiently often, we can define an appropriate sub-
martingale to ensure that this yields convergence of the framework. Theorem 5.1 states
the result.

Theorem 5.1 Let Assumptions 2.1, 2.2, 2.4 and 5.1 hold. Suppose that Algorithm 5.1
is applied using a polling set sequence {Dk} of unit vectors that is (p, κ)-feasible descent
with p ≥ p0, where p0 = ln θ/(ln

(
γ−1 θ

)
. Then

P
(

lim inf
k→∞

χ(Xk) = 0
)

= 1. (5.21)

97

Following the lines of Section 2.3, we can also derive worst-case probabilistic com-
plexity bounds on the number of iterations and evaluations necessary to satisfy

inf
0≤l≤k

χ(xl) < ε, (5.22)

for a given threshold ε ∈ (0, 1). The resulting estimate is given below.

Theorem 5.2 Let Assumptions of Theorem 5.1 hold, and suppose further that the se-
quence {Dk} is (p, κ)-feasible descent with p > p0. In addition, suppose that the forcing
function is ρ(α) = c α2/2 and that

ε ≤ C α0
2γ , (5.23)

with C =
(
(c+ νg)κ−1 + 2

√
n
)
Bg. Then, the first index Kε for which (5.22) holds

satisfies

P
(
Kε ≤

⌈
β C2

c (p− p0)ε
−2
⌉)
≥ 1− exp

[
−β(p− p0) C2

8c p ε−2
]
. (5.24)

where β is a bound on
∑∞
k=0 α

2
k.

We now comment on the values taken by this bound in our two strategies. Suppose
first that the polling sets are randomly generated following the technique described in
Section 5.2.2, i.e. by sampling s directions in the generators of the approximate tangent
cone. We know that by choosing s > d2n p0e directions, the sequence will be (p, κ)-
feasible descent with p > p0 and κ = 1/

√
n; as a result, (5.24) above becomes

P
(
Kε ≤

⌈
β (c+ νg + 2)2

c (p− p0) n ε−2
⌉)
≥ 1− exp

[
−β(p− p0) (c+ νg + 2)2

8 c p n ε−2
]
. (5.25)

The previous bound thus yields a probabilistic worst-case estimate of the number of
function evaluations in O

(
s nε

−2

p−p0

)
, holding with overwhelming probability. Note that

we kept the term involving the probability p, since it can now depend on the dimension
n (note however that the other constants remain independent on n and s). Assuming
for instance p0 = 1/2, we have that p − p0 = O

(
1
n

)
and s = n + 1, thus the bound

is in O
(
n3 ε−2). This is one order of n worse than what one can obtain using D⊕ to

solve bound-constrained or unconstrained problems Such a result should not come as a
surprise, since we restricted ourselves to the use of directions from the set D⊕.

If we aim at exploiting subspace information in the spirit of Section 5.2.3, we observe
a deterioration of the bound as κ is now of order of 1

n instead of 1√
n

. Even though less
directions can be used in practice with that technique, in the worst case, it might be that
subspaces are not worth exploiting and one should instead rely on coordinate directions,
as in the previous strategy. In such a case, the bound deteriorates by an additional order
of n, i.e., O

(
n4 ε−2).

98

Note that when there are only nb < n variables subject to bound constraints, a
subspace of dimension n− nb will always be included in the approximate tangent cone.
Therefore, if we let γ = 2 and θ = 0.5, the worst-case number of evaluations decreases
to s = nb + 2 as it suffices to generate 2 directions in the subspace to have descent in
probability. This also means that we will have p− p0 = O

(
1
nb

)
, which yields a bound in

O
(
nb(nb + 2)n2ε−2

)
.

This probabilistic technique may then prove beneficial when few variables are bounded.
This makes sense as the method would need less directions to conform to the geometry
of the feasible set.

5.3 Probabilistic feasible descent for linear equality con-
straints

In this section, we describe a straightforward extension of the unconstrained setting to
handle linear equality constraints on the problem variables, i.e. we consider{

min f(x)
s.t. Ax = b.

(5.26)

Here A ∈ Rne×n, with ne ≤ n, with the convention that ne = 0 if there are no
constraints. We make the following assumption on this matrix.

Assumption 5.2 Either ne = 0, in which case the matrix A is empty and we are in the
unconstrained case, or ne ≥ 1 and the matrix A is of full row rank.

The presence of linear equality constraints can be viewed as a reduction on the size
of the problem. As a result, solving the problem might be done at a cheaper cost than
in the unconstrained case, provided we can introduce the linear relationship provided by
the constraints within our algorithm.

5.3.1 Subspace-based direction generation techniques

In the presence of linear equality constraints, designing a method based on feasible
descent directions means that at the k-th iteration, one must consider evaluating the
function along a vector d ∈ Rn satisfying

d>∇f(xk) < 0 and Ad = 0. (5.27)

Let Z ∈ Rn×(n−ne) be a basis matrix for the null space of A, which we will assume
to be orthonormal for simplicity. To obtain a feasible descent direction, one need only
choose a direction p ∈ Rn−ne such that

p>Z>gk = g>k (Z p) < 0. (5.28)

99

The vector Z> gk is called the reduced gradient of f at xk; its opposite plays the same role
as the negative gradient in unconstrained optimization. Note that contrary to the bound-
constrained case, the step size does not intervene in the above feasibility requirement. For
this reason, our analysis will be closely related to the unconstrained case. Indeed, instead
of directly generating directions in the variable space, we may produce vectors in Rn−ne
and then poll along the directions defined by Z Dk, which are in Rn and will be feasible
directions. This was the approach proposed by Liu and Zhang [85] for pattern-search-
type methods. Our proposal is slightly different, and consists in generating directions in
Rn and to multiply them by Z Z>. Definition 5.3 describes the quality we expect from
such a polling set when linear equality constraints are present.

Definition 5.3 Consider a realization of Algorithm 5.1 applied to Problem (5.26). Let
Z be an orthonormal basis for the null space of A and consider a feasible point xk such
that

∥∥∥−Z>∇f(x)
∥∥∥ 6= 0. A set D ⊂ Rn is said to be κ-feasible descent for problem (5.26)

at xk if

max
d∈D

‖Z> d‖6=0

d> Z
[
−Z>∇f(xk)

]
‖Z> d‖‖ − Z>∇f(xk)‖

≥ κ, (5.29)

where κ ∈ (0, 1).

For instance, by choosing D = D⊕, the property is satisfied as by definition, [Z −Z]
is a positive basis for the null space of A (note that [Z Z> −Z Z>] is a Positive Spanning
Set for this subspace).

We again emphasize that the basis Z and the set D are not necessarily related.
This is a key element of our analysis since it allows to generate random directions while
ensuring feasibility, as we will see later.

The next definition is the probabilistic counterpart of Definition (5.3).

Definition 5.4 Under the same considerations as in Definition 5.3, consider a sequence
of randomly, independently generated sets {Dk}, and (κ, p) ∈ (0, 1)2. Consider the event

Ek = { Dk is a κ-feasible descent set for (5.26) at xk } . (5.30)

The sequence {Dk} is called a (p, κ)-feasible descent sequence for problem (5.26) if

P (E0) ≥ p and ∀ k ≥ 1, P (Ek | σ (D0, . . . ,Dk−1)) ≥ p. (5.31)

To produce such a sequence, one can use the approach of Section 5.2.2, consisting
here in selecting a random subset of the columns of [Z Z> −Z Z>]. Another possibility
is to perform random generation within the null space of A, which can be assimilated to
both the technique of Section 5.2.3 and that presented in Section 3.5.

For simplicity of exposure, we will now rely on polling sets that fall into Assump-
tion 5.3.

100

Assumption 5.3 The polling sets used in Algorithm 5.1 are of the form Z Z>Dk, where
Dk is a set of vectors in Rn that are normalized so that

∀ d ∈ D,
∥∥∥Z> d∥∥∥ = 1.

If Z is an orthonormal basis, it implies that
∥∥∥Z Z> d∥∥∥ = 1.

The trial points at iteration k thus are of the form xk + αk Z Z
> d, which guarantee

their feasibility. Note that this normalization has been adopted in our numerical expe-
riments; its motivation can be understood through the following lemma and proposition.

Lemma 5.5 Let d be a random vector following a standard normal distribution in Rn,
which we denote by

d ∼ N (0Rn , In) .

Let Z ∈ Rn×(n−ne) be an orthonormal basis of a subspace of Rn, of dimension n − ne.
Then

Z> d ∼ N (0Rn−ne , In−ne) ,

that is Z> d follows a standard normal distribution in Rn, and consequently

Z> d

‖Z> d‖
∼ USn−ne−1 ,

i.e., Z> d
‖Z> d‖ is uniformly distributed in the unit sphere in Rn−ne.

As a result, one can apply the proof technique from the unconstrained case (see
Corollary 3.4) to conclude on the number of directions needed to produce a feasible
descent sequence.

Proposition 5.4 Suppose that the polling set sequence in Algorithm 5.1 is of the form{
Z Z>Dk

}
, where Dk contains a fixed number m of directions randomly independently

generated following a standard normal distribution in Rn. Then, if

m > log2

(
1− ln θ

ln γ

)
, (5.32)

it exists p ≥ p0 and τ > 0 determined by θ and γ such that the polling set sequence is
(p, τ/

√
n− ne)-feasible descent for problem (5.26).

5.3.2 Convergence and complexity study

As in Section 5.2.4, we highlight the core differences between this setting and the un-
constrained one rather than repeating an almost identical analysis. In the case of linear
equality constraints, the reasoning is even more similar.

101

Lemma 5.6 Let Assumptions 2.1 and 5.3 hold. Consider a realization of Algorithm 5.1,
and assume that Z> gk 6= 0 with k being the index of an unsuccessful iteration; then, if
Dk is a κ-feasible descent set at xk,∥∥∥Z> gk∥∥∥ ≤ 1

κ

(
νg
2 αk + ρ(αk)

αk

)
. (5.33)

Theorem 5.3 Let Asssumptions 2.1, 2.2, 2.4 and 5.2 hold. Consider an application of
Algorithm 5.1 with a polling set sequence generated following Assumption 5.3; suppose
further that the sequence {Dk} is a (p, κ)-feasible descent sequence for problem (5.26),
with (κ, p) ∈ (0, 1)2 and p ≥ p0 = ln(θ)/ ln

(
γ−1 θ

)
.

Then, the sequence of iterates produced by the algorithm satisfies

P
(

lim inf
k→∞

‖Z>Gk‖ = 0
)

= 1. (5.34)

The worst-case probabilistic complexity bounds of interest concern here the number
of iterations and evaluations necessary to satisfy

inf
0≤l≤k

∥∥∥Z>∇f(xl)
∥∥∥ < ε, (5.35)

with ε ∈ (0, 1).

Theorem 5.4 Let Assumptions of Theorem 5.3 hold, and suppose that the sequence
{Dk} is (p, κ)-feasible descent with p > p0. Additionally, suppose that ρ(α) = c α2/2 and

ε ≤ (c+ νg)α0
2κγ , (5.36)

the first index Kε for which (5.35) does not hold satisfies

P
(
Kε ≤

⌈
β (c+ νg)2

c(p− p0)κ2 ε
−2
⌉)
≥ 1− exp

[
−β(p− p0) (c+ νg)2

8cpκ2 ε−2
]

(5.37)

where β is a bound on
∑∞
k=0 α

2
k.

The results of Theorem 5.2 are more insightful than in the bound-constrained case.
Indeed, a similar study as the one proposed in the unconstrained case establishes that
in the subspace of dimension n − ne spanned by Z, it is possible to randomly generate
directions so that the corresponding polling set sequence is (p, τ/

√
n− ne)-descent, with

p and τ independent of n and ne. The resulting bound on the number of iterations is
thus in

O
(
(n− ne) ε−2

)
, (5.38)

while, if we let m be the (maximum) number of vectors contained in the polling sets at
every iteration, the bound on the number of function evaluations is

O
(
m (n− ne) ε−2

)
, (5.39)

102

both results holding with overwhelming probability as ε→ 0.
Since s can be taken independently of ne and n, the resulting complexity bound is

of order O((n − ne) ε−2). This bound not only represents an improvement compared
to the deterministic case, where one would consider a positive spanning set for the null
space of A, but also brings new insights on the interest of maintaining equality linear
constraints in an optimization problem. Indeed, even if those constraints cannot be
trivially solved so as to reduce the initial problem to one with an equivalent solution (in
Rn−ne), one may still aim at solving the original problem as efficiently as it would be
solved in Rn−ne . In that case, the results from Chapter 3 indicate that the complexity
of a direct-search method based on probabilistic descent would be in O

(
(n− ne) ε−2),

which is what we obtain in the present chapter. The effect of randomness in the linearly
equality-constrained case thus seems the same than in the unconstrained one.

5.3.3 Addressing linear inequality constraints

An extension of the strategy proposed in the previous section can be considered through
an active-set strategy, such as the ones proposed in [75], so as to handle linear inequality
constraints by considering those close to the current point as linear equalities. The
main drawback of this approach is that one must compute as much bases Z as there are
possibilities for the tangent cone. Since the number of inequality constraints can be large,
this may result in significant computation time to determine those bases, even though
they would be determined prior to the execution of the method (see [77] for a description
of classical techniques). Besides, in the inequality-constrained case, degeneracy of the
constraints at a particular point is often encountered, particularly whenever the linear
inequality constraints are considered under a general form that may include bounds [5].

5.4 Numerical results

In this section, we present numerical results for problems coming from the CUTEst col-
lection [65]. We implemented our various strategies in MATLAB and use the built-in
patternsearch function [89] for comparison. We set the options of this function and ours
so that they would follow the Generating Set Search approach for bound-constrained or
linearly-constrained optimization problems given in [75], our objective being to remain
as close as the default settings as possible. More specifically, for all methods, the budget
was taken to be 2000n evaluations, and the minimum step size allowed was given by
10−6 α0, with α0 = 1. The increase and decrease parameters for the step size were set
at γ = 2 and θ = 0.5 (which means that p0 = 1/2).

We ran the methods with these budget and limit sizes, yielding a best obtained value
fbest for all problems considered. Performance profiles [50, 95] were then established for
a given tolerance ε by computing the number of function evaluations needed by each
method to reach an iterate xk at which

f(xk)− fbest < ε (f(x0)− fbest) .

103

Such profiles plot the fraction of problems for which the method is the least expensive in
terms of function calls (y-axis), then the fraction of problems solved given an additional
expense with respect to the best one. Note that methods based on random directions
were run ten times and the mean of the results was used.

5.4.1 Bound-constrained problems

We first present results on problems that only enforce bound constraints on their vari-
ables. For each of these problems, we chose small sizes so that the benchmark was
composed of 63 problems, with 29 being of dimension at least 10.

Three variants of our randomized setting are considered in those results. The variant
0 simply consists in choosing a random permutation of the columns of the coordinate
set: it appeared relevant to include this variant in our algorithm to verify that the
differences between our strategies and the deterministic ones were due to more than a
random ordering of the polling directions (note that it clearly relies on a feasible descent
set). The variant 1 corresponds to the sampling approach described in Section 5.2.2 for
bound constraints, with a sample size adjusted at every iteration to the minimal number
of vectors needed to be feasible descent with sufficient probability. Finally, the variant
2 is related to the subspace approach described in Section 5.2.3.

As expected, the coordinate set performs quite well in this setting; yet, with a sample
size of order of half of the directions within the set of free bound constraints, we are
able to reach similar (often improved) final function values, with a considerably lower
number of function evaluations.

Because of this economy in the polling process, the probabilistic techniques exhibit
superior performance compared to the MATLAB implementation, see Figure 5.1. The
technique 1, described in Section 5.2.2, outperforms the others. Rather than being
tied to partial separability of the test problems (applying a rotation to the variables
prior to function evaluation essentially yields the same profiles), this performance can
be explained by the intrinsic properties of D⊕ with respect to the bound constraints.

5.4.2 Linearly-constrained problems

We first tested the strategies described in Section 5.3 on ten tests problems from the
CUTEst collection for which only linear equality constraints were present. Here the
variants 0 and 1 consisted in using [Z Z>−Z Z>] as search directions, respectively with
a random permutation and a random subset selection. In the variant 2, we drew two
opposite directions within the null space of A, so as to encounter one of descent type
with a probability higher than p0 = 0.5.

Table 5.1 presents the results obtained on those problems by running the methods
until either αk decreased below 10−6 α0 or the budget of 2000n function evaluations was
exceeded. On such examples, our variants of Algorithm 5.1 managed to reach comparable
(even better) function values compared to the MATLAB function in significantly less
function evaluations. Interestingly, when all methods reached the same final value, the
dspfd-2 was the least expensive in doing so.

104

0 1 2 3 4 5 6 7

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

dspfd-0

dspfd-1

dspfd-2

matlab

(a) ε = 10−3.

0 1 2 3 4 5 6 7 8 9 10

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

dspfd-0

dspfd-1

dspfd-2

matlab

(b) ε = 10−6.

Figure 5.1: Performance of three variants of Algorithm 5.1 versus MATLAB
patternsearch on bound-constrained problems.

105

Table 5.1: Number of evaluations and final value on problems with linear equality con-
straints.
Problem Dim Lin. Eq. dspfd-0 dspfd-1 dspfd-2 matlab
BT3 5 3 201 1e+39 101 1e+39 41 1e+39 201 1e+39
HIMMELBA 2 2 81 0.0 41 0.0 41 0.0 81 0.0
HS9 2 1 197 -0.5 69 -0.5 52 -0.5 229 -0.5
HS28 3 1 249 4e-31 176 2e-31 157 8e-14 182 1e-30
HS48 5 2 354 1e-30 203 8e-31 211 2e-13 977 6e-13
HS49 5 2 10000 1e-06 9025 7e-10 9476 3e-07 10000 1e-07
HS50 5 3 438 3e-26 290 4e-27 185 5e-13 448 1e-26
HS51 5 3 281 7e-31 152 9e-31 144 3e-14 322 8e-30
HS52 5 3 201 1e+40 101 1e+40 41 1e+40 201 1e+40
ZANGWIL3 3 3 121 0.0 61 0.0 41 0.0 121 0.0

Our final experiment is made on a benchmark of problems that includes the previous
ten problems, as well as 34 problems with both linear equality constraints and bounds
on the variables. This benchmark thus consists of 44 CUTEst problems, with dimension
varying between 2 and 32.

Note that feasibility is a more critical issue for general problems involving the two
types of constraints. Indeed, the basis of the null space of A is generally not aligned
with the coordinate axes: thus, feasibility of the directions forming the basis is no
longer guaranteed, nor can it be certified that the directions are able to produce feasible
descent. Still, it appeared interesting to test our method in such an environment. The
polling strategies remained the same as for the case of sole linear equality constraints,
but we only considered directions in

[
Z Z> −Z Z>

]
for which a displacement of αk was

possible without violating the bounds. We then proceeded as in Section 5.2, only with
the columns of Z Z> playing the role of the coordinate directions.

Figure 5.2 presents the resulting performance profiles, obtained by aiming at a con-
vergence criterion. Note that on those problems, the performances of the variants 0 and
1 are much closer to that of MATLAB’s patternsearch, and the potential improvement
they might generate seems rather due to random ordering of the vectors than to the sam-
pling strategy. However, the variant dspfd-2, that has more freedom in the choice of
its directions by randomly generating directions in subspaces, is by far the most efficient
method. This supports our claim that identifying subspaces in which one can proceed
as if the problem was unconstrained is beneficial for our probabilistic strategies.

106

0 0.5 1 1.5 2 2.5 3 3.5 4

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

dspfd-0

dspfd-1

dspfd-2

matlab

(a) ε = 10−3.

0 1 2 3 4 5 6 7

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

dspfd-0

dspfd-1

dspfd-2

matlab

(b) ε = 10−6.

Figure 5.2: Performance of three variants of Algorithm 5.1 versus MATLAB
patternsearch on problems with linear equality constraints, with or without bounds.

107

5.5 Conclusion of Chapter 5

We presented several probabilistic techniques for solving bound-constrained and linearly-
constrained problems with direct-search methods that do not rely on generating sets at
every iteration. As enlightened by our analysis, the cost of such techniques is essentially
influenced by the number of constraints. Linear equality constraints produce reduction
on the dimensionality of the problem, and, consequently, asymptotically require a lower
number of function evaluations to reach a given tolerance. On the contrary, bound
constraints tend to have the opposite effect in that they may need to use a significant
amount of coordinate directions to guarantee feasible descent. This brings supplementary
insights regarding the relevancy of the coordinate set for direct-search methods applied to
bound-constrained problems. The probabilistic reasoning shows that using only a sample
of those vectors can be more economical and potentially improve the performance, while
converging with probability one to a stationary point of the problem.

Our study provided several possibilities for using fewer directions while maintaining
convergence guarantees when one type of constraints is to be addressed, yet our strate-
gies appear to be of use even in general formulations. Indeed, our variants based on
probabilistic properties were observed to outperform the standard direct-search instance
available in the MATLAB toolbox, on a benchmark including problems for which the
optimization variables were subject to bounds and/or linear equality constraints. Such
results strongly encourage to use probabilistic approaches to address linearly-constrained
problems, especially in the context of costly function evaluations. Exploiting (feasible)
subspaces stands out as a key feature that enables to reduce the number of calls to the ob-
jective, thanks to a random generation argument already employed in the unconstrained
setting.

108

Chapter 6

Second-order results for
deterministic direct search

When applied to smooth problems, derivative-free algorithms mostly focus on appro-
ximating the information brought by the first-order derivative. Although there exist
frameworks, essentially of model-based type, that care to exploit second-order informa-
tion whenever present, such approaches are often associated with a cost that is pro-
hibitive in practice. This is particularly true when the methods are built so as to ensure
convergence towards a second-order stationary point. Still, the potential improvement
brought by second-order considerations may be worth the expense, in that it can im-
prove the best attainable value for a given budget of function calls, as well as the general
robustness of the algorithm.

This chapter presents and complements the existing results regarding second-order
properties of the direct-search class of methods. Section 6.1 introduces the challenges
related to second-order in the DFO setting. In Section 6.2, the analysis of an elementary
direct-search algorithm is performed from a second-order viewpoint, showing both the
potential and the limitations of this basic framework. Section 6.3 presents an algorithm
that is provably second-order convergent, for which complexity bounds can be obtained.
The numerical behavior of the new method is investigated in Section 6.4, where second-
order considerations prove themselves beneficial on nonconvex problems.

109

6.1 Exploiting negative curvature in a derivative-free en-
vironment

Second-order aspects have been shown to be beneficial in the derivative-based setting,
even more when the function to optimize is not convex [63, 94]. Indeed, in that case,
the Hessian matrix can have negative eigenvalues, and decrease in the function value
might be possible along the associated eigenvectors. The goal of a second-order conver-
gent optimization method is to compute both descent directions and negative curvature
directions, so as to ensure convergence of the sequence of iterates towards a second-order
stationary point (at which the gradient is zero and the Hessian is positive semidefinite).

Most derivative-free schemes are only concerned with approximating the first-order
derivative, and therefore do not assume existence of higher-order information. Even
though theoretical analysis has been proposed for second-order convergent methods
(mostly inspired by the derivative-based literature), such aspects are often discarded
in practical implementations, due to their unavoidable cost.

In the model-based family of algorithms, it is possible to design second-order glo-
bally convergent derivative-free methods, provided the associated models satisfy suitable
approximation properties [37]. One way to fall into such assumptions consists in buil-
ding polynomial approximation models using the values of (n+1)(n+2)

2 points around the
current iterate.

For the direct-search class, intrinsic second-order properties of the frameworks have
been studied in the cases of pattern search [2], mesh adaptive direct search [3] and gene-
rating set search [6], the third proposal following an algorithm presented by Frimannslund
and Steihaug [57] based on approximating the Hessian matrix and using the resulting
eigenvectors as polling directions. Note that in all these cases, the computation of nega-
tive curvature directions is not the goal that is pursued. Consequently, the methods may
not possess global second-order convergence guarantees, and none of them was endowed
with a complexity analysis.

6.2 Weak second-order criticality measure and associated
results

In this section, we provide a study of the basic direct-search scheme of Algorithm 2.1 in
a second-order perspective. Similarly to what was done in [2, 3], we want to understand
if second-order information (provided it exists) can be gathered by an elementary direct-
search method.

6.2.1 Second-order in a general direct-search framework

In order to take second-order aspects into account, we need to strengthen the usual
assumptions for first-order analysis. Assumption 6.1 relates to the regularity of the
objective, while Assumption 6.2 corresponds to the forcing function.

110

Assumption 6.1 The function f is twice continuously differentiable with Lipschitz-
continuous gradient and Hessian, of respective Lipschitz constants νg and νH .

Assumption 6.2 The forcing function ρ : R+ → R+ satisfies the following properties:

i) ρ is non-decreasing,

ii) ρ(α) = o(α2) when α→ 0+.

Note that when t→ 0+, one has ρ(α) = o(α), so a function satisfying Assumption 6.2
also verifies the first-order requirement of Assumption 2.4.

For simplicity of exposure, we also make the following hypothesis.

Assumption 6.3 The Search Step of Algorithm 2.1 is omitted or, equivalently, the set
of search directions is empty at every iteration.

We finally look at the suitable properties that are to be satisfied by the polling
sets. As described in Chapter 2, the use of PSSs is a common way of ensuring that a
deterministic direct-search method considers descent directions. In order to maintain
the first-order properties of the framework, we will thus assume that each polling set
contains a PSS.

In addition, existing second-order convergence analyses are based on symmetric
polling sets for a refining subsequence. Such symmetric sets have the property that
-D = {-d | d ∈ D} = D, which allows to take advantage of evaluations of the function
in opposite directions. This is fundamental if one aims at considering the second-order
difference scheme (for a Lipschitz continuous Hessian)

f(xk + αk dk)− 2 f(xk) + f(xk − αk dk) = α2
k d
>
k ∇2f(xk) dk +O(α3

k) (6.1)

that serves as an approximation of the second-order directional derivative. This being
said, one can still prove results in the more general case where each polling set admits a
symmetric subset. This case is described in the following assumption.

Assumption 6.4 The polling sets Dk are finite Positive Spanning Sets of unitary vec-
tors, such that the symmetric part of Dk defined by

Vk = {d ∈ Dk | - d ∈ Dk}

is not empty, and that the sequence of cosine measures is bounded from below by κg > 0.

A relevant example of such a sequence is Dk = [Q -Q] = QD⊕, where Q is a rotation
matrix. In that case, we have Dk = Vk at each iteration.

Under the previous assumptions, we can still derive the proof of Lemma 2.1, thus
resulting in the convergence of the step size sequence. We restate the property below
for convenience.

Lemma 6.1 Under Assumptions 2.2 and 6.2 to 6.4, limk→∞ αk = 0.

111

Lemma 6.2 enlightens the second-order property that can be stated using Vk.

Lemma 6.2 Under Assumptions 6.1 and 6.4, consider an iteration of index k ∈ U .
One has

‖∇f(xk)‖ ≤ κ−1
g

(
ρ(αk)
αk

+ νg
2 αk

)
(6.2)

and
min
d∈Vk

d>∇2f(xk) d ≥ −
(

2 ρ(αk)
α2
k

+ νH
3 αk

)
. (6.3)

Proof. The proof of (6.2) is identical to that of Lemma 2.2, therefore we focus on
proving the second-order property (6.3).

Consider a direction d ∈ Vk. Given that both d and −d do not fulfill the sufficient
decrease condition, we can sum the two corresponding equations. We thus have

−2 ρ(αk) ≤ f(xk + αk d) + f(xk − αk d)− 2 f(xk).

Thus, a second-order Taylor expansion of both f(xk + αk d) and f(xk − αk d) leads to

−2 ρ(αk) ≤ α2
k d
>∇2f(xk) d+ νH

3 α3
k, (6.4)

thanks to the Lipschitz continuity of ∇2f . In particular, (6.4) holds for the couple of
directions that realize the minimum of d>∇2f(xk)d in Vk and the relation (6.3) can be
easily derived. �

The previous result indicates that we can define a directional measure of second-order
optimality that will play a similar role as the cosine measure in first-order optimality
proofs. This measure was introduced in [66] as the Rayleigh measure of a set of vectors,
expressed for a given matrix. This definition draws its inspiration from both the cosine
measure of a set of vectors at a particular vector (see Definition 2.3), and the Rayleigh
quotient, a useful tool while dealing with second-order optimality [18]. We remark that
a similar quantity was used by Gratton et al. [68] in the case of trust-region methods,
although no specific terminology was introduced.

Definition 6.1 Let D be a set of unitary vectors in Rn and A an n-by-n real symmetric
matrix. The Rayleigh measure of D with respect to A is given by:

rm (D,A) = min
d∈D

d>Ad. (6.5)

This measure approximates the lowest eigenvalue of A, the minimum value of the
Rayleigh quotient, by a discrete minimum Rayleigh quotient among all vectors in D.
This approximation is an exact one when D contains an eigenvector associated to the
minimum eigenvalue of A, in which case the Rayleigh measure is equal to this lowest
eigenvalue. Moreover, if A has at least one negative eigenvalue, the sign of the Rayleigh
measure provides information about the directions in D that correspond to negative

112

values of the Rayleigh quotient. Such values indicate that the corresponding direction
and its opposite are negative curvature directions. Besides, the Rayleigh measure of Vk
with respect to the Hessian matrix appears in (6.3). This naturally encourages the use
of this measure as a substitute to the minimum Hessian eigenvalue, which is the usual
second-order criterion in derivative-based optimization.

6.2.2 Weak second-order global convergence results

We now establish a second-order property related to the Rayleigh measure, hence to the
partial curvature information we are able to collect at each iteration. This property ge-
neralizes the pseudo-second order optimality conditions presented for pattern search [2],
and was called weak second-order optimality in [68] where the authors consider a trust-
region framework with incomplete curvature information. We will use the latter termi-
nology and propose a weak second-order optimality criterion based on the sequence of
Rayleigh measures. Note that such a technique does not guarantee that the algorithm is
able to avoid converging to a maximizer or a saddle point. Abramson showed in [2] that
Algorithm 2.1 may converge to critical points where the Hessian matrix has zero eigen-
values, even though those points are not local minimizers. However, for these examples,
one still obtains the property called weak second-order optimality by Gratton et al. [68],
i.e., second-order optimality guarantees with respect to a set of directions. Theorem 6.1
presents an even more general formulation.

Theorem 6.1 Suppose that Assumptions 6.1 to 6.4 hold. Then

lim inf
k→∞

max
{
‖∇f(xk)‖,− rm

(
Vk,∇2f(xk)

)}
= 0. (6.6)

In the specific case where Dk = Vk, the result becomes:

lim inf
k→∞

max
{
‖∇f(xk)‖,− rm

(
Dk,∇2f(xk)

)}
= 0. (6.7)

Proof. From Lemma 6.2, we know that for any unsuccessful iteration of index k,

‖∇f(xk)‖ ≤
1
κg

[
ρ(αk)
αk

+ νg
2 αk

]
(6.8)

and
− rm

(
Vk,∇2f(xk)

)
≤ 2ρ(αk)

α2
k

+ νH
3 αk (6.9)

hold, hence

max
{
‖∇f(xk)‖,− rm

(
Vk,∇2f(xk)

)}
≤ max

{
1
κg

[
ρ(αk)
αk

+ νg
2 αk

]
,
2ρ(αk)
α2
k

+ νH
3 αk

}
.

(6.10)
Lemma 6.1 ensures that there exists an infinite subsequence of unsuccessful iterations.
For such a subsequence, both (6.8) and (6.9) hold, and the right part of each inequality

113

goes to zero when k goes to infinity thanks to Assumption 6.2. We thus conclude
that (6.6) holds. The specific case where Dk = Vk is immediate. �

Our analysis shows that any direct-search method that follows the framework of
Algorithm 2.1 and imposes a sufficient decrease of o(α2) exhibits weak second-order
properties. In practice, if we were to use the same symmetric set of directions at each
iteration, we would know that, at any limit point, the corresponding Rayleigh measure is
nonnegative. This result is tight in the sense that additional properties on the directions
are needed to ensure that the method does not converge to a first-order stationary point
that is not a minimum. Consider, for instance, applying Algorithm 2.1 to the following
function presented in [6]:

f1(x, y) = (9x− y) (11x− y) + x4

2 , (6.11)

with x0 = (0, 0)> as the initial point and Dk = [e1 e2 −e1 −e2] for all k. One
sees that the method cannot move away from the origin, which is a saddle point. In
that case, the coordinate directions and their opposites are not of negative curvature,
as the Rayleigh measure is equal to zero at each iteration; the method is thus weakly
second-order convergent on this function, but not second-order globally convergent.

The following corollary clarifies the link between (6.6) and the existing second-order
results based on limit of refining directions [2, 3, 6].

Corollary 6.1 Under the assumptions of Theorem 6.1, suppose that the sequence of
iterates {xk} is bounded. Then there exists a subsequence of iterates {xk}k∈K converging
to a limit point x∗ such that ∇f(x∗) = 0.

Define the set of refining directions V∗ by

V∗ = {d ∈ Rn | ∃L ⊂ K, {dl}l∈L → d,∀ l ∈ L, dl ∈ Dl} .

Then the curvature at x∗ is nonnegative along the directions in V∗, i.e.,

∀ d ∈ V∗, d>∇2f(x∗) d ≥ 0. (6.12)

Note that if V∗ is dense in the unit sphere, the limit point x∗ is a second-order critical
one; the second-order optimality is thus assured by a similar argument as for the MADS
methods [3], although those algorithms do not enforce sufficient decrease.

PSSs without symmetric parts When one aims for first-order convergence results
using PSSs, it is not mandatory for those PSSs to have a non-empty symmetric part [75].
One might thus wonder if second-order results are still provable using PSSs for which
the symmetric part is empty.

Given a PSS D = [d1 · · · dm], there always exist m nonnegative scalars (βi)i=1,m such
that

∑m
i=1 βi di = 0 [43]. Considering Algorithm 2.1 and using these scalars, one can

proceed as in Lemma 6.2 to arrive at the following relation:
m∑
i=1

βi f(xk + αk di)−
(

m∑
i=1

βi

)
f(xk) ≥ −

(
m∑
i=1

βi

)
ρ(αk), (6.13)

114

which leads to
m∑
i=1

βi d
>
i ∇2f(xk)di ≥ −

m∑
i=1

βi

(
ρ(αk)
α2
k

+ νH
6 αk

)
. (6.14)

We may then derive the analysis in a similar way as before, and obtain a result on the
convergence of a weighted sum of Rayleigh quotients under the appropriate assumptions,
that is:

lim sup
k→∞

|Dk|∑
i=1

β
(k)
i (d(k)

i)>∇2f(xk) d
(k)
i ≥ 0, (6.15)

where, for all k,
∑
i β

(k)
i d

(k)
i = 0.

One notices that we obtain a weaker result than in the symmetric case. Indeed,
the combination {β(k)

i }i depends on the direction set, which possibly changes at each
iteration, and the meaning of (6.15) is then unclear. When the sets are symmetric,
however, we can exploit this symmetry by constructing |Dk|/2 nonnegative combinations
such that only the coefficients corresponding to a couple of opposite directions are not
equal to zero (as we have seen in the proof of Lemma 6.2). The resulting properties are
stronger as they involve the Rayleigh measure.

6.3 A provably second-order globally convergent direct-
search method

The goal of this section is to improve the second-order results of Section 6.2 in order
to obtain a method that is second-order globally convergent in the usual sense. Ideally,
we would like to define a second-order property on the polling directions which would
be equivalent to the positive spanning property for the first order. In derivative-based
methods, this is done by assuming that one of the directions is of negative curvature.
This means that if the Hessian ∇2f(xk) has a minimum eigenvalue λk < 0, it exists
d ∈ Dk such that

d>∇f(xk) ≤ 0 and d>∇2f(xk) d ≤ κλk, (6.16)

with κ ∈ (0, 1) independent of k. Such a requirement is classical in curvilinear line
search methods [86, 94, 102] and second-order convergent line-search frameworks [63].
To generate such directions, one uses linear algebra techniques such as the Bunch-Parlett
factorization of the Hessian, together with a Krylov subspace method [63].

In a derivative-free context, we do not have access to the Hessian matrix or its
product with a vector, but we can estimate Rayleigh quotients. The first part of (6.16)
is easy to satisfy through the use of symmetric polling sets, but the second inequality
poses a harder problem. Indeed, it can be rewritten as follows:

rm(Dk,∇2f(xk)) ≤ κ rm
(
Sn−1,∇2f(xk)

)
= κ

(
min
d∈Sn−1

d>∇2f(xk) d
)

= κλk,

(6.17)

115

where Sn−1 denotes the unit sphere in Rn. It thus appears that a direct-search method
attempts to estimate at each iteration the solution of a quadratic problem with a finite
number of directions, and given the lack of knowledge on the quadratic form itself, it
seems rather demanding to ask for such an approximation.

In fact, derivative-free schemes that exploit curvature do not rely directly on vectors
to capture these aspects, but rather on matrices that represent Hessian approxima-
tions [6, 37]. Although the resulting process does not necessarily ensure second-order
convergence [16, 91], it is efficient in that it uses a matrix to estimate matricial informa-
tion. This is why we will follow this approach to design our algorithm.

6.3.1 Using a Hessian approximation to determine additional direc-
tions

The instance of generating set search using curvature information presented in [57] is
an important example of a second-order globally convergent method. This algorithm
uses a Hessian approximation which is updated along the iterations (the update may
not occur at every iteration). In the unconstrained case, the new directions are then
obtained by computing the eigenvectors of the approximate Hessian. It is then the
quality of the approximation, of the order of the step size, that leads to second-order
global convergence.

This approach requires the use of PSSs of the form [Q -Q], where Q is an orthogonal
matrix. However, it is known [43] that both positive spanning sets and positive bases
are not necessarily made of 2n vectors, nor are they necessarily symmetric. We thus
would like to extend the idea of [57] in a more general setting. In addition, we would
like a method that does not completely overtakes the framework of Algorithm 2.1; the
expense of searching for negative curvature should not intervene unless the usual first-
order approach has failed. This is the second objective of our algorithm. Last but not
least, the amount of function evaluations at each iteration should be of order of n2, to
be in accordance with the methods that build a Hessian approximation or use models
with second-order accuracy.

The above requirements lead to the direct-search instance described by Algorithm 6.1
and called AHDS, for Approximate Hessian-based Direct Search. It is close in spirit to
the superlinearly convergent method developed by Mifflin [91], although we do not com-
pute a gradient approximation. Here, we rather focus on exploiting negative curvature
if possible.

Note that in case of a successful iteration with a direction in Dk, the method behaves
like Algorithm 2.1 with a PSS. Remark also that we always require a decrease using ρ(αk)
whether the directions are unitary or not, but this does not affect the convergence nor
the complexity analyses, which relate only to the unitary polling directions.

6.3.2 Second-order global convergence of the new method

Having presented our algorithm, we now show that it is indeed second-order globally
convergent. The proof requires two intermediate results, that respectively emphasize

116

Algorithm 6.1: Approximate Hessian-based Direct-Search algorithm (AHDS)

Choose an initial point x0 ∈ Rn, as well as 0 < θ < 1 ≤ γ, 0 < α0 < αmax.
Define a forcing function ρ : R+ → R+.
for k = 0, 1, 2, . . . do

1 - Poll Step
(a) Generate a Positive Spanning Set Dk of unitary vectors. If there exists

d ∈ Dk such that
f(xk + αk d) < f(xk)− ρ(αk), (6.18)

then declare iteration k successful with dk = d and go to the update step.

(b) Otherwise, if there exists d ∈ Dk such that (6.18) holds for -d, then declare
the iteration successful with dk = -d and go to the update step.

(c) Otherwise, choose Bk as a subset of Dk with n linearly independent
directions, which we index as d1, · · · , dn.

(d) If there exists d ∈ {di + dj , 1 ≤ i < j ≤ n} such that (6.18) holds, then
declare the iteration successful with dk = d, and go to the update step.

(e) Otherwise, define the matrix Hk by setting for all (i, j) ∈ {1, . . . , n}2, i < j:

(Hk)ii = f(xk+αk di)−2 f(xk)+f(xk−αk di)
α2
k

,

(Hk)ij = f(xk+αk di+αk dj)−f(xk+αk di)−f(xk+αk dj)+f(xk)
α2
k

.

(6.19)

(f) Compute a unitary eigenvector vk associated with λmin(Hk). If vk or -vk
satisfies (6.18), declare the iteration successful with dk equal to vk or -vk,
otherwise declare the iteration unsuccessful.

2 - Update Step

If the iteration is successful, set xk+1 = xk + αk dk and
αk+1 = min {γ αk, αmax}; otherwise set xk+1 = xk and αk+1 = θ αk.

end

117

the properties of the approximate eigenvector vk and the theoretical guarantees of every
unsuccessful iteration.

Proposition 6.1 Let vk be the unitary eigenvector used in Algorithm 6.1. Suppose that
f satisfies Assumption 6.1 and that λmin(∇2f(xk)) < 0. Then, one has:

v>k ∇2f(xk) vk ≤ σmin(Bk)2 λk + 10n νH
3 αk. (6.20)

where λk = λmin(∇2f(xk)).

Proof. The formulas defining the approximated Hessian Hk together with f satis-
fying Assumption 6.1 lead to the following error bound:

∀ (i, j) ∈ {1, . . . , n}2,
∣∣∣(Hk)ij − d>i ∇2f(xk) dj

∣∣∣ ≤ 5 νH
3 αk, (6.21)

hence ∥∥∥Hk −B>k ∇2f(xk)Bk
∥∥∥ ≤ ∥∥∥Hk −B>k ∇2f(xk)Bk

∥∥∥
F
≤ n

5 νH
3 αk, (6.22)

where ‖ · ‖ denotes the Euclidean norm and ‖ · ‖F the Frobenius norm. From this bound
on the approximation error, one obtains a bound regarding the minimum eigenvalue
approximation (see [38, Proposition 10.14]):∣∣∣λmin(Hk)− λmin

(
B>k ∇2f(xk)Bk

)∣∣∣ ≤ 5n νH
3 αk. (6.23)

Putting all together, one obtains

v>k ∇2f(xk) vk = λmin(Hk) + v>k

[
∇2f(xk)−Hk

]
vk

≤ λmin
(
B>k ∇2f(xk)Bk

)
+
∣∣∣λmin(Hk)− λmin

(
B>k ∇2f(xk)Bk

)∣∣∣+
‖vk‖2

5n νH
3 αk

≤ λmin
(
B>k ∇2f(xk)Bk

)
+ (1 + ‖vk‖2) 5n νH

3 αk

= λmin
(
B>k ∇2f(xk)Bk

)
+ 10n νH

3 αk.

Since Bk is a basis of Rn, B>k Bk is positive definite. For every vector y ∈ Rn \ {0}, we
have

y>B>k ∇2f(xk)Bk y
‖y‖2

≥ λmin
(
B>k ∇2f(xk)Bk

)
,

y>B>k ∇2f(xk)Bk y
‖y‖2

× ‖y‖2

y>B>k Bk y
≥ λmin

(
B>k ∇2f(xk)Bk

) ‖y‖2

y>B>k Bk y
,

y>B>k ∇2f(xk)Bk y
y>B>k Bk y

≥ λmin
(
B>k ∇2f(xk)Bk

) ‖y‖2

y>B>k Bk y
.

118

Taking the minimum over all non-zero vectors in Rn, one obtains:

λmin(∇2f(xk)) ≥ λmin
(
B>k ∇2f(xk)Bk

)
max
y 6=0

‖y‖2

y>B>k Bk y
, (6.24)

again using the fact that Bk is a basis. Indeed, this ensures that both minimum eigen-
values have the same sign: consequently, λmin

(
B>k ∇2f(xk)Bk

)
< 0 and the minimum

becomes a maximum. One finally has

λmin(∇2f(xk)) ≥
λmin

(
B>k ∇2f(xk)Bk

)
σmin(Bk)2 , (6.25)

hence the result. �

Note that in Algorithm 6.1, we do not allow for a computation of the approximate
Hessian along several iterations, yet in such cases, one can still derive errors bounds
that turn out to be worse than those presented above. Indeed, in a scenario where an
approximation of the Hessian is computed separately along l successive iterations, one
can prove that if such iterations are unsuccessful, then the error bound (6.22) becomes
of order O(θ−l n νH αk). This holds for a naive implementation of the method, thus these
bounds are likely to be improved by considering efficient practical strategies.

Proposition 6.1 shows that the approximation error between v>k ∇2f(xk) vk and λk
involves the minimum singular value of a certain matrix, as well as an error of or-
der O(n νH αk). These elements are consistent with those obtained when using fully
quadratic models (see [38, Part I] and the references therein). In fact, the square of the
singular value σmin(Bk) plays a role that is similar to the poisedness constant, hence the
following assumption on those singular values.

Assumption 6.5 The polling sets satisfy Assumption 6.4. In addition, the bases Bk
are chosen such that there exists σ > 0, independent of k, such that

∀ k, σmin(Bk)2 ≥ σ. (6.26)

When the Bk are orthonormal bases, one can choose σ = σmin(Bk) = 1. This is the
case, for instance, when all polling sets are equal to [Q -Q], with Q being an orthogonal
matrix.

Lemma 6.3 Let k be the index of an unsuccessful iteration of Algorithm 6.1 such that
cm(Dk) ≥ κg > 0 and σmin(Bk)2 ≥ σ. Suppose that f satisfies Assumption 6.1. In that
case,

‖∇f(xk)‖ ≤ κ−1
g

(
ρ(αk)
αk

+ νg
2 αk

)
(6.27)

is satisfied, and, if λk < 0,

λk ≥ −σ−1
(

2 ρ(αk)
α2
k

+ (10n+ 1)νH3 αk

)
(6.28)

holds.

119

Proof. Equation (6.27) is obtained as in the proof of Lemma 6.2, considering that
we use a PSS Dk at each iteration.

To arrive at (6.28), notice that we evaluate f at both xk + αk vk and xk − αk vk.
Thus, we can obtain the analogous of (6.4) for vk, which is

−2 ρ(αk) ≤ α2
k v
>
k ∇2f(xk) vk + νH

3 α3
k. (6.29)

Since we are in the assumptions of Proposition 6.1, we can replace the Rayleigh quotient
by an expression only depending on λk and αk, and we arrive at (6.28). �

We point out that for unsuccessful iterations, the corresponding Rayleigh measure
is an approximation of the minimum eigenvalue with an error in O(αk): this is the key
property that turns the weak second-order results into strong second-order ones. Thanks
to this result, we obtain the following convergence theorem, whose proof follows the one
of Theorem 6.1, only with λk playing the role of rm

(
Vk,∇2f(xk)

)
.

Theorem 6.2 We consider Algorithm 6.1 under Assumptions 2.2, 6.1, 6.2 and 6.5.
Then,

lim inf
k→∞

max {‖∇f(xk)‖,−λk} = 0, (6.30)

i.e., the method is second-order globally convergent.

This result confirms that whenever directions determined by a Hessian approximation
are used, the accuracy of the approximation is the key for controlling the second-order
criterion (namely the minimum Hessian eigenvalue). This has an undeniable cost in
terms of function evaluations. However, if some special structure is known about the
problem, then this amount of evaluations can be reduced. Random sampling can also
reduce the cost if the Hessian is sparse, even if the sparsity pattern is unknown [13].

6.3.3 Complexity properties

This section is dedicated to the complexity of direct search in determining second-order
stationary points. We mainly develop our reasoning for the “strong” second-order glo-
bally convergent approach of Section 6.3.2. This being said, the upcoming analysis is
applicable to any second-order criterion of interest.

Our objective is to provide a bound on the number of iterations needed to ensure:

inf
0≤l≤k

‖∇f(xl)‖ < εg and sup
0≤l≤k

λl > −εH , (6.31)

given two thresholds εg, εH ∈ (0, 1). When (6.31) is satisfied, we say that we reached
approximate second-order optimality, with respect to εg and εH . Our analysis will ad-
dress first and second-order optimality simultaneously, for clarity purposes. The proof
conveniently follows the argumentation of Vicente [114] for the first-order case, which
we did not detail in Chapter 2.

120

Although the first-order result established by Vicente [114, Corollary 3.1] could still
be applied to the settings of Sections 6.2 and 6.3, we treat first and second-order op-
timality simultaneously, for both self-containedness and clarity. The analysis estab-
lishes separate bounds on the number of successful and unsuccessful iterations needed
to achieve (6.31).

For the rest of this section, we will consider a typical family of forcing functions,
namely ρ(α) = c

6 α
q, where c > 0 and q > 2 (those functions clearly satisfy Assump-

tion 6.2). We start by bounding the number of successful iterations.

Theorem 6.3 Suppose that the assumptions of Theorem 6.2 hold. Assume that Algo-
rithm 6.1 is applied with ρ(α) = c

6 α
q with c > 0 and q > 2.

Given εg, εH ∈ (0, 1), let k0 be the index of the first unsuccessful iteration and assume
that (6.31) does not hold, and let l1 be the first index such that (6.31) is satisfied at
iteration l1 + 1. Then the number of successful iterations between k0 and l1, denoted by
|Sl1(k0)|, is bounded as follows:

|Sl1(k0)| ≤
⌈(6(f(xl0)− flow)

c (θ Ls)q
)

max
(
κ−qg ε−qg , (σ/n)−

q
min(q−2,1) ε

− q
min(q−2,1)

H

)⌉
, (6.32)

where

Ls = min
(

1, L−1
1 , L

− 1
min(q−2,1)

2

)
, L1 = c+ 3 νg

6 , and L2 = c+ 11 νH
3 .

Proof. For every l ∈ U such that k0 ≤ l < l1, we know that either

‖∇f(xl)‖ ≥ εg (6.33)

or
λl ≤ −εH , (6.34)

otherwise (6.31) would have held from iteration l.
In the first case, using (6.27), we have that

εg ≤ ‖∇f(xl)‖ ≤ κ−1
g

[
c

6 α
q−1
l + νg

2 αl
]
.

Thus, if αl < 1,
εg ≤

c+ 3 νg
6κg

α
min(q−1,1)
l

and if not αl ≥ 1 > εg, from which we deduce

αl ≥ min(1, L
− 1

min(q−1,1)
1)κ

1
min(q−1,1)
g ε

1
min(q−1,1)
g .

Since q > 2, this reduces to

αl ≥ min(1, L−1
1)κg εg. (6.35)

121

In the second case, we obtain from (6.28) that

−εH ≥ λl ≥ −σ−1
(
c

3 α
q−2
l + (10n+ 1) νH

3 αl

)
≥ −σ−1 n

(
c

3 α
q−2
l + 11 νH

3 αl

)
,

which leads by the same reasoning as above to

αl ≥ min(1, L
− 1

min(q−2,1)
2) (σ/n)

1
min(q−2,1) ε

1
min(q−2,1)
H . (6.36)

As a result of (6.35) and (6.36), for all unsuccessful iterations of index k0 ≤ l < l1,
one has the following lower bound on the step size

αl ≥ Ls min
(
κg εg, (σ/n)

1
min(q−2,1) ε

1
min(q−2,1)
H

)
.

Consider now the successful iterations of index k, k0 < k ≤ l1. For each iteration k
of this type, one can backtrack to the previous unsuccessful iteration (which exists since
k0 ∈ U), denoted by l(k), such that αk ≥ θ αl(k), given the update rules for the step size
parameter. Thus, for any of those iterations, one has:

αk ≥ θ Ls min
(
κg εg, (σ/n)

1
min(q−2,1) ε

1
min(q−2,1)
H

)
, (6.37)

and by definition of a successful iteration:

f(xk)− f(xk+1) ≥ ρ(αk)

≥ c

6 (θ Ls)q min
(
κqg ε

q
g, (σ/n)

q
min(q−2,1) ε

q
min(q−2,1)
H

)
.

Thus, by summing on all successful iterations until l1 excluded, we arrive at

f(xk0)− f(xl1) ≥ |Sl1(k0)| c6 (θ Ls)q min
(
κqg ε

q
g, (σ/n)

q
min(q−2,1) ε

q
min(q−2,1)
H

)
.

and the result stated in the theorem follows from Assumption 2.2. �

We then treat the case of the unsuccessful iterations, using the simplified analysis of
Garmanjani, Júdice and Vicente [60].

Theorem 6.4 Let the assumptions of Theorem 6.3 hold. Then, with the same defini-
tions for k0 and l1, the number of unsuccessful iterations between k0 and l1 is at most
|Ul1(k0)|, where

|Ul1(k0)| ≤
⌈
L3 |Sl1(k0)|+ L4 − logθ e max

{
κ−1
g ε−1

g , (σ/n)−
1

min(q−2,1) ε
− 1

min(q−2,1)
H

}⌉
(6.38)

with
L3 = − logθ γ and L4 = logθ

(
θ Ls e

αk0

)
.

122

Proof. By induction, one has:

αl1 ≤ αk0 γ
|Sl1 (k0)| θ|Ul1 (k0)|,

which, as θ ∈ (0, 1), leads to

|Ul1(k0)| ≤ − logθ γ |Sl1(k0)| − logθ αk0 + logθ αl1 . (6.39)

Since ln θ < 0, ln γ > 0, and αl1 is bounded below from (6.37), (6.39) becomes

|Ul1(k0)| ≤ L3 |Sl1(k0)|+logθ
(
θ Ls
αk0

)
−

ln
(

max
{
κ−1
g ε−1

g , (σ/n)−
1

min(q−2,1) ε
− 1

min(q−2,1)
H

})
ln θ .

Finally, we apply ln(x) ≤ x− 1 and arrive at the desired result. �

As explained in [114], the index of the first unsuccessful iteration k0 can be bounded
from above, thanks to Assumption 2.2. In our case, we can choose the following quantity
as an upper bound:⌈6(f(x0)− flow)

c αq0
max

(
κ−qg ε−qg , (σ/n)−

q
min(q−2,1) ε

− q
min(q−2,1)

H

)⌉
.

This leads to the following result regarding approximate second-order optimality.

Theorem 6.5 Let the assumptions of Theorem 6.3 hold. The number of iterations
needed by Algorithm 6.1 to satisfy (6.31) is at most

O
(

max
(
κ−qg ε−qg , (σ/n)−

q
min(q−2,1) ε

− q
min(q−2,1)

H

))
, (6.40)

where the constant in O(·) depends on νg, νH , α0, f(x0), flow, c, γ, θ, and q.

The best power of εH (that is, the least negative power) is here achievable choosing
q = 3.

We now give the corresponding result with respect to the number of function evalu-
ations.

Theorem 6.6 Under the assumptions of Theorem 6.3, the number of function evalua-
tions needed by Algorithm 6.1 is at most

O
(
m max

(
κ−qg ε−qg , (σ/n)−

q
min(q−2,1) ε

− q
min(q−2,1)

H

))
, (6.41)

with m is the maximum number of function evaluations performed in any iteration. Here
again, the constant in O(·) only depends on νg, νH , α0, f(x0), flow, c, γ, θ, and q.

123

As in the first-order case [26, 48, 60, 114], we are interested in the order of n that
appears in the complexity bounds related to the number of function evaluations. We
will see that such an order is considerably higher than in the first-order case, which is
not surprising given the requirements we impose on the polling sets.

The value of m in (6.41) depends on the choice of the polling sets, their cardinality
and whether they have a non empty symmetric part. For instance, Dk = D⊕ = [I -I]
leads to at most

m = 2n+ n2 − n
2 + 2 = n2 + 3n+ 4

2
evaluations by using orthonormal bases included in D⊕. Given that cm(D⊕) = 1/

√
n,

one can then replace κg by 1/
√
n and σ by 1. When q = 3, κ−qg becomes n

3
2 , thus less

than n3, showing that the second-order part dominates the power of n in (6.40). The
dependence of (6.41) on n, when using D⊕, is of the order n5.

Corollary 6.2 Consider the application of Algorithm 6.1, under the assumptions of
Theorem 6.3 with q = 3. Suppose Dk is chosen as D⊕ for all k (or as any other PSS
D such that m = O(n2), cm(D) = O (1/

√
n), and the Bk

′s are orthogonal matrices).
Then, to satisfy (6.31), the method takes at most

O
(
max

{
n

3
2 ε−3

g , n3 ε−3
H

})
(6.42)

iterations and
O
(
max

{
n

7
2 ε−3

g , n5 ε−3
H

})
(6.43)

function evaluations, where the constant in O(·) only depends on νg, νH , α0, f(x0), flow, c,
γ, and θ.

As explained in Section 6.3.2, preliminary knowledge regarding the structure of the
Hessian may help reducing the powers of n.

Our analysis covers a wide class of direct-search algorithms. Note that it can be
simplified following the process of Konečný and Richtárik [78] in the case where the step
size is never increased and it is halved at every unsuccessful iteration (i.e., γ = 1 and
θ = 1/2). Choosing ρ(α) = α3 (hence q = 3) as well as Dk = D⊕ for all iterations (as
they provide the best known bounds), one could easily see that the number of successful
iterations becomes:

|Sl1(k0)| ≤
⌈(

f(xl0)− flow
8L3

s

)
max

(
n

3
2 ε−3

g , n3 ε−3
H

)⌉
, (6.44)

by the same reasoning as in the proof of Theorem 6.3. On the other hand, since γ = 1
it would be much simpler to bound the number of unsuccessful iterations. The result
corresponding to (6.38) is

|Ul1(k0)| ≤
⌈
log2(αk0)− log2

(
Ls
2 min

{
εg√
n
,
εH
n

})⌉
. (6.45)

124

The conclusions of Corollary 6.2 are then unchanged in terms of dependences on n,εg,
and εH .

To the best of our knowledge, the above results were the first complexity bounds
to have been established regarding the determination of second-order stationary points
by a derivative-free method. It is interesting to compare them to the existing second-
order complexity bounds previously obtained in the derivative-based literature. Cartis
et al [25] derived such bounds for adaptive regularization with cubics (ARC) and trust-
region methods, respectively in

O
(

max
{
ε
− 3

2
g , ε−3

H

})
and O

(
max

{
ε−2
g ε−1

H , ε−3
H

})
.

They proved also that whenever εH ≤ εg, the two bounds reduce to O(ε−3
H), and gave an

example to show that such a bound is sharp in terms of this tolerance. Our bound also
reduces to O(ε−3

H) in that case, so we may say that the three bounds are comparable
from such a point of view; in our case, the sharpness of the bound remains to be proved.

When keeping both tolerances εg and εH in the bounds, we see that the first part of
our bound is worse than the one obtained by ARC, whereas it seems comparable to the
one for trust-region methods. However, we obtain ε−3

g instead of ε−2
g ε−1

H . This discre-
pancy is related to the decrease requirements. In trust-region methods, provided (6.31)
is not satisfied, one has

f(xk)− f(xk+1) ≥ η min
{
µ1 εg δk, µ2 εH δ

2
k

}
and δk ≥ µ3 min{εg, εH}, (6.46)

where η, µ1, µ2, µ3 are positive constants and δk is the trust-region radius, which is
the key argument to prove the complexity results [25, Section 4]. Two decreases are
considered in (6.46), concerning respectively first and second-order criteria. In our direct-
search frameworks, we only have one decrease formula that depends on α3

k, hence the
discrepancy.

In the derivative-free community, we point out a recent PhD thesis [73] in which the
author proposes a complexity bound for second-order optimality. These results match
ours in terms of power of the tolerances. However, we were not able to find second-order
complexity results for derivative-free equivalents of ARC methods [26] in the existing
literature. Still, it is our belief that these results would match those in [25] regarding
the powers of the tolerances, again because of the decrease formulas that are employed
to prove the convergence.

6.4 Numerical study of the second-order framework

The techniques we describe guarantee that the algorithms are able to exploit negative
curvature whenever needed. For instance, we can apply Algorithm 6.1 to the function f1
described in Section 6.2.2, starting at the origin with the polling set equal to D⊕. As we
have seen, none of the polling directions will yield a decrease in the objective function,
because the corresponding values in those directions are always positive. However, if

125

we compute an approximate Hessian and its eigenvector associated with the minimum
eigenvalue, we obtain a direction in which the function has a negative value. With a
sufficiently small step size, it will satisfy the sufficient decrease condition.

Besides ensuring to escape saddle points and local maximizers, the use of negative
curvature is also known to improve the practical performance of line-search methods [63,
86, 102], as going in negative curvature directions possibly leads to faster decrease in the
objective function value. We are interested in knowing if our approach allows for the
same kind of improvement. To this end, we compare our implementation of Algorithm 6.1
(ahds) to a basic implementation of Algorithm 2.1 (thereafter called bds, for basic direct
search).

We consider less pathological problems than the one mentioned above. Those func-
tions were taken from the CUTEst package [65], and have been identified as presenting
negative curvature at some points by Avelino et al. [12, Table 6]. This represents a
total of 60 problems out of the 119 problems tested in [12]. For all of those problems,
we used the smallest dimension available in the SIF files, resulting in 36 problems with
dimensions less than 10, 22 problems having dimensions between 10 and 15, 1 problem
with dimension 28, and 1 problem with dimension 50. The full list of problems is given
in Appendix B.

We tested four types of polling sets choices for Step 1 in Algorithm 6.1. The two first
choices correspond to the set D⊕ and the minimal positive basis with uniform angles we
defined in Example 2.1, denoted by Vn+1. These are common choices in practice, and
also typical examples of polling sets, with and without symmetric parts, respectively.
The two other types of PSSs are based on D⊕ and Vn+1, built by applying a rotation
matrix Q to those sets. All of our choices keep Dk constant throughout all iterations.
However, to measure the effect of our approach on a larger variety of sets, we ran the
method ten times, varying the ordering of the vectors for the choices {D⊕, Vn+1}, or
changing the rotation matrix Q in the other cases. Table 6.1 summarizes our polling set
choices for clarity; in the rest of the section, we will identify a method as bdsi or ahdsi
with i ∈ {0, 1, 2, 3} indicating the polling choice.

Polling Number Set type Cardinality Variant
0 D⊕ 2n Ordering of directions
1 QD⊕ 2n Rotation matrix Q
2 Vn+1 n+ 1 Ordering of directions
3 QVn+1 n+ 1 Rotation matrix Q

Table 6.1: The different polling set choices for Algorithm 6.1.

For all methods, the forcing function was ρ(α) = 10−3 α3, the starting point was the
one defined by CUTEst, and the starting step size was α0 = 1. We consider that a run is
successful whenever the final function value f∗ satisfies:

f∗ − fbest < ε (f(x0)− fbest) , (6.47)

126

where fbest is the best value obtained by all variants with an extended budget of 5000n
iterations, and ε > 0 is a given tolerance [95]. For each method, it is plotted a per-
formance profile [50] for the average number of function evaluations taken on the 10
runs.

The results we present illustrate the typical behavior of Algorithm 6.1 compared
to the classic direct-search scheme of Algorithm 2.1. Figure 6.1 firstly shows profiles
obtained for the symmetric polling choices 0/1. One sees that the methods bds0 and
bds1 perform still better than ahds0 and ahds1 in terms of efficiency (ratio=0). However,
the ahds methods eventually solve more problems than the bds ones (large ratio), thus
being more robust. This tendency was to be expected, as second-order mechanisms help
in exploiting negative curvature.

Figure 6.2 is related to the non-symmetric polling set choices, and is characteristic
of the performances of both methods. For such polling strategies, the gain from the bds
to the ahds methods is even higher than in the symmetric case and now also present in
efficiency. However, when one looks at the directions that lead to successful iterations for
the ahds methods, one sees that half of the successful iterations are successful because
of a direction within the original PSS Dk (step (a) of the polling), one third are suc-
cessful thanks to a direction in −Dk (step (b)), and only around 10% succeed with the
approximate eigenvector vk (step (f)). Our interpretation is that considering opposite
directions already increases the chances to exploit negative curvature (as it guarantees
weak second-order global convergence), while allowing to poll along additional directions
in the case of a non-symmetric PSS.

To support this hypothesis, we implemented a variant of Algorithm 6.1 that did not
attempt to build an approximate Hessian (we thus lost second-order convergence to weak
second-order convergence). Such a variant, called sds, already outperformed its basic
direct search counterpart on the tested problems, yet the corresponding ahds algorithm
stood out as the most robust implementation.

Figures 6.3 and 6.4 present the results for the polling strategies 2/3. One observes
that the sds method is generally more efficient than the corresponding bds and ahds
instances, the only exception being when ε = 10−6 and Dk = Vn+1. In this particular
setting, the ahds method outperforms the other two, and the reason appears to be
that the amount of successful iterations corresponding to the last step of the method is
significantly higher than in the other settings. The conclusions of Figure 6.1 can thus
be extended for the non-symmetric case: the ahds algorithm eventually benefits from
the computation of an approximate Hessian eigenvector. These profiles promote the
use of symmetric positive spanning sets as a first attempt to catch negative curvature
information, and confirm that curvature has even more chance of being exploited by
computing a Hessian approximation.

A final comment can be made by studying the relative performance among different
instances of Algorithm 6.1 (see Figure 6.5). The method ahds0 solves the most problems
within the given budget, and also outperforms the other variants. Using symmetric
positive spanning sets and building Hessian approximation with respect to orthonormal
bases thus seems to allow exploiting more second-order information in general. Note

127

0 1 2 3 4 5 6 7

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

ahds0

bds0

ahds1

bds1

(a) ε = 10−3.

0 1 2 3 4 5

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

ahds0

bds0

ahds1

bds1

(b) ε = 10−6.

Figure 6.1: Performance of the methods with polling choices 0/1, given a budget of
2000n evaluations.

128

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

ahds2

bds2

ahds3

bds3

(a) ε = 10−3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

ahds2

bds2

ahds3

bds3

(b) ε = 10−6.

Figure 6.2: Performance of the methods with polling choices 2/3, given a budget of
2000n evaluations.

129

0 0.5 1 1.5 2 2.5 3 3.5 4

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

ahds2

bds2

sds2

(a) ε = 10−3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

ahds2

bds2

sds2

(b) ε = 10−6.

Figure 6.3: Second-, first- and weakly second-order direct-search methods, with polling
choice 2 and a budget of 2000n evaluations.

130

0 0.5 1 1.5 2 2.5 3 3.5 4

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

ahds3

bds3

sds3

(a) ε = 10−3.

0 0.5 1 1.5 2 2.5 3 3.5

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

ahds3

bds3

sds3

(b) ε = 10−6.

Figure 6.4: Second-, first- and weakly second-order direct-search methods, with polling
choice 3 and a budget of 2000n evaluations.

131

0 1 2 3 4 5 6 7

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

ahds0

ahds1

ahds2

ahds3

(a) ε = 10−3.

0 1 2 3 4 5

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

ahds0

ahds1

ahds2

ahds3

(b) ε = 10−6.

Figure 6.5: Comparison of the ahds methods, given a budget of 2000n evaluations.

132

again that the weak second-order properties of the polling set are particularly relevant,
and likely to provide curvature information. As we have seen, completing the polling
with a phase of Hessian approximation is an additional tool that appears to pay off in
the long run.

6.5 Conclusion of Chapter 6

As shown in this chapter, weak second-order optimality can be established for a broad
class of direct-search methods. Indeed, one can identify a measure of the second-order
aspects that are captured by the algorithm, which tends to be nonnegative. This already
enables to classify the polling choices by their second-order relevance: it then appears
that symmetric sets may already help on problems where curvature is worth considering.
In order to design second-order globally convergent methods, one then needs to extend
this measure to turn it into a true second-order one. This was done by extending the
polling process to build a Hessian approximation, thus resulting in a provably second-
order convergent direct-search instance. The corresponding complexity analysis reveals
a dependence on the problem dimension worsened compared to the first-order case,
yet this expense is comparable to the cost of other second-order globally convergent
derivative-free schemes.

Despite pathological examples showing that the expense per iteration can be quite
important for those algorithms, it seems that the actual practical cost remains at a
reasonable level, albeit potentially higher than for typical first-order methods. The
interest in this increased consumption lies in the benefit of exploiting negative curvature
in practice, which can allow to obtain better solutions while increasing the robustness
of the methods.

As a conclusion, we point out that the material presented in this chapter has previ-
ously appeared in Optimization [66]. In particular, its first appearance in the associated
technical report and preprint was anterior to the results in [73], which justifies our claim
that to the best of our knowledge, the second-order complexity bounds derived in this
chapter were the first of their kind to be established in the derivative-free literature.

133

Chapter 7

De-coupled first/second-order
steps strategies for nonconvex
derivative-free optimization

In order to guarantee second-order convergence, optimization methods must account for
two criteria that might not be of the same order of magnitude, while this difference in
scaling might vary throughout the algorithmic process. Whenever not carefully han-
dled, such a behavior may prevent fast convergence of the algorithm, and even cancel
any benefits that can come from considering second-order aspects. Consequently, any
framework with global (second-order) convergence purposes should ideally be able to
identify the potential scaling differences, and act appropriately to prevent those from
impacting practical efficiency..

In this chapter, we propose a technique that transforms an algorithm so as to disso-
ciate its first and second-order features. The idea is widely applicable to any provably
second-order globally convergent scheme, and gives rise to new methods we qualify as
de-coupled. After describing further the general concept in Section 7.1, we first study a
derivative-free trust-region method in which the de-coupling process lies in the use of two
trust-regions: this is the subject of Section 7.2. We then propose a de-coupled direct-
search method in Section 7.3, showing that it enjoys the same convergence guarantees
as the algorithm introduced in Chapter 6, but with improved complexity results. Intro-
duction of randomness into those frameworks is discussed in Section 7.4. We conclude
this chapter by numerical comparison of the de-coupled variants with their traditional
“coupled” counterparts in Section 7.5.

135

7.1 Motivations

Our analysis is mostly inspired by was has been done in derivative-based line-search
methods [12, 63, 94, 102]. In those works, it has been identified that directions of descent,
that relate to the properties of the gradient, and directions of negative curvature, that are
connected to the eigenvalues of the Hessian matrix, should not necessarily be associated
with the same steplength. Indeed, it may be that one of the two criteria of interest
(namely the gradient norm and the minimum Hessian eigenvalue) is several orders of
magnitude smaller than the other. In that situation, a method based on a unique step
length may compute a very small step to cope with the magnitude of one criterion,
even though more improvement could have been realized by performing a moderate step
by concentrating on the other one. Tests based on comparing Taylor model values at
promising directions [63] or scaling techniques prior to the actual step computation [12]
have been studied. In trust-region methods, those issues can be handled internally by
the subproblem solver [33], yet they remain of essence considering that any step in this
subproblem is limited in size by the trust-region radius. It may be that this radius is
forced to shrink in order to provide second-order guarantees.

This is particularly true in derivative-free optimization, as none of the derivatives is
known. The step size (in direct search) or the trust-region radius (in trust region) are
often the tool of essence to estimate a joint optimality criterion (in general the maximum
of the gradient norm and the opposite of the minimum eigenvalue). As a result, the cost
of the second-order guarantees often absorbs the first-order ones (see [37] and Chapter 6).

Our study revolves around the separate treatment of gradient-type and Hessian-type
properties of the function at a given iterate. We define a de-coupling process as a strategy
that relies on duplicating elements of the algorithm that intervene in the treatment of
both aspects, so as to treat each of them separately. As we will see, the idea is general
enough to be embedded in a wide range of optimization algorithms.

7.2 A trust-region method with de-coupling process

We begin by applying the de-coupling idea to derivative-free methods of model-based
type. A trust-region algorithm is presented, that relies on dissociating first and second-
order contributions in the decrease obtained in the function values by means of two
trust-regions.

Beforehand, we recall the general form of a second-order globally convergent trust-
region method (which we consider in a derivative-free setting) in Algorithm 7.1. As in
Chapter 4, we consider a simplified framework close to the probabilistic case [14], while
allowing for a complete new sampling at each iteration, using a typical well-poised set of
directions in order to cope with the lack of criticality step. This being said, we believe
that an extension of the upcoming analysis to take such a step into account is rather
straightforward, given the existing literature [60].

136

Algorithm 7.1: Basic Second-Order Derivative-Free Trust-Region framework

Define positive parameters η1, η2, 0 < γ1 < 1 < γ2 and 0 < δ0 < δmax.
for k = 0, 1, 2, . . . do

Approximate the function f in B(xk, δk) by
mk(xk + s) = f(xk) + g>k s+ 1

2s
>Hk s.

Compute sk by approximately minimizing mk in B(xk, δk), and let

ρk = f(xk)− f(xk + sk)
m(xk)−m(xk + sk)

.

If ρk ≥ η1, set xk+1 = xk + sk, and

δk+1 =
{

min {γ2 δk, δmax} if τk ≥ η2 δk

γ1 δk otherwise,

where τk = max {‖gk‖,−λmin (Hk)}.
Otherwise, set xk+1 = xk and δk+1 = γ1 δk.

end

7.2.1 A de-coupled trust-regions approach

We present below a de-coupled variant of Algorithm 7.1. In the upcoming algorithm,
called DESTRESS for DE-coupled Steps in a Trust-REgionS Strategy, multiple variables
and parameters will appear in both contexts of first-order trust-region and second-order
trust-region. To avoid confusion between those parameters and the potential subscripts
they may have, we adopt the following notation: a parameter or variable of the method
will be affected the superscript or subscript “c” (Cauchy step) when relative to the first-
order trust-region, and “e” (eigenstep) when related to the second-order trust-region.

The algorithmic principles of Algorithm 7.2 are highly similar to that of a classical
trust-region method. The main difference is that a first-order step is computed, tested,
and accepted if it yields the desired improvement. Only when this step is rejected are a
second-order model and its associated second-order step computed. In that sense, our
framework prioritizes the first-order aspects, while potentially avoiding the expense of
computing the second-order model.

Both models are chosen as quadratic functions (not necessarily identical), that satisfy
the following assumptions.

Assumption 7.1 Throughout an execution of Algorithm 7.2, the sequence of first-order
models {mc

k}k is a (κc
g, κ

c
f)-fully linear model sequence for the first-order trust-region

sequence, i.e., each model mc
k is (κc

g, κ
c
f)-fully linear on B(xk, δc

k).
In addition, the first-order model Hessians are bounded in norm, i.e., it exists Bc > 0

such that
∀ k, ‖Hc

k‖ ≤ Bc.

137

Algorithm 7.2: DE-coupled Steps in a Trust-REgionS Strategy (DESTRESS)

Choose x0 ∈ Rn, 0 < δc
0 < δc

max, 0 < δe
0 < δe

max, 0 < γc
1 < 1 < γc

2,
0 < γe

1 < 1 < γe
2, (ηc

1, η
c
2, η

e
1, η

e
2) ∈ (0,∞).

for k = 0, 1, 2, . . . do
1. First-order trust region and step

(a) Compute a model mc
k of the function f and compute a step sc

k by
approximately solving the first-order trust-region subproblem{

mins mc
k(xk + s) = f(xk) + [gc

k]>s+ 1
2s
>Hc

k s

‖s‖ ≤ δc
k.

(7.1)

(b) Compute f(x0 + sc
k) and ρc

k = f(xk+sc
k)−f(xk)

mc
k
(xk+sc

k
)−mc

k
(xk) .

(c) If ρc
k ≥ ηc

1, set xk+1 = xk + sc
k and

δc
k+1 =

{
min {γc

2 δ
c
k, δ

c
max} if ‖gc

k‖ ≥ ηc
2 δ

c
k,

δc
k otherwise,

and skip the rest of the iteration. Otherwise, go to 2.

2. Second-order trust region and step

(a) Compute a model me
k of the function f and compute a step se

k by
approximately solving the second-order trust-region subproblem{

mins me
k(xk + s) = f(xk) + [ge

k]> s+ 1
2s
>He

k s

‖s‖ ≤ δe
k.

(7.2)

(b) Compute f(xk + se
k) and ρe

k = f(xk+se
k)−f(xk)

me
k
(xk+se

k
)−me

k
(xk) .

(c) If ρe
k ≥ ηe

1, set xk+1 = xk + se
k and

δe
k+1 =

{
min {γe

2 δ
e
k, δ

e
max} if − λe

k = −λmin (He
k) ≥ ηe

2 δ
e
k,

δe
k otherwise,

and skip the rest of the iteration. Otherwise, go to 3.

3. Unsuccessful iteration: set
xk+1 = xk,

δc
k+1 = γc

1 δ
c
k,

δe
k+1 = γe

1 δ
e
k.

138

Assumption 7.2 Throughout an execution of Algorithm 7.2, the sequence of second-
order models {me

k}k is a (κe
H , κ

e
g, κ

e
f)-fully quadratic model sequence for the second-order

trust-region sequence, i.e., each model me
k is (κe

H , κ
e
g, κ

e
f)-fully quadratic on B(xk, δe

k).

One sees that the de-coupling process results in separate requirements regarding the
quality of the models.

7.2.2 Convergence and complexity analysis

We begin by assuming that the model minimization satisfies the classical properties for
convergence (although we emphasize that they are usually assumed on a unique step).

Assumption 7.3 At each iteration k of Algorithm 7.2, the model mc
k is minimized by

computing an approximate Cauchy point, i.e., the first-order step satisfies:

mc
k(xk)−mc

k(xk + sc
k) ≥

τc
2 ‖g

c
k‖min

{
‖gc
k‖

‖Hc
k‖
, δc
k

}
, (7.3)

where τc ∈ (0, 1), gc
k = ∇mc

k(xk) and Hc
k = ∇2mc

k(xk) (we set ‖g
c
k‖

‖Hc
k
‖ =∞ if ‖Hc

k‖ = 0).

Assumption 7.4 At each iteration k of Algorithm 7.2 at which it is considered, provided
λe
k = λmin

(
∇2me

k(xk)
)
< 0, the model me

k is minimized by computing an approximate
eigenpoint, i.e., it exists τe ∈ (0, 1) such that the second-order step satisfies:

me
k(xk)−me

k(xk + se
k) ≥ τe |λe

k| [δe
k]

2 , (7.4)

We then provide three general results that lead to convergence. Note that the first
one, described in Lemma 7.1, is independent of the quality of the models.

Lemma 7.1 Let Assumptions 2.2, 7.3 and 7.4 hold. Then there exist positive constants
Tc and Te depending on initial values and update parameters of the step size, as well as
f(x0) and flow, such that ∑

k∈Sc
+∪U

[δc
k]

2 ≤ Tc <∞, (7.5)

and ∑
k∈Se

+∪U
[δe
k]

3 ≤ Te <∞, (7.6)

where Sc
+ (resp. Se

+) is the set of iteration indexes for which δc
k (resp. δe

k) possibly
increases, and U is the set of unsuccessful iterations (for which both radii are decreased).

Lemma 7.2 Let Assumptions 6.1, 7.1 and 7.3 hold. Then, provided

δc
k < min

 1
Bc + κc

g

,

[
2κc

f

τc (1− ηc
1) + κc

g

]−1

,
1

ηc
2 + κc

g

 ‖∇f(xk)‖, (7.7)

the k-th iteration is first-order very successful, i.e., ρc
k ≥ ηc

1 and ‖gc
k‖ ≥ ηc

2 δ
c
k.

139

Lemma 7.3 Let Assumptions 6.1, 7.2 and 7.4 hold. Then, provided the true minimum
Hessian eigenvalue λk = λmin(∇2f(xk)) is negative and

δe
k < min

[

κe
f

τe (1− ηe
2) + κe

h

]−1

,
1

ηe
2 + κe

h

 |λk|, (7.8)

the k-th iteration is second-order very successful, i.e., ρe
k ≥ ηe

1 and |λe
k| ≥ ηe

2 δ
e
k.

Theorem 7.1 Under Assumptions 2.2, 6.1, 7.1, 7.2, 7.3 and 7.4,

lim inf
k→∞

max
{
‖∇f(xk)‖,−λmin

[
∇2f(xk)

]}
= 0. (7.9)

Proof. Recalling that U is the set of unsuccessful iterations, suppose that it exists
ε > 0 such that

∀ k ∈ U, max
{
‖∇f(xk)‖,−λmin

[
∇2f(xk)

]}
> ε. (7.10)

Then either there exists a subsequence Kc ⊂ U for which ‖∇f(xk)‖ stays above ε, or
there exists a subsequence Ke ⊂ U for which −λmin

[
∇2f(xk)

]
> ε.

Suppose that we are in the first situation. Then, by (7.7), one must have for every
k ∈ Kc:

δc
k ≥ min

 1
Bc + κc

g

,

[
2κc

f

τc (1− ηc
1) + κc

g

]−1

,
1

ηc
2 + κc

g

 ε. (7.11)

However, from Lemma 7.1, δc
k goes to zero on unsuccessful iterations U , hence on itera-

tions in Kc. Therefore there exists a subsequence Jc ⊂ Kc such that

lim
k∈Jc
‖∇f(xk)‖ = 0. (7.12)

As a result, for (7.10) to hold, we necessarily have

∀ k ∈ Jc, −λmin
[
∇2f(xk)

]
> ε.

Using (7.8), we have that

δe
k ≥ min

[

κe
f

τe (1− ηe
2) + κe

h

]−1

,
1

ηe
2 + κe

h

 ε. (7.13)

Since {δe
k}k∈Jc tends to 0 as a subsequence of a converging sequence, we obtain a con-

tradiction, from which we conclude that there exists a subsequence Ic ⊂ Jc such that

lim
k∈Ic

λmin
[
∇2f(xk)

]
≥ 0. (7.14)

As a result, for this subsequence, we have

lim
k∈Ic

max
{
‖∇f(xk)‖,−λmin

[
∇2f(xk)

]}
= 0,

140

which contradicts (7.10).
A symmetric reasoning can be performed in the second situation (involving Ke),

from which we conclude that (7.9) must hold. �

We now describe the key components of a complexity analysis of Algorithm 7.2.
Given (εc, εe) ∈ (0, 1)2, we want estimate the cost of reaching an iterate of the method
which is an (εc, εe)-approximate stationary point, i.e. at which both

inf
0≤j≤k

‖∇f(xj)‖ < εc (7.15)

and
sup

0≤j≤k
λmin

(
∇2f(xj)

)
> −εe (7.16)

hold.
By combination of Lemmas 7.2 and 7.3, we can express the properties of the trust-

region radii whenever one of the two conditions above is not satisfied.

Lemma 7.4 Let Assumptions 2.2, 6.1, 7.1, 7.2, 7.3, and 7.4 and suppose that by the
k-th iteration an (εc, εe)-approximate critical point has not been reached. Then, for every
iterate l between 0 and k such that (7.15) is not satisfied,

δc
l ≥ γc

1 min

 1
Bc + κc

g

,

[
2κc

f

τc (1− ηc
1) + κc

g

]−1

,
1

ηc
2 + κc

g

 εc, (7.17)

while for every iterate l between 0 and k such that (7.16) does not hold,

δe
l ≥ γe

2 min

[

κe
f

τe (1− ηe
2) + κe

h

]−1

,
1

ηe
2 + κe

h

 εe. (7.18)

In what follows, we emphasize the dependencies on the model error constants κc
g and

κe
H , in order to study their dependencies on the dimension n.

Theorem 7.2 Let Assumptions of Lemma 7.4 hold. Then, the number of iterations
needed to attain an (εc, εe)-approximate critical point is

O
(

max
{[
κc
g

]2
ε−2
c , [κe

h]3 ε−3
e

})
, (7.19)

where the constant in O(·) does not depend on εc or εe, but on flow, x0, Bc, , τc, τe, κ
c
f ,

κc
g, κ

e
f , κ

e
h and both versions of algorithmic parameters γ1, γ2, η1, η2, δ0, indexed by c or

e.

One sees in the dependences mentioned in Theorem 7.2 that the quality of gra-
dient approximation on the second-order model has no influence on the complexity
bound. This confirms the de-coupling of the criteria, although an accurate model gra-
dient is likely to yield better coherence between the model and the objective function.

141

Interestingly, we observe a bound in O
(
max

{
ε−2
c , ε−3

e
})

, where the first term is al-
ways less than the one related to the traditional derivative-based trust-region bound in
O
(
max

{
ε−2
c ε−1

e , ε−3
e
})

for derivative-based trust-region schemes [25]. Such a result was
to be expected given the decrease requirements on our method. As discussed at the end
of Section 6.3, as long as an approximate stationary point has not been reached, one
would have

f(xk)− f(xk+1) ≥ O
(
min

{
εc δk, εe δ

2
k

})
and δk ≥ O (min {εc, εe}) (7.20)

on iterations of Algorithm 7.1 for which δk+1 = min {γ2 δk, δmax}. In the case of Algo-
rithm 7.2, those conditions involving a minimum are replaced by separated ones acting
on different subsequences of iterations. Still, the convergence of the trust-region radii
on unsuccessful iterations allows for the derivation of a global complexity result.

Note that in Algorithm 7.2, (n+1)(n+2)
2 + 1 function values are necessary in the worst

case (which will be considered in our numerical experiments) to build a fully quadratic
model, while 2n+ 1 evaluations are required for constructing a fully linear model, again
in the worst case. As a result, the number of evaluations is bounded as follows.

Theorem 7.3 Let the assumptions of Lemma 7.4 hold. Then, the number of iterations
needed to reach an (εc, εe)-approximate critical point is

O
(
n2 max

{[
κc
g

]2
ε−2
c , [κe

h]3 ε−3
e

})
, (7.21)

where the constant in O(·) does not depend on εc or εe, but on flow, x0, Bc, τc, τe, κ
c
f ,

κc
g, κ

e
f , κ

e
h and both versions of algorithmic parameters γ1, γ2, η1, η2, δ0, indexed by c or

e.

In the case of a model computed through polynomial interpolation, one can show [35]
that

κc
g = O(κc

f) = O(
√
n)

κe
h = O(κe

f) = O(n),

We can then replace these constants in the bounds, which yields a dependence in n5 with
respect to the dimension. Such dependencies have already been observed in globally
convergent second-order derivative-free methods [66, 73]. For the particular case of the
polynomial interpolation, we have more precisely

O
(
max

{
n3 ε−2

c , n5 ε−3
e

})
.

7.3 A de-coupled direct search with improved complexity
results

In this section, we propose a direct-search method based on Algorithm 6.1 with a de-
coupling strategy. The essential characteristic of the new method is that it relies on two

142

different step sizes in order to account for the first and second-order optimality criteria.
This is particularly interesting if those criteria differ in magnitude; in that situation, a
single step size could only be appropriately scaled with respect to one of the two criteria
at a time. Proceeding with two step sizes allows to tackle both aspects in a separate
fashion.

7.3.1 Algorithmic process and convergence properties

Algorithm 7.3 describes how the minimization process is carried on. As in Algorithm 6.1,
no search step is performed and the directions of interest are unitary.

A key feature of Algorithm 7.3 is the update rules on the step sizes. One sees that
whenever at a successful step, the algorithm will (possibly) increase the step size that
has produced decrease while leaving the other step size unchanged for the next iteration.
This process allows the method to cope with different orders of magnitude between the
first and second-order aspects, a common issue in nonconvex optimization based upon
directional decrease [12].

The forcing functions will be considered to satisfy the following assumption. We will
require different decreases for the first and the second-order polling.

Assumption 7.5 The forcing function ρ1, ρ2 : R+ → R+ satisfies the following proper-
ties:

i) the functions are non-decreasing,

ii) ρ1(α) = o(α) when α→ 0+,

iii) ρ2(β) = o(β2) when β → 0+.

For the rest of the section, S1 will denote the successful iterations for which a direction
satisfying (7.22) was obtained. Similarly, S2 will be the set of indexes at which a direction
satisfying (7.23) was found. The set of unsuccessful iterations will be indicated by U .

Lemma 7.5 Under Assumption 2.2, one has∑
k∈S1∪U

ρ1(αk) < ∞ (7.25)

which implies that {αk}k∈S1∪U goes to 0, and∑
k∈S2∪U

ρ2(βk) < ∞, (7.26)

so {βk}k∈S2∪U also goes to zero.

Proof. For both step sizes, the proof follows the process of that of Lemma 3.7, only
with S1 (resp. S2) replacing the successful iterations for the series of αk (resp. βk). �

143

Algorithm 7.3: De-coupled Step sizes Direct-Search method (DSDS)

Choose an initial point x0 ∈ Rn, as well as 0 < θα < 1 ≤ γα, 0 < θβ < 1 ≤ γβ,
0 < α0 < αmax, 0 < β0 < βmax. Define two forcing functions ρ1, ρ2 : R+ → R+.

for k = 0, 1, 2, . . . do
1 - First-Order Poll Step

Generate a Positive Spanning Set Dk. If there exists d ∈ Dk such that

f(xk + αk d) < f(xk)− ρ1(αk), (7.22)

declare iteration k as first-order successful with dk = d and go to the update step,
otherwise go to the second-order poll step.

2 - Second-Order Poll Step

(a) Generate a (linear) basis Bk; if it exists d ∈ [Bk -Bk] such that

f(xk + βk d) < f(xk)− ρ2(βk), (7.23)

declare iteration k as second-order successful with dk = d and go the update step.

(b) Otherwise, let d1, · · · , dn be an order on the directions in Bk. If it exists
d ∈ {di + dj , 1 ≤ i < j ≤ n} such that (7.23) holds, then declare the iteration
successful with dk = d, and go to the update step.

(c) Otherwise, define the matrix Hk by setting for all (i, j) ∈ {1, . . . , n}2, i < j:

(Hk)ii = f(xk+βk di)−2 f(xk)+f(xk−βk di)
β2
k

,

(Hk)ij = f(xk+βk di+βk dj)−f(xk+βk di)−f(xk+βk dj)+f(xk)
β2
k

.

(7.24)

(d) Compute a unitary eigenvector vk associated with λmin(Hk). If vk or -vk
satisfies (7.23), declare the iteration as second-order successful with dk equal
to vk or -vk, otherwise declare it unsuccessful.

3 - Update Step

If the iteration is first-order successful, set xk+1 = xk + αk dk,
αk+1 = min{γα αk, αmax} and βk+1 = βk.
If the iteration is second-order successful, set xk+1 = xk + βk dk,
βk+1 = min{γβ βk, βmax} and αk+1 = αk.
Otherwise, set xk+1 = xk, αk+1 = θα αk, and βk+1 = θβ βk.

end

144

Note that this result is weaker with respect to each of the step sizes compared to the
previous direct-search methods we studied, but it still suffices to obtain a liminf-type
convergence result as well as a worst-case complexity bound.

We now state the equivalent of Lemma 6.3 for Algorithm 7.3, which one can prove
by following the same reasoning.

Lemma 7.6 Let k be the index of an unsuccessful iteration of Algorithm 7.3 such that
cm(Dk) ≥ κg and σmin(Bk)2 ≥ σ for (κg, σ) ∈ (0, 1)2. Under Assumption 6.1,

‖∇f(xk)‖ ≤ κ−1
g

(
ρ1(αk)
αk

+ νg
2 αk

)
(7.27)

is satisfied, and, if λk = λmin
(
∇2f(xk)

)
< 0,

λk ≥ −σ−1
(

2 ρ2(βk)
β2
k

+ (10n+ 1)νH3 βk

)
(7.28)

also holds.

Lemma 7.6 implies that every criterion is related to one step size, that will serve
to its estimation. Since both subsequences of step sizes corresponding to unsuccessful
iterations go to zero by Lemma 7.5, we can establish convergence of the method under
the following assumptions on the sets Dk and Bk.

Assumption 7.6 It exists κg ∈ (0, 1) such that for every k, the first-order polling set
Dk is a κg-descent set.

Assumption 7.7 It exists σ ∈ (0, 1] such that at any iteration k, the set Bk (viewed as
an n-by-n matrix) satisfies σmin(Bk)2 ≥ σ.

Theorem 7.4 Under Assumptions 2.2, 6.1, 7.5, 7.6 and 7.7, one has

lim inf
k→∞

max
{
‖∇f(xk)‖,−λmin

(
∇2f(xk)

)}
= 0. (7.29)

Algorithm 7.3 is thus second-order globally convergent.

7.3.2 Complexity analysis

The reasoning of Section 6.3.3 can be adapted to derive a worst-case complexity analysis
of Algorithm 7.3. We recall that our objective is to bound the number of iterations
needed to achieve:

inf
0≤l≤k

‖∇f(xl)‖ < εg and sup
0≤l≤k

λmin
(
∇2f(xl)

)
> −εH . (7.30)

Because of the de-coupling property of the method, we can establish separate bounds
on the number of first-order successful and second-order successful iterations. This re-
sults in a worst-case estimate that possibly improves the one presented in Section 6.3.3.

145

Such a difference is due to the disjunction between first-order and second-order suf-
ficient decreases, that involve not only two step sizes but also two forcing functions.
The independence between the treatment of both optimality criteria is made clear in
Proposition 7.1.

Proposition 7.1 Suppose that the assumptions of Theorem 7.4 hold. Given εg and εH
in (0, 1), let k0 be the index of the first unsuccessful iteration and assume that (7.30)
does not hold, and let l1 be the first index such that (7.30) is satisfied at iteration l1 + 1.

Then, the number of successful iterations between k0 and l1 satisfies

|Sl1(k0)| = max
{
|S1(k0)|, |S2(k0)|

}
, (7.31)

where S1(k0) (resp. S2(k0)) denotes the set of first-order (resp. second-order) successful
iterations k for which inf0≤l≤k ‖∇f(xl)‖ ≥ εg (resp. sup0≤l≤k λmin(∇2f(xl)) ≤ −εH).

Theorem 7.5 Suppose that the assumptions of Theorem 7.4 hold. Assume that Algo-
rithm 7.3 is applied with ρ1(α) = c1

2 α
q, ρ2(β) = c2

6 β
r with c1, c2 > 0, q > 1 and r > 2.

Define q̂ = q
min{q−1,1} and r̂ = r

min{r−2,1} .
Given εg, εH ∈ (0, 1), let k0 be the index of the first unsuccessful iteration and assume

that (7.30) does not hold, and let l1 be the first index such that (7.30) is satisfied at
iteration l1 + 1. Then the number of successful iterations between k0 and l1, denoted by
|Sl1(k0)|, is bounded as follows:

|Sl1(k0)| ≤
⌈(

f(xl0)− flow
Ls

)
max

(
κ−q̂g ε−q̂g , (σ/n)−r̂ ε−r̂H

)⌉
, (7.32)

where

Ls = min
{
c1 θ

q̂
α

2 ,
c2 θ

r̂
β

6

}
min

{
1, L−q̂1 , L−r̂2

}
, L1 = c1 + νg

2 , and L2 = c2 + 11 νH
3 .

Proof. Thanks to Proposition 7.1, we consider the criteria in an independent fashion.
Assume that S1(k0) is not empty (otherwise the upcoming result is trivial), and

denote by l11 the maximum index in S1(k0). For every l ∈ U such that k0 ≤ l < l11, we
then know that

‖∇f(xl)‖ ≥ inf
0≤j≤l

‖∇f(xj)‖ ≥ εg.

Thus, by Lemma 7.6,

εg ≤ ‖∇f(xl)‖ ≤
1
κg

[
c1
2 αq−1

l + νg
2 αl

]
. (7.33)

By distinguishing the cases αl ≥ 1 and αl < 1, we arrive at

αl ≥ min
(

1, L
− q̂
q

1

)
κ
q̂
q
g ε

q̂
q
g . (7.34)

146

Considering now the iterations in S1(k0), one can backtrack to the previous index in U
(which is always greater than or equal to k0). As a result, the bound on the first-order
step size for every index l ∈ S1(k0) between k0 and l11 is

αl ≥ θα min
(

1, L
− q̂
q

1

)
κ
q̂
q
g ε

q̂
q
g . (7.35)

If we look at the function value decreases, we have that∑
l∈S1(k0)

f(xl)− f(xl+1) ≥
∑

l∈S1(k0)
ρ1(αl)

≥ c1
2

∑
l∈S1(k0)

αql

≥
∣∣∣S1(k0)

∣∣∣ c1
2 θqα min

(
1, L−q̂1

)
κq̂g ε

q̂
g.

Since∑
l∈S1(k0)

f(xl)− f(xl+1) ≤
∑

l∈Sl1 (k0)
f(xl)− f(xl+1) ≤ f(xk0)− f(xl1+1) ≤ f0 − flow,

one obtains the first-order bound∣∣∣S1(k0)
∣∣∣ ≤ 2(f0 − flow)

c1 θ
q
α min

(
1, L−q̂1

) κ−q̂g ε−q̂g . (7.36)

A similar study for the set S2(k0) leads to∣∣∣S2(k0)
∣∣∣ ≤ 6(f0 − flow)

c2 θrβ min
(
1, L−r̂2

) (σ/n)−r̂ ε−r̂H . (7.37)

We arrive at our final result by applying Proposition 7.1. �

Theorem 7.6 Let the assumptions of Theorem 7.5 hold. Then, with the same defini-
tions for k0 and l1, the number of unsuccessful iterations between k0 and l1 is at most
|Ul1(k0)|, where

|Ul1(k0)| ≤ 1
2

⌈
L3 |Sl1(k0)|+ L4 − (logθα e)κ

− q̂
q

g ε
− q̂
q

g − (logθβ e) (σ/n)−
r̂
r ε
− r̂
r

H

⌉
(7.38)

with
L3 = max

{
− logθα γα,− logθβ γβ

}
and

L4 = logθα

θα min{1, L
− q̂
q

1 } e
αk0

+ logθβ

θβ min(1, L−
r̂
r

2) e
βk0

 .
147

Proof. We base ourselves on the proof of Theorem 6.4. Given the updating rules
on the first-order step size αk, we have that

αl1 ≤ αk0 θ
|Ul1 (k0)|
α γ|S

1(k0)|
α , (7.39)

thus, by reasoning as in Theorem 6.4, one can arrive at

|Ul1(k0)| ≤ − logθα γα
∣∣∣S1(k0)

∣∣∣+ logθα

θα min(1, L
− q̂
q

1) e
αk0

− logθα e (κg εg)−
q̂
q . (7.40)

Similarly, one has

|Ul1(k0)| ≤ − logθβ γβ
∣∣∣S2(k0)

∣∣∣+ logθβ

θβ min(1, L−
r̂
r

2) e
βk0

− logθβ e
(
σ n−1 εH

)− r̂
r .

(7.41)
Summing (7.36) and (7.37) yields

2 |Ul1(k0)| ≤ L3 |Sl1(k0)|+ L4 − (logθα e)κ
− q̂
q

g ε
− q̂
q

g

−(logθβ e) (σ/n)−
r̂
r ε
− r̂
r

H ,

hence the result. �
Since the index of the first unsuccessful iteration can be shown to be at most⌈

(f(x0)− flow) max
{ 2
c1 α

p
0
κ−q̂g ε−q̂g ,

6
c2 βr0

(σ/n)−r̂ ε−r̂H
}⌉

,

we obtain the following complexity results for Algorithm 7.3.

Theorem 7.7 Let the assumptions of Theorem 7.5 hold. The number of iterations
needed by Algorithm 7.3 to satisfy (7.30) is at most

O
(
max

(
κ−q̂g ε−q̂g , (σ/n)−r̂ ε−r̂H

))
, (7.42)

where the constant in O(·) depends on νg, νH , α0, β0, f(x0), flow, c1, c2, γα, θα, γβ, θβ, q and
r. In addition, the number of function evaluations needed by Algorithm 6.1 is at most

O
(
m max

(
κ−q̂g ε−q̂g , (σ/n)r̂ ε−r̂H

))
, (7.43)

with m is the maximum number of function evaluations performed in any iteration, and
the constant in O(·) is the same as in (7.42).

It comes out from the bounds in Theorem 7.7 that Algorithm DSDS presents a better
complexity in terms of first-order optimality, without worsening the number of function
evaluations in terms of dependence on n. For instance, by using Dk = D⊕ at every

148

iteration and extract Bk directly from Dk, the maximum number if evaluations one has
to perform in a single iteration of Algorithm 7.3 is

m = 2n+ 2n+ n2 − n
2 + 2 = n2 + 7n+ 4

2 ,

while if we set Dk = Vn+1 and use Bk = I (the canonical basis), this maximum number
of evaluations per iteration becomes

m = n+ 1 + 2n+ n2 − n
2 + 2 = n2 + 5n+ 6

2
As a result, m = O(n2), so its dependence on n does not worsen compared to Algo-
rithm 6.1, even though the total number of evaluations does. The lowest q̂ and r̂ being
obtained by choosing q = 2 and r = 3, we arrive at a bound in

O
(
max

{
n3 ε−2

g , n5 ε−3
H

})
(7.44)

for the amount of function evaluations. One thus sees that we recover the results from
Section 7.2.2, as the improvement on the power of the tolerance εg also affects the
dependence on n with respect to the first-order criterion. Nevertheless, note that for εH
sufficiently smaller than εg, the second part of the bound is the dominant one, and we
obtain a bound in O

(
n5 ε−3

H

)
.

7.4 Towards randomization

An interesting possibility offered by the de-coupling techniques is the introduction of
randomness with respect to one single aspect. Indeed, since the treatments of first and
second-order aspects are done in a dissociated way, it is possible to consider one of them
from a probabilistic perspective while the other one is treated deterministically, as in the
previous sections. We describe below the results that can be obtained by introducing
probabilistic first-order properties.

7.4.1 De-coupled trust regions with probabilistic first-order models

Considering Algorithm 7.2 applied to a nonconvex objective function, we now assume
that the first-order models satisfy Assumption 7.8.

Assumption 7.8 The model sequence is a (p, κc
g, κ

c
f)-fully linear sequence, with p ≥ p0

and
p0 = ln(γc

1)
ln (γc

1/γ
c
2) .

Meanwhile, the second-order will be required to satisfy the deterministic fully quadratic
property of Assumption 7.2. Note that the second-order models will be considered as
random as the whole algorithmic process (in particular, the iterates and the trust-region
radii) turns into a random one. As we have seen, this does not prevent from ensuring
deterministic properties.

149

Theorem 7.8 Let Assumptions 2.2 and 6.1 hold. Consider the application of Algo-
rithm 7.2 based on probabilistically fully linear models satisfying Assumption 7.8 and
deterministically fully quadratic models satisfying Assumption 7.2. Suppose that those
models are approximately minimized so that Assumptions 7.3 and 7.4 are valid for all
realizations of the method.

Then, the random sequence of iterates produced by the algorithm satisfies

P
(
max

{
‖∇f(Xk)‖ ,−λmin

[
∇2f(Xk)

] }
= 0

)
= 1.

A probabilistic complexity analysis of the proposed scheme can also be derived,
yielding a worst-case complexity bound in O

(
n2 max

{[
κc
g

]2
ε−2
c , [κe

h]3 ε−3
e

})
in terms

of function evaluations, holding with overwhelming probability and matching the deter-
ministic ones.

7.4.2 De-coupled direct search based on probabilistic first-order de-
scent

We now consider Algorithm 7.3 and assume that the first-order polling sets satisfy a
probabilistic descent property: as in the previous section, we target almost-sure second-
order convergence.

Assumption 7.9 The polling set sequence of Algorithm 7.3 is made of sets of m random
independent vectors, and form a (p, κg)-descent sequence with p ≥ p0, where

p0 = ln θα
ln
(
γ−1
α θα

) . (7.45)

The bases Bk will however be treated as deterministic, and required to satisfy As-
sumption 7.7. Note that contrary to the trust-region case, the sets Bk do not become
random due to the first-order polling sets (however the iterates and step sizes do).

The convergence result one can obtain under this setting is stated in Theorem 7.9.

Theorem 7.9 Let Assumptions 2.2, 6.1 and 7.5 hold. Consider the application of Al-
gorithm 7.3 based on random (first-order) polling sets satisfying Assumption 7.9 and
deterministic (second-order) linear bases satisfying Assumption 7.7.

Then, the random sequence of iterates produced by the algorithm satisfies

P
(
max

{
‖∇f(Xk)‖ ,−λmin

[
∇2f(Xk)

] }
= 0

)
= 1.

It is also possible to derive a probabilistic worst-case complexity bound under the
assumptions of Theorem 7.9. Following the reasoning of Section 3.4, one can show that
with overwhelming probability, the number of function evaluations is in

O
(
m max

{
κ−2
g ε−2

c , [n/σ]3 ε−3
e

})
,

150

with m being the maximum number of function evaluations performed in one iteration.
Although it remains of order of n2 in the worst case, it can be reduced when less than n+1
directions are used to build Dk. For instance, with 2 directions uniformly distributed in
the sphere, one would obtain

m = 2 + 2n+ n2 − n
2 + 2 = n2 + 3n+ 8

2 ,

which for n ≥ 2 is always less than the maximum number of iterations performed in the
deterministic case studied in Section 7.3.

7.5 Numerical study of the de-coupled approach

In this section, we investigate the numerical impact of our de-coupling strategy. It
is shown to yield improvement in the trust-region case, while offering new insights on
deterministic and probabilistic properties in direct-search algorithms.

7.5.1 Preliminary experiments on the de-coupled trust-region method

We tested an implementation of the DESTRESS algorithm on a benchmark consist-
ing of 55 CUTEst [65] problems among the nonconvex benchmark given in Appendix B.
Comparison was made with the basic second-order convergent trust-region relying on
quadratic interpolation models described in Algorithm 7.1. To highlight the patholog-
ical behavior of those two methods, a new poised sample set was generated at every
iteration. For Algorithm 7.1, the models were computed by interpolation so as to sat-
isfy a fully quadratic property [35]. In the case of Algorithm 7.2 (DESTRESS), both
models were quadratic polynomials. The models {mc

k} were computed by linear inter-
polation (in which case a diagonal Hessian based on symmetric polling was used), while
for the models {me

k} quadratic polynomial interpolation was used. In Algorithm 7.1,
we used quadratic polynomial interpolation models in order to guarantee second-order
convergence of the method. Note that the remaining parameters of the trust-region
subproblems and updates were set to be identical (for instance, we set η1 = ηc

1 = ηe
1).

For these methods, we gave a budget of 500
(

(n+1)(n+2)
2 + 2n+ 1

)
evaluations (i.e.

a budget for computing both a first-order and a second-order model for 500 iterations).
The stopping criterion was

f(xk)− fbest < εf (f0 − fbest) ,

where fbest was the best value obtained by those solvers with the given budget of eval-
uations and εf was a given tolerance. In addition to the stopping criterion, we stopped
the method if the budget was exhausted or if the trust-region radius (one of the two in
case of Algorithm 7.2) dropped below 10−8.

Figures 7.1 to 7.3 present the results for various values of the tolerance εf . In
the derivative-free setting, Algorithm 7.2 outperforms a standard approach method,
essentially because of its ability to save function evaluations if the first-order trust-region

151

0 0.5 1 1.5 2 2.5 3 3.5

Ratio of iterations (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
p
ro

b
le

m
s
 s

o
lv

e
d

2nd-Order TR

DESTRESS

Figure 7.1: Performance of the derivative-free trust-region methods for εf = 10−3.

0 0.5 1 1.5 2 2.5 3 3.5 4

Ratio of iterations (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
p
ro

b
le

m
s
 s

o
lv

e
d

2nd-Order TR

DESTRESS

Figure 7.2: Performance of the derivative-free trust-region methods for εf = 10−6.

step is successful. It also appears that a separate second-order step is able to provide
more decrease in the problem, thus improving the general robustness of the method.

Note that the results were similar when the classical decrease ratios were replaced

152

0 0.5 1 1.5 2 2.5 3 3.5 4

Ratio of iterations (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
p
ro

b
le

m
s
 s

o
lv

e
d

2nd-Order TR

DESTRESS

Figure 7.3: Performance of the derivative-free trust-region methods for εf = 10−9.

by

ρc
k = f(xk)− f(xk + sc

k)− cc [δc
k]

2

mc
k(xk)−mc

k(xk + sc
k)

, ρe
k = f(xk)− f(xk + se

k)− ce [δc
k]

3

me
k(xk)−me

k(xk + se
k)

, (7.46)

which are the decoupled equivalents of those presented in [60] for deriving worst-case
complexity bounds in the composite and nonsmooth settings.

7.5.2 Numerical study of the de-coupled direct-search framework

We hereby present a more extensive experimentation with the de-coupled framework of
Algorithm 7.3. Although similar in spirit to Algorithm 6.1 regarding the treatment of
second-order aspects, it handles the first-order ones differently. Having established that
this is beneficial for the complexity analysis, we now aim at studying the impact of such
a technique on the practical performance.

Our experimental setting is quite similar to that of the previous chapter, with the
same benchmark of 60 CUTEst problems as in Section 6.4. We focused on the best
variants of Algorithms 2.1 and 6.1, corresponding to the polling choice 0 (D⊕). For
comparison, we selected two variants on the DSDS framework, respectively based on
considering the same polling sets for both the first and the second-order polling. In the
first case, we used Dk = D⊕, while in the second case, the chosen PSS was Dk = QD⊕
(i.e., also a symmetric set). For both variants, we set Bk to be the canonical basis so
that Bk ⊂ Dk in the first case and Bk ∩Dk = ∅ in the second.

153

0 1 2 3 4 5 6 7

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

bds0

ahds0

dsds same sets

dsds two sets

(a) εf = 10−3.

0 1 2 3 4 5 6 7 8 9

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

bds0

ahds0

dsds same sets

dsds two sets

(b) εf = 10−6.

Figure 7.4: Performance of the dsds methods (same settings), given a budget of 2000n
evaluations. γα = γβ.

154

The results presented in Figure 7.4 were obtained by giving all four methods the same
values for the increase and decrease parameters (i.e. γα = γβ = γ and θα = θβ = θ). The
DSDS methods performed relatively poorly compared to the other algorithms: it thus
seems that this parameter setting does not favor the first-order aspects. Note however
that in terms of robustness, the second variant of Algorithm 7.3 is competitive with the
standard direct-search framework, even though it potentially consumes more function
evaluations per iteration.

Figure 7.5 presents the results when using different update parameters for the first
and second-order polling steps of Algorithm 7.3. We set γβ = γ but modified the first-
order increase parameter so that γα > γ; the decrease parameters were identical. With
this setting, we were able to achieve comparable and sometimes superior performance
than the other algorithms. It is worth noticing that the variant based on different polling
sets is the most robust (that is, the best one for large ratios of function evaluations).

Two conclusions can thus be drawn from such experiments. The first one is the
interest of fully de-coupling the first and second-order aspects by means of different
polling sets: for nonconvex problems, it seems preferable to rely on symmetric polling
sets, which confirms our findings from Chapter 6. The second remark one can make is
related to the values of the update parameters, that appear to be critical for designing
an efficient de-coupled method. Even though no a priori information is available for
tuning these parameters, one could consider their dynamical adjustment (which would
not compromise the theory as long as the parameters vary in a bounded interval) to
avoid excessive decrease in one of the step sizes, which appears to be the case on our
first experiment.

In the probabilistic setting, we have some insights on the choice of such parameters
that are not tailored to specificities of the considered problem(s), but rather to the
satisfaction of the probabilistic descent property described in Assumption 7.9. Indeed,
we can set γα and θα to yield p0 = 0.5, which then means that Dk can be chosen by
taking one direction uniformly generated on the sphere and its opposite.

Figures 7.6 to 7.8 present a comparison between two deterministic methods, bds0
and ahds0 introduced in Chapter 6, and two randomized methods. The first one is
called dspd (direct search based on probabilistic descent) and corresponds to the method
described in Chapter 3, with a forcing function ρ(α) = c α3 to cope with second-order
aspects. The second method is a variant of Algorithm 7.3 based on a random first-
order polling step, where the canonical basis used in the second-order polling step: it
is called dsds 1st-rand in the figures. Both of these methods use polling sets made of
two opposite directions, as we just described. One sees that the performance of dspd
is remarkably good in this setting, thereby confirming the numerical observations of
Chapter 3. Nevertheless, it appears that the de-coupled strategy brings more robustness
to the method. As the required precision in terms of function values increases, one
can observe that dsds 1st-rand gets closer in performance to dspd, and that it is
competitive with ahds0 in terms of robustness.

As a final remark, note that we did not propose a variant of the ahds method based on
random directions instead of the initial polling set since such an approach would modify

155

0 1 2 3 4 5 6 7 8 9

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

bds0

ahds0

dsds same sets

dsds two sets

(a) εf = 10−3.

0 1 2 3 4 5 6 7 8 9

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
p

ro
b

le
m

s
 s

o
lv

e
d

bds0

ahds0

dsds same sets

dsds two sets

(b) εf = 10−6.

Figure 7.5: Performance of the dsds methods (same settings), given a budget of 2000n
evaluations. γα > γβ.

156

0 2 4 6 8 10

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
p
ro

b
le

m
s
 s

o
lv

e
d

bds0

ahds0

dspd

dsds 1st-rand

Figure 7.6: Performance of deterministic and probabilistic methods given a budget of
2000n evaluations, εf = 10−3.

0 2 4 6 8 10

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
p
ro

b
le

m
s
 s

o
lv

e
d

bds0

ahds0

dspd

dsds 1st-rand

Figure 7.7: Performance of deterministic and probabilistic methods given a budget of
2000n evaluations, εf = 10−6.

157

0 1 2 3 4 5 6 7 8 9 10

Ratio of function calls (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
p
ro

b
le

m
s
 s

o
lv

e
d

bds0

ahds0

dspd

dsds 1st-rand

Figure 7.8: Performance of deterministic and probabilistic methods given a budget of
2000n evaluations, εf = 10−9.

the algorithmic framework. Indeed, in Algorithm 6.1, we aim at reusing the values
we compute in the first part of the polling step by extracting a linear basis from the
initial polling set. This is possible whenever this set is a PSS (which we assumed in the
deterministic setting of Chapter 6), however using random directions would annihilate
this property, thus requiring additional computational effort to be performed for building
the approximate Hessian.

7.6 Conclusions for Chapter 7

We have proposed a technique that separates the first and second-order aspects of a
second-order globally convergent derivative-free methods, which we have used to define
new variants on the trust-region and direct-search frameworks. By giving priority to
first-order considerations, we are able to save function evaluations compared to classi-
cal implementations, while accounting for the possible scaling variations between the
first-order and the second-order criteria. Interestingly, this approach improves the exis-
ting worst-case complexity bounds for second-order optimality, even when compared to
certain derivative-based algorithms.

The introduction of randomness within the de-coupled strategies was also investi-
gated, and illustrated using the two de-coupled derivative-free algorithms we defined.
The resulting probabilistic analysis shows that second-order global convergence can be
guaranteed with probability one, and that complexity guarantees are preserved with high

158

probability.
A series of numerical experiments was finally conducted to assess the interest of

the proposed approaches. The deterministic instances of the de-coupled strategies were
observed to improve the usual variants, provided careful parametrization was used, so
as to deal with each criterion in an appropriate fashion. In particular, the direct-search
de-coupled scheme revealed itself very sensitive to such aspects. This issue was partially
addressed thanks to probabilistic requirements, yielding a increase in both performance
and robustness of the algorithm.

159

Chapter 8

Probabilistic second-order descent

Second-order aspects have been introduced to improve the performance of optimization
algorithms that initially relied on first-order properties. Indeed, they can significantly
improve optimization methods, in particular when the function to optimize is nonconvex.
However, taking second order into account usually represents a significant increase in
the cost of the algorithm, which is why algorithms have also incorporated second-order
information without enforcing second-order convergence. The resulting methods may
still prove effective, and partial explanation for such a behavior may be obtained through
a probabilistic, second-order analysis of these features.

In this chapter, we define probabilistic properties that express the ability of a given
direction to capture (negative) curvature information. Section 8.1 reviews the second-
order convergence proofs that have been proposed in the derivative-based literature, and
identifies the common second-order requirements for the steps that are used. A class
of such vectors is described in Section 8.2, and illustrated by specific examples corre-
sponding to known requirements in both derivative-free and derivative-based algorithms.
Provided this property can be ensured with sufficiently high probability, theoretical con-
vergence follows: this is established in Section 8.3 using a direct-search framework. In
Sections 8.4 and 8.5, practical satisfaction of particular cases through random generation
is discussed.

161

8.1 Second-order convergence in numerical optimization

The motivation of the present chapter originates from the derivative-based literature.
Indeed, for these methods, it is not uncommon to require convergence towards a point
satisfying second-order necessary optimality conditions. Trust-region algorithms have
had a long tradition of such requirements [93, 107], so have line-search methods, often
called curvilinear search algorithms in this context [62, 94]. More recently, the compu-
tation of negative curvature directions has been subject to renewed investigation in the
line-search context [11, 12, 63].

Second-order properties have also been considered while solving constrained opti-
mization problems. One example is given by Forsgren and Murray [56] who combined
descent, negative curvature and constraint-related directions in order to design a second-
order convergent Newton method with line search for linearly constrained problems.
Second-order necessary conditions have also been derived for trust-region schemes ap-
plied to general nonlinearly constrained problems [20, 45].

A common feature of these algorithms is that they rely on the quality of the directions
or steps to ensure a decrease in the function value related to the (second-order) conver-
gence criterion, for a sufficiently small step size (a property usually assessed by means of
a related sequence of algorithmic parameters). The use of descent pairs is characteristic
of such techniques: a pair of directions is generated, with one being of descent type and
the other of negative curvature. One may then compare or combine those directions,
so as to consider a step that possesses both first and second-order characteristics. In
a descent pair, the first direction can thus be qualified of first-order descent, in that it
can induce descent based upon the first-order optimality criterion, while the other one
can be termed second-order descent. In this chapter, we are particularly interested in
the second type of directions, and in the way it can complement the computation of a
first-order one.

8.2 A class of second-order probabilistic properties

In this section, we define a general property that characterizes so-called directions of
second-order descent. Its purpose is to identify vectors that make use of (significant)
negative curvature information so as to induce decrease in the function value when
taken with a sufficiently small step size. Such a definition encompasses commonly used
directions, such as negative curvature ones and approximations of those.

Our goal is to determine if a given direction is able to gather information related to
negative curvature. Consider thus a given point x ∈ Rn, and suppose that ∇2f(x) has
at least one negative eigenvalue λ = λmin

(
∇2f(x)

)
< 0. Given a step size α > 0, we will

say that a direction d ∈ Rn is a second-order descent direction if

c1 α∇f(x)> d+ α2

2 d>∇2f(x) d ≤ c2
α2

2 λ+ c3 α
3, (8.1)

where c1 ≥ 0, c2 ∈ (0, 1), c3 ≥ 0.

162

The purpose of the generic formulation of (8.1) is threefold. First, the left-hand side
of the equation is related to the second-order Taylor expansion of f(x+αd), which is the
basic analytical tool in a smooth setting. In addition, the criterion of interest, λ, appears
in the right-hand side multiplied by α2 (the same order as d>∇2f(x) d). Finally, the
last part of the right-hand side can be viewed as an error term, which is one order higher
in terms of power of α than the one involving λ. Specific cases of this property will
essentially be obtained by acting on c1 and c3, as we will study in Sections 8.4 and 8.5.
Beforehand, we describe how a probabilistic variant on (8.1) can lead to almost-sure
second-order convergence.

8.3 Probabilistic analysis of a direct-search scheme based
on second-order descent

In order to derive a second-order probabilistic analysis, we again consider Algorithm 3.1.
However, we will now require a different property to be satisfied (with a given probability)
by the polling sets. We begin by defining its deterministic counterpart.

Definition 8.1 Consider a realization of Algorithm 3.1 applied to minimize a function
f satisfying Assumption 6.1. Let κg ∈ (0, 1), κH ∈ (0, 1], cH ≥ 0; we say that at the k-th
iteration, the set Dk is (κg, κH)-second-order descent if either ‖gk‖ ≥ −λk and

cm(Dk,−gk) ≥ κg, (8.2)

or −λk > ‖gk‖ and

∃d ∈ Dk, αk g
>
k d+ α2

k

2 d>∇2f(xk) d ≤ κH
α2
k

2 λk + cH νH
6 α3

k, (8.3)

with cH ≥ 0 does not depend on k and νH is a Lipschitz constant for ∇2f .

Note that (8.3) is a particular case of (8.1) with c1 = 1. The general case with
c1 ∈ [0, 1] could also be considered, typically by exploiting symmetric directions to
ensure that g>k d ≤ 0 for one selected vector.

The second-order descent property expresses the fact that we look for decrease based
on the most promising criterion. If the gradient norm is higher than the opposite mini-
mum eigenvalue, then it is likely that we will obtain a greater decrease using a direction
of first-order descent, that is making an acute angle with the negative gradient; in that
case, what we are requiring for the set Dk is the κg-descent property, in the sense of
Definition 3.1. When −λk > ‖gk‖, however, we would like to take a direction possi-
bly yielding a decrease associated with the negative curvature, and this is the purpose
of (8.3). The corresponding direction is asymptotically an approximate curvature one,
as the term in α3

k quantifies the error committed while estimating such a direction.

Definition 8.2 Let p ∈ (0, 1], κg ∈ (0, 1), κH ∈ (0, 1], cH ≥ 0.
Given the sequence of iterates and polling sets produced by Algorithm 3.1, let Ek be the

163

event {Dk is (κg, κH)-second-order descent}.
The sequence {Dk}k is called a p-probabilistically (κg, κH)-second-order descent sequence,
or a (p, κg, κH)-second-order descent sequence in short, if

P (E0) ≥ p and ∀ k ≥ 1, P (Ek | σ (D0, . . . ,Dk−1)) ≥ p. (8.4)

Having identified a probabilistic property, we can proceed as in Section 3.3 to prove
that if it is satisfied with a sufficiently high probability at every iteration, then Algo-
rithm 3.1 will converge almost surely to a second-order stationary point.

In addition to the previous definitions, we define two functions ϕg and ϕH that will
intervene in our analysis the same way as the function ϕ in Chapter 3.

∀ t > 0,

ϕg(t) = inf

{
α > 0

∣∣∣ ρ(α)
α + νg

2 α ≥ t
}

ϕH(t) = inf
{
α > 0

∣∣∣ 2 ρ(α)
α2 + νH(1+cH)

3 α ≥ t
}
.

(8.5)

If ρ satisfies Assumption 6.2 (e.g. ρ(α) = α3), we are guaranteed that these functions
are well-defined for every t ∈ (0,+∞) and non-decreasing on this interval.

Using ϕg and ϕH , we obtain a result concerning unsuccessful iterations as follows.

Lemma 8.1 Consider the k-th iteration of a realization of Algorithm 3.1 applied to
a function satisfying the smoothness requirements of Assumption 6.1, and let Assump-
tion 6.2 hold. If Dk is (κg, κH)-second-order descent and

αk < min {ϕg(κg τk), ϕH(κH τk)} , (8.6)

where τk = max {‖gk‖,−λk}, the k-th iteration is successful.

Proof. Suppose first that ‖gk‖ ≥ −λk. Since Dk is (κg, κH)-second-order descent,
it means that cm(Dk,−gk) > κg. Thus, there exists d1 ∈ Dk such that one can derive :

f(xk + αk d1)− f(xk) ≤ −κg αk ‖gk‖+ νg
2 α

2
k, (8.7)

and given that αk satisfies (8.6), we have that f(xk + αk d1) − f(xk) < −ρ(αk), so k is
successful.

Suppose now that −λk > ‖gk‖ (so λk < 0); then there exists d2 ∈ Dk satisfying (8.3),
which means that one has:

f(xk + αk d2)− f(xk) ≤ αk g
>
k d2 + αk

2 d>2 ∇2f(xk) d2 + νH α
3
k

6

≤ κH
α2
k

2 λk + νH(1 + cH)α3
k

6 .

Again using (8.6), we have that f(xk + αk d2)− f(xk) < −ρ(αk), thus k is a successful
iteration. �

We can now reproduce the reasoning of Chapter 3 in order to establish convergence,
by means of submartingale arguments. The main result is stated in the following theo-
rem.

164

Theorem 8.1 Consider the application of Algorithm 3.1 under Assumptions 2.2, 6.1
and 6.2. If {Dk} is (p, κg, κH)-second-order descent with p ≥ p0, with p0 = ln θ/ ln(γ−1 θ),
then

P
(

lim inf
k→∞

max {‖∇f(Xk)‖,−Λk} = 0
)

= 1. (8.8)

We are now interested in the complexity results that arise from the use of probabilistic
second-order descent properties. Our goal is to bound (in probability) the number of
iterations and function evaluations needed to achieve∥∥∥G̃k∥∥∥ < εg and Λ̃k > −εH , (8.9)

where G̃k and Λ̃k denote the gradient with minimal (positive) norm and the maximum of
the (negative) minimum Hessian eigenvalues along the k+1 first iterations, respectively.
Their realizations will be denoted by g̃k and λ̃k.

For the rest of this section, we will denote by Kε the first index such that (8.9) holds
for Kε + 1, indicating its realizations by kε.

Lemma 8.2 Let the assumptions of Theorem 8.1 hold. Given a realization of our algo-
rithm and a positive integer k ≤ kε,

k−1∑
l=0

zl ≤
β

ρ (min {γ−1 α0, ϕg(κg εg), ϕH(κH εH)}) + p0 k, (8.10)

where β is a bound on
∑∞
i=0 ρ(αi), that can be set as in Lemma 3.7.

Lemma 8.2 is the second-order equivalent to Lemma 3.8. Its result is the key argu-
ment to establish the complexity rate for a probabilistic second-order descent sequence.
Note that if deterministic second-order descent can be ensured, we recover a complexity
result similar to that of Algorithm 6.1 (AHDS).

Theorem 8.2 Under the assumptions of Theorem 8.1, suppose that the sequence {Dk}
is (p, κg, κH)-second-order descent with p > p0 and let (εg, εH) ∈ (0, 1) chosen such that

εg < κ−1
g

[
ρ(γ−1 α0)
γ−1 α0

+ νg γ
−1 α0
2

]
(8.11)

and
εH < κ−1

H

[
2 ρ(γ−1 α0)
γ−2 α2

0
+ νH(1 + cH) γ−1 α0

3

]
(8.12)

hold. Then, for each δ > 0, the probability

P
(
Kε ≤

⌈
(1 + δ)β

(p− p0) min {ρ[ϕg(κg εg)], ρ[ϕH(κHεH)]}

⌉)

165

is higher than or equal to

1− exp
[
− β(p− p0)δ2

2 p(1 + δ) min {ρ[ϕg(κg εg)], ρ[ϕH(εH)]}

]
.

We illustrate the results of Theorem 8.2 for a specific choice of forcing function.

Corollary 8.1 Let the assumptions of Theorem 8.1 hold. If the sequence {Dk} is
(p, κg, κH)-second-order descent with p > p0, ρ(α) = cρ α

3/6,

εg ≤
1
κg

min
{

3 cρ
ν2
g

,
cρ
6 γ
−2 α2

0 + νg
2 γ
−1 α0

}
(8.13)

and
εH ≤

(cρ + νH(1 + cH))
3κH

γ−1 α0. (8.14)

then one has

P
(
Kε ≤

⌈
C1
p−p0

max
(
κ−3
g ε−3

g , κ−3
H ε−3

H

)⌉)
≥ 1− exp

[
− (p−p0)C2

p max
(
κ
− 3

2
g ε

− 3
2

g , κ−3
H ε−3

H

)]
(8.15)

with C1 = 12β
cρ

max
(
ν3
g ,

(cρ+νH(1+cH))3

27

)
and C2 = 3β

2 cρ max
(
(cρ/6)

3
2 ,

(cρ+νH(1+cH))3

27

)
.

Proof. From the definition of ϕH , it is clear that ϕH(t) = 3 t/(cρ + νH(1 + cH)). As
for the expression of ϕg(t), a second-order polynomial calculation yields for all t > 0:

ϕg(t) = 3
cρ

−νg2 +

√
ν2
g

4 + 2
3cρ t

 . (8.16)

For every 0 < t <
3 cρ
ν2
g

, one obtains the following bounds on ϕg(t): ϕg(t) ≤ φup(t) = 3
cρ

√
2
3cρ t

ϕg(t) ≥ φlow(t) = t
νg
.

(8.17)

Let pKε denote the probability

P
(
Kε ≤

2β
p− p0

1
min {ρ (ϕg(κg εg)) , ρ (ϕH(κH εH))}

)
.

Then, since ρ is non-decreasing, this probability is bounded above as follows:

pKε ≤ P
(
Kε ≤

2β
p− p0

1
min {ρ (φlow(κg εg)) , ρ (ϕH(κH εH))}

)

≤ P
(
Kε ≤

⌈ C1
p− p0

max
(
κ−3
g ε−3

g , κ−3
H ε−3

H

)⌉)
.

166

Since we are in the assumptions of Theorem 8.2 with δ = 1, we also have

pKε ≥ 1− exp
[
− β(p− p0)

4 pmin {ρ[ϕg(κg εg)], ρ[ϕH(εH)]}

]

≥ 1− exp
[
− β(p− p0)

4 pmin {ρ[φup(κg εg)], ρ[ϕH(εH)]}

]

≥ 1− exp
[
−(p− p0)C2

p
max

(
κ
− 3

2
g ε

− 3
2

g , κ−3
H ε−3

H

)]
.

Combining the two relations leads to (8.15). �

We thus obtain a complexity in O
(
max

{
κ−3
g ε−3

g , κ−3
H ε−3

H

})
in terms of powers of

the tolerances with overwhelming probability. Note that unlike in the first-order re-
sult (3.47) of Chapter 3, the powers of the tolerances are not the same on both sides of
the equation (8.15).

8.4 Full second-order properties

We now go back to (8.1) and look at instances of the property for which c1 = 0. Those
cases can be qualified as full second-order since they only involve the second-order deriva-
tive of the objective function.

8.4.1 The case of negative curvature directions

In the specific case of c1 = c3 = 0, (8.1) reduces to

d>∇2f(x) d ≤ c2 λ < 0, (8.18)

which means that d is a direction of negative curvature. We recall that when one aims
to exploit negative curvature, one typically considers directions satisfying

d>∇f(x) ≤ 0 and d>∇2f(x) d ≤ c2 λ. (8.19)

It is known that the computation of such a vector can be an expensive process in a
large-scale setting, as it either requires to solve of an eigenvalue problem or to use linear
algebra methods [18, Section 4.3 and Chapter 5]. In a derivative-free context, it is almost
impossible to generate directions that satisfy (8.19). In fact, in a deterministic setting,
one can always construct matrices for which the cone of (sufficient) negative curvature
directions does not intersect a given polling set. Ensuring that this intersection is not
empty in probability may be too expensive as it would necessitate to use an increasingly
large number of directions. We provide insights on this remark in the next paragraph,
for the specific case of standard normal and uniform distributions.

167

The Rayleigh quotient and its distribution Given the results presented in Chap-
ter 3, it is a natural question to ask whether the uniform distribution exhibits desirable
second-order properties. The probability distribution of the Rayleigh quotient in the case
of a uniformly distributed direction has been the subject of several works [18, 71, 72].
We recall below the formula established by Boman [18].

Theorem 8.3 Let t ∈ [λ1, λn], where λ1 ≤ · · · ≤ λn are the eigenvalues of the matrix
A; then, if d is a random vector uniformly distributed in the unit sphere or follows a
standard normal distribution in Rn, one has

P
(
d> Ad
‖d‖2 ≤ t

)
= 2

π

∫∞
0

cos
(

1
2
∑

λj>t
tan−1((λj−t)u

)
sin
(

1
2
∑

λj<t
tan−1((t−λj)u)

)
u
∏n

j=1(1+(λj−t)2 u2)
1
4

du. (8.20)

Using this distribution, we can design an example of pathological behavior for the
Rayleigh quotient. For simplicity, we consider c2 = 1

2 , but similar results hold with any
c2 ∈ (0, 1).

Let {Hk} be a sequence of 2-by-2 matrices such that for every k, the eigenvalues of
Hk are λmax = 1 and λk = − 1

k+1 . We then have the following result.

Lemma 8.3 Let {Hk}k be a sequence of 2-by-2 matrices such that for all k, the eigen-
values of Hk are λmax = 1 and λk = − 1

k+1 . Let d be a vector uniformly distributed in
the unit sphere; then

lim
k→∞

P
(
d>Hk d <

λk
2

)
= 0. (8.21)

Proof. It directly follows from Theorem 8.3 that for every k

P
(
d>Hk d <

λk
2

)
= 2

π

∫ ∞
0

cos
(

1
2 tan−1(2k+1

2k+2u)
)

sin
(

1
2 tan−1(1

2k+2u)
)

u
(
1 + (2k+1)2

(2k+2)2u2
) 1

4
(
1 + 1

(2k+2)2u2
) 1

4
du.

When k →∞, the term in the sinus goes to zero while the denominator does not, hence
the result. �

We will make use of pk ≡ P
(
d>Hk d < λk/2

)
to show that when each iteration uses

a finite number of uniform directions, the probability of satisfying (8.19) goes to zero.

Theorem 8.4 Let {Dk}k be a sequence of randomly, independently generated sets of m
vectors uniformly distributed in the unit sphere, and let {Hk} be the same sequence of
matrices as in Lemma 8.3. Then, we necessarily have

lim
k→∞

P
(

min
d∈Dk

d>Hk d <
λk
2

)
= 0. (8.22)

Proof. For every k, we have that

P
(

min
d∈Dk

d>Hk d <
λk
2

)
= 1− (1− pk)m

168

where pk is the probability described in Lemma 8.3. Thanks to Lemma 8.3, we know
that the sequence {pk} goes to zero independently of {Dk}. As a result, (8.22) holds. �

It is our belief that one can define a pathological objective for which the optimiza-
tion process would require an increasing number of directions for the sequence to be
probabilistically second-order descent (here meaning that one direction is of negative
curvature). However, such an example would be quite more difficult to construct than
the deterministic counter-examples built by Cartis, Gould and Toint while dealing with
complexity issues [22, 27], as one would have to guarantee that the path taken by the
iterates would satisfy desirable properties for a set of realizations of the algorithm with
a non-zero measure.

8.4.2 A particular case based on a randomized Hessian approximation

Suppose now that c1 = 0, but c3 > 0; in that case (8.1) becomes

d>∇2f(x) d ≤ c2 λ+ 2 c3 α. (8.23)

Provided c3 is appropriately chosen, one thus obtains that d is required to be an
approximate negative curvature direction, in the sense of Proposition 6.1.

In derivative-free optimization, one can find several examples of second-order con-
vergent algorithms that aim to compute such directions, typically basing themselves on
Hessian approximations [38, 57, 66]. The quality of the Hessian approximation is then
a crucial argument for proving convergence and represents the main concern of these
methods. Ensuring this quality is often expensive in terms of function evaluations. Ban-
deira et al [14] considered probabilistically fully quadratic models for which the Hessian
approximation at the k-iteration Hmk was supposed to satisfy

‖Hmk −Hk‖ ≤ O(∆k), (8.24)

∆k being the random trust-region radius, with probability bigger than 0.5. As a matter
of fact, this is the same approximation order than the one in terms of the step size
required by Abramson et al [6] for an estimation of the Hessian. The same order also
appeared in the Hessian approximation built in Chapter 6.

Note that ensuring (8.23) is more suitable in frameworks such as those of Algo-
rithms 6.1 or 7.3. However, we point out that the basic framework of Algorithm 2.1
could compute polling sets based on an Hessian approximation (even if the related ex-
pense would be prohibitive).

Consider the convergence theory detailed in Chapter 6 for Algorithm 6.1. A key
feature of this analysis is the ability of the method to consider an approximate direction
of negative curvature, as shown by Proposition 6.1. This property can also be considered
in a probabilistic context, thanks to the following result from random matrix theory.

Lemma 8.4 Let B be an n-by-n matrix with independent entries generated following a
standard normal distribution. Then, for any σ > 0,

P
(
σmin(B)2 ≥ σ

)
≥ 1−

2−1/2 Γ
(
n+1

2

)
Γ
(
n
2
)

Γ(1) e−
√
σ

2 σ−
1
4 . (8.25)

169

Proof. From the distribution of B, we know that the matrix W = B> B is a real
Wishart matrix. As a result, we aim at bounding

P
(
λmin(W) ≥ σ

1
2
)
.

Applying [31, Lemma 3.3] then yields the result. �
In the two previous chapters, we have seen methods relying on a Hessian approx-

imation computed from a linear basis Bk. Provided σ(Bk)2 ≥ σ for some σ ∈ (0, 1],
the quality of the approximation was ensured. Thanks to Lemma 8.4, we now have a
practical way of satisfying this property in probability, without increasing the number
of considered vectors.

As a result, one could define a probabilistic property for the Bk matrices to be used
in the framework of Algorithm 6.1 (or 7.3).

8.5 Practical satisfaction of mixed first and second-order
properties

We now investigate the applicability of (8.1) in a general setting, considering a point x
at which both ‖∇f(x)‖ 6= 0 and λmin

(
∇2f(x)

)
< 0 hold.

Our goal is to provide experimental justification that a simple randomized approach
(e.g. by generating random directions uniformly on the unit sphere) is already capable
of producing directions satisfying the second-order-descent property.

8.5.1 Experiments on toy quadratics

We first present numerical insights corresponding to (8.3) (i.e., when c1 = 1, c3 > 0 and
‖∇f(x)‖ 6= 0). To do so, we performed a series of tests on quadratic functions.

We conducted two series of experiments. The first one consisted in considering
quadratic forms and randomly generating couples of opposite directions from a standard
normal distribution or a uniform one. The quadratic function is of the form

Q(d) = α g> d+ α2

2 d>Hλ d, (8.26)

where g ∈ Rn and Hλ = diag(1, . . . , 1, λ) with λ < 0. Note that the spectrum of Hλ is
defined so as to represent a pathological case, in which only one eigenvalue is negative,
and this value is arbitrarily small in modulus compared to the remaining eigenvalues
(normalized for simplicity).

Our objective is to determine

P
(
Q(d) ≤ κ α

2

2 λ+ c3 α
3
)
. (8.27)

Whenever d follows a standard normal or a uniform distribution in Rn, it is possible to
reformulate the quadratic function in such a way that it become a sum of independent,

170

non-centered chi-square and normal/uniform variables. In that setting, one can obtain
an explicit expression for (8.27). However, the resulting formula appears practically
intractable since it requires the knowledge of the full spectrum (and in particular, of the
orders of each eigenvalue) of Hλ to determine the exact distribution [92].

Still, one can try to estimate (8.27) by looking at a large number of directions (in our
experiments, we chose 5000 pairs of symmetric directions to be this number). Typical
behavior occurred whenever α was small compared to ‖g‖

cond(Hλ) , with cond(Hλ) being the
condition number of the matrix Hλ (in our setting, it thus was −1/λ). The directions ex-
hibited a fifty-per-cent chance of satisfying (8.27) with κ = O

(
1
n

)
. This is illustrated on

Figures 8.1 and 8.2, that consider two settings, namely g belonging or being orthogonal
to the subspace corresponding to the negative eigenvalue λ.

Interestingly enough, such results hold whether we consider c3 to be equal to zero
or not. This is encouraging in the perspective of satisfying an assumption that would
extend the one regarding the cosine measure. Indeed, the κ-descent property of a given
set D regarding a (gradient) vector g implies that there exists a direction d ∈ D such
that cm(D,−g) = − d> g

‖d‖‖g‖ ≥ κ, which means that

αd> g ≤ −ακ ‖d‖‖g‖,

for any α > 0. We verified on our experiments that by generating symmetric directions,
either following a standard normal or uniform distribution, one almost certainly satisfies

αd> g + α2

2 d>H d ≤ α2

2 κλ

when α is chosen sufficiently small.
We also point out that the behavior seems rather independent to the problem di-

mension. It thus seems that in these settings, one could use less than O(n2) directions
(which is the order of vectors that have to be considered in the deterministic setting)
and still satisfy the second-order descent property with a significant probability. Such a
result would match what was obtained regarding first-order descent in Chapter 3.

8.5.2 Practical satisfaction within a direct-search run

We consider here the application of Algorithm 3.1 to the set of 60 nonconvex problems
used in Chapter 6. Our goal is to check whether second-order aspects are captured by
the random directions that are used. Since derivatives are available through the CUTEst
interface, we simply verify for each direction computed at iteration k if it satisfies

αk d
>∇f(xk) + α2

k

2 d>∇2f(xk) d ≤
α2
k

2 κλmin
(
∇2f(xk)

)
,

where we chose κ = 1/n so as to match the dependence in n one may encounter while
dealing with quadratic polynomial models [38]. The results obtained by using a polling
set Dk = [d -d], with d being uniformly distributed over the unit sphere, show that

171

around fifty-per-cent of the directions satisfy the property over all iterations. This
number is remarkably higher if one only considers successful directions (that satisfy
a sufficient decrease and thus yield a successful iteration), over ninety-per-cent. The
percentages are slightly better for the standard normal distribution, but uniform distri-
bution also gives surprisingly good results in those cases. Although we stress out that
the percentage values may be influenced by the parametrization of Algorithm 3.1 and
by small scaling differences between the two criteria on the tested problems, these re-
sults suggest that both distributions are able to generate sequences of probabilistically
second-order descent sets.

8.6 Conclusion for Chapter 8

We proposed a generic property that involves the second-order optimality criterion. The
general formulation uses the first-order term in the Taylor expansion of the function as
well as an error term in order to compensate a possibly too high second-order directional
derivative. Using this class of vectors, one can derive second-order convergence and
complexity results (in a probabilistic sense) for the direct-search scheme we proposed
in Chapter 3. To this end, the polling set sequence is required to satisfy a property
that associates the polling requirements to either the first or the second-order criterion,
depending on which one that is the most likely to provide decrease.

Although the full characterization of directions satisfying the proposed assumption
remains to be done, it has been shown that such a set includes negative curvature direc-
tions, as well as approximate eigenvectors of the Hessian matrix. By means of random
linear algebra techniques, we can prove that the former (negative curvature property)
is rather difficult to achieve by a pure random approach, while the latter (approximate
Hessian eigenvector) can be ensured by a specific distribution. The resulting expense
is however comparable to a method using an approximate Hessian: as a result, the
introduction of randomness does not appear to save function evaluations.

Other specific instances appear surprisingly easy to achieve in practice, as simple
probability distributions are observed to produce directions that satisfy the property
with a significant average probability. Interestingly, such second-order vectors also seem
more likely to produce sufficient decrease, which encourages further their practical use.
Besides, since numerical experiments using two directions were quite promising, it is
reasonable to believe that certain settings can allow for the use of much less directions
than in the case of deterministic second-order globally convergent algorithms.

172

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 2

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 3

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 5

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 10

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 20

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 50

c3=0 Uniform

c3>0 Uniform

c3=0 Normal

c3>0 Normal

(a) ε = 10−2.

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 2

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 3

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 5

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 10

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 20

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 50

c3=0 Uniform

c3>0 Uniform

c3=0 Normal

c3>0 Normal

(b) ε = 10−4.

Figure 8.1: Percentage of directions satisfying the desired assumptions, for α between 1
and 10−10. Here ‖g‖ = ε2, λ = −ε and H g = λ g.

173

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 2

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 3

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 5

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 10

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 20

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 50

c3=0 Uniform

c3>0 Uniform

c3=0 Normal

c3>0 Normal

(a) ε = 10−2.

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 2

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 3

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 5

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 10

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 20

10
-10

10
-5

10
0

0

20

40

60

80

100

120
Dimension 50

c3=0 Uniform

c3>0 Uniform

c3=0 Normal

c3>0 Normal

(b) ε = 10−4.

Figure 8.2: Percentage of directions satisfying the desired assumptions, for α between 1
and 10−10. Here ‖g‖ = ε2, λ = −ε and g is orthogonal to Eλ.

174

Chapter 9

Conclusion

Conclusions of the thesis

The first topic of interest for this thesis was the possible benefits in introducing random
elements in otherwise deterministic derivative-free algorithmic frameworks. To this end,
a probabilistic analysis of a direct-search algorithm based on probabilistically descent
directions was derived, endowing such a scheme with convergence guarantees. As the
resulting method was observed to outperform its deterministic counterpart, thanks to
its potential cheaper cost, it appeared that random aspects could improve the nume-
rical behavior without jeopardizing the convergence of the algorithm. The probabilistic
techniques used to design the framework were then adapted to handle simple constraints
on the variables. The resulting schemes also yielded significant improvement over a
popular deterministic solver. This confirmed the interest of probabilistic properties,
both in terms of practical cost and numerical efficiency. Moreover, as de-coupled algo-
rithms were proposed, we were able to study the hybridization of probabilistic first-order
and deterministic second-order aspects, leading to a provably second-order convergent
scheme, that could be both more efficient than and as robust as a typical determinis-
tic implementation. We also proposed a classification of the probabilistic second-order
properties that could be used in DFO and beyond. In our experiments, we observed
that their practical satisfaction was a common event: this opens the possibility of better
understanding the performance of optimization methods applied to nonconvex problems
thanks to second-order probabilistic analysis.

The second goal of the thesis was to determine the relevance of using complexity
analysis as a guidance for the design of numerically efficient methods. In a deterministic
setting, we established that second-order complexity bounds could only be derived for
specific instances of direct-search methods, that in return proved more robust on prob-
lems for which second-order aspects are particularly interesting to consider. We went one
step further by proposing a de-coupling technique that improved the existing complex-
ity bounds available for several second-order globally convergent frameworks, including
derivative-based ones. The advantages of such strategies were shown in practice, as the
dissociated parts of the algorithm provided better approximations of the relevant criteria.

175

When associated with the introduction of randomness, the complexity results holding
with overwhelming probability were even more insightful. For direct-search methods,
they enlightened the possible gain in the number of calls to the objective that an algo-
rithm based on randomly generated directions could yield, a fact that was observed in
practice. The same property was shown on a de-coupling strategy applied to a second-
order convergent scheme, for which the probabilistic treatment of the first-order aspects
resulted in a similar improvement over a standard, first-order algorithm. These findings
are in agreement with the extensive use of complexity estimates as an insightful tool for
investigating the behavior of general frameworks involving random elements.

As a result, it comes out from our study that the analysis of derivative-free al-
gorithms, driven by complexity concerns, can provide a guidance into the design of
more efficient methods. Meanwhile, the introduction of randomness induces practical
enhancement of the methods while equipping those frameworks with probabilistic theo-
retical guarantees. The combination of those tools is helpful in connecting the gains in
performance with the analytical results.

Perspectives

The work presented in this thesis can be extended in multiple directions, due to its
applicability on other derivative-free methods than those presented in this thesis, and
even beyond. We identify thereafter three main directions for future work.

In Chapter 3, we presented a practical direction generation technique that could re-
quire as few as two function evaluations to satisfy a desirable property with sufficient
probability: such a proposal was not made for model-based methods, as the associated
requirements are harder to ensure. The design a trust-region method based on a proba-
bilistic construction of the models using considerably less than n+1 function evaluations
in dimension n thus poses an interesting challenge.

A short-term perspective of the thesis builds on the work presented in Chapter 5: we
indeed plan on proposing a general algorithmic framework tailored to any kind of linear
constraints. As a follow-up, one might be interested in addressing general, nonlinear
constraints. Given that typical direct-search implementations can be embedded in an
augmented Lagrangian framework in a relatively straightforward manner [76, 84], it
seems that such a study could be performed for several of the strategies we proposed.

One of the most promising developments of this work consists in adapting the de-
coupling technique of Chapter 7 to a derivative-based algorithm, since nothing forbids
it in our analysis. In fact, as second-order methods are regaining interest in the opti-
mization community, proposing a way to include second-order aspects at a potentially
lower expense seems particularly attractive, especially if those aspects are introduced
in a probabilistic fashion. This perspective thus goes hand in hand with another one,
related to the material of Chapter 8: the identification of second-order descent proba-
bilistic properties that could be ensured by the use of random elements. We believe that
a rigorous study could be performed using tools from probability theory to propose new
approaches based on second-order features with enhanced practical performance.

176

Appendix A

Elements of probability theory

This appendix aims at clarifying the probability notions that are manipulated throughout
the manuscript. We properly define the probability space(s) at hand, as well as the
martingale properties that are at the heart of our almost-sure convergence results.

A.1 Probability space and random elements in an opti-
mization method

Most of the following definitions are elementary notions in probability theory; we adopted
the notations of Durrett [54].

Definition A.1 (σ-algebras) Let F a non-empty collection of subsets of a set Ω. F
is said to be a σ-algebra if it is closed under complementation and countable union.
Let A ⊂ Ω. The smallest σ-algebra containing A is called the σ-algebra generated by A.

Definition A.2 (Probability space) A probability space is a triple (Ω,F ,P) where:

• Ω is a set of outcomes;

• F is a σ-algebra called the σ-algebra of events;

• P is a probability measure on F , i.e., a function from F to [0, 1] that is nonnegative
and countably additive; in particular, one has P(∅) = 0 and P(Ω) = 1.

Definition A.3 (Random variable) Let (Ω,F ,P) be a probability space. X : Ω→ R
is said to be a random variable if

∀B ∈ R, X−1(B) = {ω ∈ Ω, X(ω) ∈ B} ∈ F ,

where R is the σ-algebra generated by the open sets in R (we say that X ∈ F).
The σ-algebra generated by F is the smallest σ-algebra such that X ∈ F . It is denoted
by σ(X).

177

An example of random variable is the indicator function of a element A ∈ F
defined by:

∀ω ∈ Ω, 1A(ω) =
{

1 if ω ∈ A,
0 otherwise.

Random vectors and measurable maps In Definition A.3, one can replace (R,R)
by any other measurable space. When one uses (Rn,Rn), whereRn denotes the standard
σ-algebra generated from the open sets in Rn, X is called a random vector, otherwise it is
called a measurable map. We will use the generic name random element to emphasize
the random nature of these objects, but most of the time we will be talking about random
vectors or random variables.

Definition A.4 Let A be an iterative optimization algorithm assumed to rely on in-
troducing a random element at every iteration. We define the global probability space
associated to A as

(
ΩA, σA∞, PA

)
, where ΩA is the set of all possible outcomes for the

sequences appearing in the algorithmic process, σA∞ is the σ-algebra generated by the en-
tire sequence of random elements and PA is a probability measure; consequently, we will
have:

∀B ∈ σA∞, P(B) = PA[B].

Example A.1 The global probability space for Algorithm 3.1 (direct search based on
probabilistic descent) is

(
Ωdspd, σdspd

∞ , P dspd
)

, where Ωdspd is the set of all possible values
for the iterates, polling sets and step sizes, σdspd

∞ is the σ-algebra generated by the entire
sequence of random polling sets, i.e.,

σdspd
∞ = σ (D0,D1, . . .)

and P dspd is the joint probability distribution of the product variable
⋃∞
k=0 Dk.

A.2 Conditional expectation, conditioning to the past and
martingales

Most of the algorithms presented in this thesis rely on an introduction of randomness
at every iteration. We are thus faced with sequences of random elements that are not
independent, but rather are functions of random independent variables. Conditioning is
a convenient way of expressing this situation.

Definition A.5 (Expectation) Let X be a positive random variable in a probability
space (Ω,F , P); the expectation of X (also called the expected value or the mean),
denoted by E [X], is defined by the following Lebesgue integral:

E [X] =
∫

Ω
X(ω) dP (ω) ≡

∫
Ω
X dP.

178

For an arbitrary random variable X, the expectation exists if either its positive part
X+ = max{X, 0} or its negative part X− = max{−X, 0} has a finite expectation. In
this case, one has:

E [X] = E
[
X+

]
− E

[
X−

]
.

Definition A.6 (Conditional expectation and probability) Let (Ω,F , P) a pro-
bability space, F0 ⊂ F a σ-algebra and X ∈ F a random variable such that E [|X|] <∞.
The conditional expectation of X given F0, denoted as E [X|F0], is defined by any
random variable Y such that:

i) Y ∈ F0,

ii) ∀A ∈ F0,
∫
AX dP =

∫
A Y dP .

Y is said to be a version of the conditional expectation.
Let A ∈ F , the conditional probability of A given F0 is defined as follows:

P(A|F0) = E(1A|F0).

It is possible to define conditional expectation with respect to a random variable, as
a particular case of Definition A.6. We then have

E [X|Z] = E [X|σ(Z)] , (A.1)

where σ(Z) is the σ-algebra generated by the variable Z.
One example of a property that can be stated using conditional expectations is

Lemma 3.10, which we restate and prove below.

Lemma A.1 ([67, Lemma 4.4]) Let {Zk} be a sequence of Bernoulli variables satis-
fying

P(Z0 = 1) ≥ p and P (Zk = 1 | Z0, . . . , Zk−1) ≥ p (k ≥ 1), (A.2)
for some p ∈ (0, 1). Let λ ∈ (0, p); then

πk(λ) = P
(
k−1∑
l=0

Zl ≤ λ k
)
≤ exp

[
−(p− λ)2

2p k

]
. (A.3)

Proof. The result can be proved by standard techniques of large deviations. Let t
be an arbitrary positive number. By Markov’s Inequality,

πk(λ) = P
(

exp
(
−t

k−1∑
l=0

Zl

)
≥ exp(−tλk)

)
≤ exp (tλk)E

[
k−1∏
l=0

e−tZl
]
. (A.4)

Now let us study E
[∏k−1

l=0 e−tZl
]
. By Properties G∗ and K∗ of Shiryaev [106,

page 216], we have

E
[
k−1∏
l=0

e−t Zl
]

= E
[
E
[
e−t Zk−1 | Z0, Z1, . . . , Zk−2

] k−2∏
l=0

e−t Zl
]
. (A.5)

179

According to (A.2) and the fact that the function r e−t + (1 − r) is monotonically de-
creasing in r, it holds (with p̄ = P (Zk−1 = 1 | Z0, Z1, . . . , Zk−2) ≥ p)

E
[
e−t Zk−1 | Z0, Z1, . . . , Zk−2

]
= p̄ e−t + (1− p̄) ≤ p e−t + (1− p) ≤ exp

(
p e−t − p

)
,

which implies, from equality (A.5), that

E
[
k−1∏
l=0

e−t Zl
]
≤ exp

(
p e−t − p

)
E
[
k−2∏
l=0

e−t Zl
]
.

By recursively iterating the above estimation, we finally arrive at

E
[
k−1∏
l=0

e−t Zl
]
≤ exp

[
k (p e−t − p)

]
.

Inequality (A.4) can then be rewritten as

πk(λ) ≤ exp
[
k (t λ+ p e−t − p)

]
, (A.6)

which holds for all t > 0. Let us select t = ln(λ−1 p). Then we have

t λ+ p e−t − p = λ ln(λ−1 p) + λ− p = − 1
2 ξ (λ− p)2 (λ < ξ < p),

the second equality coming from Taylor expansion of the function λ 7→ λ ln(λ−1p)+λ−p
at the point p. Thus, we conclude from inequality (A.6) that

πk(λ) ≤ exp
[
−(λ− p)2

2 p k

]
.

�

Definition A.7 (Submartingale) Let (Ω,F , P) be a probability space, and let {Fk}k
be a fibration, i.e., a sequence of σ-algebras such that Fk ⊂ Fk+1. A sequence {Xk}k of
random variables is a submartingale if:

i) ∀ k,Xk ∈ Fk ({Xk} is said to be adapted to {Fk}),

ii) ∀ k,E [|Xk|] < ∞,

iii) ∀ k,E [Xk+1|Fk] ≥ Xk.

Submartingales have favorable asymptotic properties as shown by the following theo-
rem (for a proof, see [54, Theorem 5.3.1.]).

Theorem A.1 (Convergence of submartingales with bounded increments)
Let Xk be a submartingale with |Xk −Xk−1| ≤ M < ∞ for some M ≥ 0. Then, with

probability one, either limk→∞Xk exists and is finite, or lim supk→∞Xk =∞.

180

With the help of Theorem A.1, we can prove Lemma 3.5, which is restated as
Lemma A.2. Note that it is a mild generalization of [14, Lemma 4.1] that considers
two parameters θ ∈ (0, 1) and γ > 1 instead of one parameter γ > 1 and its inverse.

Lemma A.2 ([14, Lemma 4.1]) Let θ ∈ (0, 1) and γ > 1. Let also {Yk} be a sequence
of nonnegative uniformly bounded random variables, and {Γk} a sequence of Bernoulli
random variables taking the values ln γ and ln θ, such that

P [Γk = ln γ| σ(Γ0, . . . ,Γk−1), σ(Y0, . . . , Yk)] ≥
ln θ

ln(γ−1 θ) .

We define P as the set of indexes k such that Γk = ln γ and N = N \ P . Then

P
[{∑

i∈P
Yi <∞

}⋂{∑
i∈N

Yi =∞
}]

= 0.

Proof. Consider the sequence of random variables {Λk} defined by Λk = Λk−1 +
Γk Yk. One can show that this is a submartingale of bounded increments {Γk Yk}; we
thus know that P [{lim supk Λk = −∞}] = 0.
Besides, considering that

Λk = ln γ
∑
i∈P
i≤k

Yi + ln θ
∑
i∈N
i≤k

Yi,

we have that {∑
i∈P

Yi <∞
}⋂{∑

i∈N
Yi =∞

}
⊂
{

lim sup
k

Λk = −∞
}
.

This gives us the desired result. �

181

Appendix B

List of CUTEst test problems

B.1 Nonconvex test problems

Table B.1 lists all the nonconvex problems used in this thesis for establishing performance
profiles. The standard benchmark of problems used in Chapter 6 and Section 7.5.2
contained all problems except for MEYER3. In Section 7.5.1, problem MEYER3 was
used but problems BEALE, GROWTHLS, HIELOW, INDEF, SCOSINE and STRATEC
removed from the list.

B.2 Linearly-constrained test problems

Table B.2 lists the bound-constrained problems tested in Section 5.4.1, while Table B.3
corresponds to the test problems from Section 5.4.2, with linear equality constraints and
possibly bounds on the variables.

183

Problem Size Problem Size Problem Size
ALLINITU 4 BARD 3 BEALE 2
BIGGS6 6 BOX3 3 BROWNAL 10
BROYDN7D 10 BRYBND 10 CHNROSNB 10
DENSCHND 3 DENSCHNE 3 DIXMAANA 15
DIXMAANB 15 DIXMAANC 15 DIXMAAND 15
DIXMAANE 15 DIXMAANF 15 DIXMAANG 15
DIXMAANH 15 DIXMAANI 15 DIXMAANJ 15
DIXMAANK 15 DIXMAANL 15 ENGVAL2 3
ERRINROS 10 EXPFIT 2 FMINSURF 16
FREUROTH 10 GROWTHLS 3 GULF 3
HAIRY 2 HATFLDD 3 HATFLDE 3
HEART6LS 6 HEART8LS 8 HELIX 3
HIELOW 3 HIMMELBB 2 HIMMELBG 2
HUMPS 2 INDEF 10 KOWOSB 4
LOGHAIRY 2 MANCINO 10 MARATOSB 2
MEYER 3 MSQRTALS 4 MSQRTBLS 9
OSBORNEA 5 OSBORNEB 11 PENALTY3 50
SCOSINE 10 SINQUAD 5 SNAIL 2
SPARSINE 10 SPMSRTLS 28 STRATEC 10
VAREIGVL 10 VIBRBEAM 8 WOODS 4
YFITU 3

Table B.1: Nonconvex test problems from CUTEst.

184

Problem Size Bounds Problem Size Bounds Problem Size Bounds
ALLINIT 4 5 BQP1VAR 1 2 CAMEL6 2 4
CHEBYQAD 20 40 CHENHARK 10 10 CVXBQP1 10 20
DEGDIAG 11 11 DEGTRID 11 11 DEGTRID2 11 11
EG1 3 4 EXPLIN 12 24 EXPLIN2 12 24
EXPQUAD 12 12 HARKERP2 10 10 HART6 6 12
HATFLDA 4 4 HATFLDB 4 5 HIMMELP1 2 4
HS1 2 1 HS25 3 6 HS2 2 1
HS38 4 8 HS3 2 1 HS3MOD 2 1
HS45 5 10 HS4 2 2 HS5 2 4
HS110 10 20 JNLBRNG1 16 28 JNLBRNG2 16 28
JNLBRNGA 16 28 KOEBHELB 3 2 LINVERSE 19 10
LOGROS 2 2 MAXLIKA 8 16 MCCORMCK 10 20
MDHOLE 2 1 NCVXBQP1 10 20 NCVXBQP2 10 20
NCVXBQP3 10 20 NOBNDTOR 16 32 OBSTCLAE 16 32
OBSTCLBL 16 32 OSLBQP 8 11 PALMER1A 6 2
PALMER2B 4 2 PALMER3E 8 1 PALMER4A 6 2
PALMER5B 9 2 PFIT1LS 3 1 POWELLBC 20 40
PROBPENL 10 20 PSPDOC 4 1 QRTQUAD 12 12
S368 8 16 SCOND1LS 12 24 SIMBQP 2 2
SINEALI 20 40 SPECAN 9 18 TORSION1 16 32
TORSIONA 16 32 WEEDS 3 4 YFIT 3 1

Table B.2: Bound-constrained test problems from CUTEst.

185

Problem Size Bounds Lin. Eq Problem Size Bounds Lin. Eq.
BT3 5 0 3 HIMMELBA 2 0 2
HS9 2 0 1 HS28 3 0 1
HS48 5 0 2 HS49 5 0 2
HS50 5 0 3 HS51 5 0 3
HS52 5 0 3 ZANGWIL3 3 0 3
CVXQP1 10 20 5 CVXQP2 10 20 2
DEGTRIDL 11 11 1 FERRISDC 16 24 7
GOULDQP1 32 64 17 HONG 4 8 1
HS41 4 8 1 HS53 5 10 3
HS54 6 12 1 HS55 6 8 6
HS62 3 6 1 HS112 10 10 3
NCVXQP1 10 20 5 NCVXQP2 10 20 5
NCVXQP3 10 20 5 NCVXQP4 10 20 2
NCVXQP5 10 20 2 NCVXQP6 10 20 2
PORTFL1 12 24 1 PORTFL2 12 24 1
PORTFL3 12 24 1 PORTFL4 12 24 1
PORTFL6 12 24 1 PORTSNQP 10 10 2
PORTSQP 10 10 1 READING2 9 14 4
SOSQP1 20 40 11 SOSQP2 20 40 11
STCQP1 17 34 8 STCQP2 17 34 8
STNQP1 17 34 8 STNQP2 17 34 8
TAME 2 2 1 TWOD 31 62 10

Table B.3: Linearly-constrained test problems (linear equalities and possibly bounds)
from CUTEst.

186

Bibliography

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. National Bureau of Standards, United
States Department of Commerce, Washington, tenth edition, 1972.

[2] M. A. Abramson. Second-order behavior of pattern search. SIAM J. Optim.,
16:315–330, 2005.

[3] M. A. Abramson and C. Audet. Convergence of mesh adaptive direct search to
second-order stationarity points. SIAM J. Optim., 17:606–619, 2006.

[4] M. A. Abramson, C. Audet, J. E. Dennis Jr., and S. Le Digabel. OrthoMADS:
A deterministic MADS instance with orthogonal directions. SIAM J. Optim.,
20:948–966, 2009.

[5] M. A. Abramson, O. A. Brezhneva, J. E. Dennis Jr., and R. L. Pingel. Pattern
search in the presence of degenerate linear constraints. Optim. Methods Softw.,
23:297–319, 2008.

[6] M. A. Abramson, L. Frimannslund, and T. Steihaug. A subclass of generating
set search with convergence to second-order stationary points. Optim. Methods
Softw., 29:900–918, 2014.

[7] E. Artin. The Gamma Function. Holt, Rinehart and Winston, New York, 1964.
Translated to English by M. Butler.

[8] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for con-
strained optimization. SIAM J. Optim., 17:188–217, 2006.

[9] C. Audet, S. Le Digabel, and M. Peyrega. Linear equalities in blackbox optimiza-
tion. Comput. Optim. Appl., 61:1–23, 2015.

[10] C. Audet and J. E. Dennis Jr. Analysis of generalized pattern searches. SIAM J.
Optim., 13:889–903, 2003.

[11] A. Auslender. Computing points that satisfy second order necessary optimality
conditions for unconstrained minimization. SIAM J. Optim., 20:1868–1884, 2010.

187

[12] C. P. Avelino, J. M. Moguerza, A. Olivares, and F. J. Prieto. Combining and
scaling descent and negative curvature directions. Math. Program., 128:285–319,
2011.

[13] A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Computation of sparse low
degree interpolating polynomials and their application to derivative-free optimiza-
tion. Math. Program., 134:223–257, 2012.

[14] A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Convergence of trust-region
methods based on probabilistic models. SIAM J. Optim., 24:1238–1264, 2014.

[15] E. Bergou, S. Gratton, and L. N. Vicente. Levenberg-Marquardt methods based on
probabilistic gradient models and inexact subproblem solution, with application
to data assimilation. SIAM/ASA J. Uncertain. Quantif., 4:924–951, 2016.

[16] Á. Bűrmen, J. Olenšek, and T. Tuma. Mesh adaptive direct search with second
directional derivative-based Hessian update. Comput. Optim. Appl., 62:693–715,
2015.

[17] E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos, and Ph. L. Toint.
Worst-case evaluation complexity for unconstrained nonlinear optimization using
high-order regularized models. Math. Program., 2016. doi: 10.1007/s10107-016-
1065-8.

[18] E. G. Boman. Infeasibility and Negative Curvature in Optimization. PhD thesis,
Stanford University, February 1999.

[19] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale
Machine Learning. arXiv, 1606.04838, 2016.

[20] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. A trust region algorithm for
nonlinearly constrained optimization. SIAM J. Numer. Anal., 24:1152–1170, 1987.

[21] G. Capasso. A deterministic method for the multiobjective optimization of elec-
tromagnetic devices and its application to pose detection for magnetic-assisted
medical applications. Master’s thesis, Dipartimento Di Ingegneria Industriale,
Università degli Studi di Padova, Padova, Italy, 2015.

[22] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the complexity of steepest
descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained
optimization. SIAM J. Optim., 20:2833–2852, 2010.

[23] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive cubic regularisation meth-
ods for unconstrained optimization. Part II: worst-case function- and derivative-
evaluation complexity. Math. Program., 130:295–319, 2011.

[24] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Optimal Newton-type methods for
nonconvex optimization. Technical Report naXys-17-2011, Dept of Mathematics,
FUNDP, Namur (B), 2011.

188

[25] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Complexity bounds for second-order
optimality in unconstrained optimization. J. Complexity, 28:93–108, 2012.

[26] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the oracle complexity of first-
order and derivative-free algorithms for smooth nonconvex minimization. SIAM
J. Optim., 22:66–86, 2012.

[27] C. Cartis, N. I. M. Gould, and Ph. L. Toint. An example of slow convergence
for Newton’s method on a function with globally Lipschitz continuous Hessian.
Technical Report ERGO 13-008, School of Mathematics, Edinburgh University,
2013.

[28] C. Cartis, Ph. R. Sampaio, and Ph. L. Toint. Worst-case evaluation complex-
ity of non-monotone gradient-related algorithms for unconstrained optimization.
Optimization, 64:1349–1361, 2015.

[29] C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained
optimization methods based on probabilistic models. arXiv, 1505.06070v1, 2015.

[30] R. Chen, M. Menickelly, and K. Scheinberg. Stochastic optimization using a trust-
region method and random models. arXiv, 1504.04231v1, 2015.

[31] Z. Chen and J. J. Dongarra. Condition numbers of Gaussian random matrices.
SIAM J. Matrix Anal. Appl., 27:603–620, 2005.

[32] E. Çınlar. Probability and Stochastics. Graduate Texts in Mathematics. Springer,
New York, 2011.

[33] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-SIAM
Series on Optimization. SIAM, Philadelphia, 2000.

[34] A. R. Conn, K. Scheinberg, and Ph. L. Toint. A derivative free optimization algo-
rithm in practice. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO Sympo-
sium on Multidisciplinary Analysis and Optimization, St Louis, MO, 1998.

[35] A. R. Conn, K. Scheinberg, and L. N. Vicente. Geometry of interpolation sets in
derivative-free optimization. Math. Program., 111:141–172, 2008.

[36] A. R. Conn, K. Scheinberg, and L. N. Vicente. Geometry of sample sets in
derivative-free optimization: polynomial regression and underdetermined inter-
polation. IMA J. Numer. Anal., 28:721–748, 2008.

[37] A. R. Conn, K. Scheinberg, and L. N. Vicente. Global convergence of general
derivative-free trust-region algorithms to first- and second-order critical points.
SIAM J. Optim., 20:387–415, 2009.

[38] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free
Optimization. MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2009.

189

[39] I. D. Coope and C. J. Price. A direct search conjugate directions algorithm for
unconstrained minimization. ANZIAM J., 42:C478–C498, 2000.

[40] F. E. Curtis, D. P. Robinson, and M. Samadi. A trust region algorithm with a
worst-case iteration complexity of O

(
ε−3/2

)
for nonconvex optimization. Math.

Program., 2016. doi:10.1007/s10107-016-1026-2.

[41] A. L. Custódio. Aplicações de Derivadas Simplécticas em Métodos de Procura
Directa. PhD thesis, Universidade Nova de Lisboa, 2007.

[42] A. L. Custódio and L. N. Vicente. Using sampling and simplex derivatives in
pattern search methods. SIAM J. Optim., 18:537–555, 2007.

[43] C. Davis. Theory of positive linear dependence. Amer. J. Math., 76:733–746, 1954.

[44] J. E. Dennis Jr. and V. Torczon. Direct search methods on parallel machines.
SIAM J. Optim., 1:448–474, 1991.

[45] J. E. Dennis Jr. and L. N. Vicente. On the convergence theory of trust-region-
based algorithms for equality-constrained optimization. SIAM J. Optim., 7:927–
950, 1997.

[46] Y. Diouane, S. Gratton, and L. N. Vicente. Globally convergent evolution strate-
gies for constrained optimization. Comput. Optim. Appl., 62:323–346, 2015.

[47] M. Dodangeh and L. N. Vicente. Worst case complexity of direct search under
convexity. Math. Program., 155:307–332, 2016.

[48] M. Dodangeh, L. N. Vicente, and Z. Zhang. On the optimal order of worst case
complexity of direct search. Optim. Lett., 10:699–708, 2016.

[49] B. Doerr. Analyzing randomized search heuristics: Tools from probability the-
ory. In A. Auger and B. Doerr, editors, Theory of Randomized Search Heuristics:
Foundations and Recent Developments, volume 1 of Theoret. Comput. Sci., pages
1–20. World Scientific, Singapore, 2011.

[50] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Math. Program., 91:201–213, 2002.

[51] D. W. Dreisigmeyer. Equality constraints, Riemannian manifolds and direct-search
methods. Technical Report LA-UR-06-7406, Los Alamos National Laboratory,
2006.

[52] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, Cambridge, 2009.

[53] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Optimal rates
for zero-order convex optimization: the power of two function evaluations. IEEE
Trans. Inform. Theory, 61:2788–2806, 2015.

190

[54] R. Durrett. Probability: Theory and Examples. Camb. Ser. Stat. Prob. Math.
Cambridge University Press, Cambridge, fourth edition, 2010.

[55] G. Fasano, J. L. Morales, and J. Nocedal. On the geometry phase in model-based
algorithms for derivative-free optimization. Optim. Methods Softw., 24:145–154,
2009.

[56] A. Forsgren and W. Murray. Newton methods for large-scale linear inequality-
constrained minimization. SIAM J. Optim., 7:162–176, 1997.

[57] L. Frimannslund and T. Steihaug. A generating set search method using curvature
information. Comput. Optim. Appl., 38:105–121, 2007.

[58] U. M. Garćıa-Palomares, I. J. Garćıa-Urrea, and P. S. Rodŕıguez-Hernández.
On sequential and parallel non-monotone derivative-free algorithms for box con-
strained optimization. Optim. Methods Softw., 28:1233–1261, 2013.

[59] U. M. Garćıa-Palomares and J. F. Rodŕıguez. New sequential and parallel
derivative-free algorithms for unconstrained minimization. SIAM J. Optim., 13:79–
96, 2002.

[60] R. Garmanjani, D. Júdice, and L. N. Vicente. Trust-region methods without using
derivatives: Worst case complexity and the non-smooth case. SIAM J. Optim.,
26:1987–2011, 2016.

[61] R. Garmanjani and L. N. Vicente. Smoothing and worst-case complexity for direct-
search methods in nonsmooth optimization. IMA J. Numer. Anal., 33:1008–1028,
2013.

[62] D. Goldfarb. Curvilinear path steplength algorithms for minimization which use
directions of negative curvature. Math. Program., 18:31–40, 1980.

[63] N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Exploiting negative cur-
vature directions in linesearch methods for unconstrained optimization. Optim.
Methods Softw., 14:75–98, 2000.

[64] N. I. M. Gould, D. Orban, and P. L. Toint. CUTEr, a Constrained and Uncon-
strained Testing Environment, revisited. ACM Trans. Math. Software, 29:373–394,
2003.

[65] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a Constrained and Uncon-
strained Testing Environment with safe threads. Comput. Optim. Appl., 60:545–
557, 2015.

[66] S. Gratton, C. W. Royer, and L. N. Vicente. A second-order globally convergent
direct-search method and its worst-case complexity. Optimization, 65:1105–1128,
2016.

191

[67] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on
probabilistic descent. SIAM J. Optim., 25:1515–1541, 2015.

[68] S. Gratton, A. Sartenaer, and Ph. L. Toint. Second-order convergence properties of
trust-region methods using incomplete curvature information, with an application
to multigrid optimization. J. Comput. Math., 24:676–692, 2006.

[69] S. Gratton, A. Sartenaer, and Ph. L. Toint. Recursive trust-region methods for
multiscale nonlinear optimization. SIAM J. Optim., 19:414–444, 2008.

[70] L. Grippo, F. Lampariello, and S. Lucidi. Global convergence and stabilization of
unconstrained minimization methods. J. Optim. Theory Appl., 56:385–406, 1988.

[71] G. Hillier. The density of a quadratic form in a vector uniformly distributed on
the n-sphere. Econometric Theory, 17:1–28, 2001.

[72] J. P. Imhof. Computing the distribution of quadratic forms in normal variables.
Biometrika, 48:419–426, 1961.

[73] D. Júdice. Trust-Region Methods without using Derivatives: Worst Case Complex-
ity and the Non-smooth Case. PhD thesis, Dept. Mathematics, Univ. Coimbra,
2015.

[74] C. T. Kelley. Implicit Filtering. Software Environment and Tools. SIAM, Philadel-
phia, 2011.

[75] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[76] T. G. Kolda, R. M. Lewis, and V. Torczon. A generating set direct search aug-
mented lagrangian algorithm for optimization with a combination of general and
linear constraints. Technical Report SAND2006-5315, SANDIA National Labora-
tories, 2006.

[77] T. G. Kolda, R. M. Lewis, and V. Torczon. Stationarity results for generating set
search for linearly constrained optimization. SIAM J. Optim., 17:943–968, 2006.

[78] J. Konečný and P. Richtárik. Simplified complexity analysis of simplified direct
search. Technical Report ERGO 14-012, School of Mathematics, Edinburgh Uni-
versity, 2014.

[79] J. Larson and S. C. Billups. Stochastic derivative-free optimization using a trust
region framework. Comput. Optim. Appl., 64:619–645, 2016.

[80] R. M. Lewis, A. Shepherd, and V. Torczon. Implementing generating set search
methods for linearly constrained minimization. SIAM J. Sci. Comput., 29:2507–
2530, 2007.

192

[81] R. M. Lewis and V. Torczon. Pattern search algorithms for bound constrained
minimization. SIAM J. Optim., 9:1082–1099, 1999.

[82] R. M. Lewis and V. Torczon. Pattern search algorithms for linearly constrained
minimization. SIAM J. Optim., 10:917–941, 2000.

[83] R. M. Lewis and V. Torczon. Active set identification for linearly constrained
minimization without derivatives. SIAM J. Optim., 20:1378–1405, 2009.

[84] R. M. Lewis and V. Torczon. A direct search approach to nonlinear programming
problems using an augmented Lagrangian method with explicit treatment of the
linear constraints. Technical Report WM-CS-2010-01, College of William & Mary,
Department of Computer Science, 2010.

[85] L. Liu and X. Zhang. Generalized pattern search methods for linearly equality
constrained optimization problems. Appl. Math. Comput., 181:527–535, 2006.

[86] S. Lucidi, F. Rochetich, and M. Roma. Curvilinear stabilization techniques for
truncated Newton methods in large scale unconstrained optimization. SIAM J.
Optim., 8:916–939, 1998.

[87] S. Lucidi and M. Sciandrone. A derivative-free algorithm for bound constrained
minimization. Comput. Optim. Appl., 21:119–142, 2002.

[88] S. Lucidi and M. Sciandrone. On the global convergence of derivative-free methods
for unconstrained optimization. SIAM J. Optim., 13:97–116, 2002.

[89] The Mathworks, Inc. Global Optimization Toolbox User’s Guide,version 3.3, Oc-
tober 2014.

[90] The Mathworks, Inc. MATLAB R2016a, Trial Version, February 2016.

[91] R. Mifflin. A superlinearly convergent algorithm for minimization without evalu-
ating derivatives. Math. Program., 9:100–117, 1975.

[92] A. A. Mohsenipour. On the distribution of quadratic expressions in various types
of random vectors. PhD thesis, The University of Western Ontario, December
2012.

[93] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM J. Sci.
Comput., 4:553–572, 1983.

[94] J.J. Moré and D. C. Sorensen. On the use of directions of negative curvature in a
modified Newton method. Math. Program., 16:1–20, 1979.

[95] J.J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms.
SIAM J. Optim., 20:172–191, 2009.

193

[96] J.-J. Moreau. Décomposition orthogonale d’un espace hilbertien selon deux cônes
mutuellement polaires. Comptes Rendus de l’Académie des Sciences de Paris,
255:238–240, 1962.

[97] M. Muller. A note on a method for generating points uniformly on n-dimensional
spheres. Communications of the ACM, 2:19–20, 1959.

[98] J. A. Nelder and R. Mead. A simplex method for function minimization. Comput.
J., pages 308–313, 1965.

[99] Yu. Nesterov. Random gradient-free minimization of convex functions. Technical
Report 2011/1, CORE, Université Catholique de Louvain, 2011.

[100] Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM J. Optim., 22:341–362, 2012.

[101] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer-Verlag, New York, second edition,
2006.

[102] A. Olivares, J. M. Moguerza, and F. J. Prieto. Nonconvex optimization using
negative curvature within a modified linesearch. European J. Oper. Res., 189:706–
722, 2008.

[103] M. J. D. Powell. Least Frobenius norm updating of quadratic models that satisfy
interpolation conditions. Math. Program., 100:183–215, 2004.

[104] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function. Math. Program., 144:1–38,
2014.

[105] K. Scheinberg and Ph. L. Toint. Self-correcting geometry in model-based algo-
rithms for derivative-free unconstrained optimization. SIAM J. Optim., 20:3512–
3532, 2010.

[106] A. N. Shiryaev. Probability. Grad. Texts on Math. Springer-Verlag, New York,
1995.

[107] G. A. Shultz, R. B. Schnabel, and R. H. Byrd. A family of trust-region-based algo-
rithms for unconstrained minimization with strong global convergence properties.
SIAM J. Numer. Anal., 22:47–67, 1985.

[108] J. C. Spall. Introduction to stochastic search and optimization: Estimation, simu-
lation and control. Wiley-Interscience. John Wiley & Sons, Hoboken, New Jersey,
2003.

[109] V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim.,
7:1–25, 1997.

194

[110] P. Tseng. Fortified-descent simplicial search method: A general approach. SIAM
J. Optim., 10:269–288, 1999.

[111] K. Ueda and N. Yamashita. On a global complexity bound of the Levenberg-
Marquardt method. J. Optim. Theory Appl., 147:443–453, 2010.

[112] A. I. F. Vaz and L. N. Vicente. A particle swarm pattern search method for bound
constrained global optimization. J. Global Optim., 39:197–219, 2007.

[113] A. I. F. Vaz and L. N. Vicente. PSwarm: A hybrid solver for linearly constrained
global derivative-free optimization. Optim. Methods Softw., 24:669–685, 2009.

[114] L. N. Vicente. Worst case complexity of direct search. EURO J. Comput. Optim.,
1:143–153, 2013.

[115] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous
functions. Math. Program., 133:299–325, 2012.

[116] A. A. Zhigljavsky and A. G. Zilinskas. Stochastic Global Optimization. Springer-
Verlag, Berlin, 2008.

195

