
Computational Methods in Optimization

M1 IDD

Course project - 2023/2024

• The last version of this document can be found at:
https://www.lamsade.dauphine.fr/∼croyer/ensdocs/CMO/ProjCMO.pdf.

• Typos, questions, etc, can be sent to clement.royer@lamsade.dauphine.fr.

• Current version (includes minor edits): January 26, 2024.

• Major updates to the document

– 2024.01.26: Deadline extension.

– 2024.01.19: Clarified the example nature of the notations from Parts 1 and Parts 2.
Fixed the formulation of the SDP in Part 3.

Assignment

• This project is a collaborative one. Students should organize in groups of 3 or 4.

• Students may submit their sources in either French or English. Those sources should include:

– Their answers to the questions (in PDF or notebook format).

– Their Python implementation (in .py files or in a notebook).

– A Python script or a notebook to run the methods and reproduce the results.

– A short report in PDF file explaining their approach to modeling and solving the opti-
mization problems at hand.

• Please send your sources to clement.royer@lamsade.dauphine.fr under the form of a
compressed folder. Those sources must include the last names of every member of the group.

• The deadline to send the sources is February 11, 2024 AOE (Anywhere On Earth).

https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/CMO/ProjCMO.pdf


2 Comput. Methods Optim. - 2023/2024

Project: University office space reallocation

Introduction

Context Université Paris Dauphine-PSL is currently being renovated, with a new wing (thereafter
called wing N) opening mid-2024. The next renovation phases are planned as follows:

1. Wing N opens and wing B is renovated;

2. Wing B re-opens and wing P is renovated;

3. Wing P re-opens and wings C/D are renovated;

4. Wings C/D re-open and wing A is renovated;

5. Wing A re-opens.

A key part of the renovation consists in planning the moves of personnel at every phase, so as
to minimize the overall moving effort. Although solutions computed by hand have been proposed,
the administration is working with researchers in LAMSADE to certify optimality of the solution
according to several criteria.

Task In this project, we investigate a (greatly) simplified version of that problem, where the intended
goal is to get from the current office configuration (called “Phase 0”) to a desired office configuration
in the final phase (“Phase 5”). We assume that all offices have the same size, therefore an office
(and its occupants) can be moved to any other office that is not under renovation. Although our
problem data will be defined according to a graph of the offices, we will not leverage the structure
as much as we could (in particular, we will not take the distances between offices into account).

A lot of freedom is intentionally left in the modeling and implementation of the various problems
and solutions. This freedom will be used to compare the solutions proposed by different groups. The
project consists of three parts, that are meant to be completed in that order.

Problem data We proposed to use two sketch graphs representing situations one may encounter
while considering the overall graph of Dauphine. We consider offices belonging to four entities :
LAMSADE, MIDO, Students association and Presidency. To mimic the true office graph, the
offices are designated by a code, and the first letter corresponds to the wing1. Still, the graph
topologies are not essential for most of the project except Question 4.

The first graph, given in Figure 1, considers a very simple case where each entity has only one
office, and the new wing adds another empty office. The final and initial affectations are identical,
and the moving plan must manage to move offices that are under renovation while reaching the final
affectation.

The second graph example involves different numbers of offices per entity. The final allocation
differs from the initial one, though the number of offices associated with every entity remains constant
throughout. Figure 2 details these allocations.

Depending on how the lab sessions go, other graph structures might be added to the project to
further test the model. Nevertheless, the validation (and grading) will be based upon the two graphs
from Figures 1 and 2.

1We ignore wing D for simplicity



Comput. Methods Optim. - 2023/2024 3

Figure 1: A first graph example with same initial and final affectations. The office N1 (corresponding
to the new wing) is empty at the final affectation. The office A1 is affected to Presidency, B1 is
affected to MIDO, C1 is affected to Students association and P1 is affected to LAMSADE.

Figure 2: A second graph example where the initial office allocation (top) differs from the final allo-
cation (bottom). The colors correspond to Presidency, Students association, MIDO and LAMSADE.



4 Comput. Methods Optim. - 2023/2024

1 Linear programming relaxation

A linear relaxation of the proposed approach consists in replacing binary decision variables by con-
tinuous ones. As an example2, given a set of offices {1, 2, . . . , n} and a set of phases {0, . . . , 5},
consider xijp that indicates whether the current occupants of office i at phase p should move to
office j during phase p. This is in essence a binary variable, and thus its value should be in {0, 1}.
In this section, however, we consider a relaxation of the integer constraint xijp ∈ {0, 1} into the
continuous constraint 0 ≤ xijp ≤ 1.

Question 1 Write a linear programming model for this problem. Indicate the number of variables,
constraints, problem data. The use of the variables defined above is not mandatory, and additional
variables will likely be necessary. The whole model should differ from a binary optimization problem
only in the integer constraint, as explained above.

Question 2 Pass the problem to a solver such as cvxpy, or write your own interior-point imple-
mentation to solve the linear program.

Question 3 Propose a way to use the solution returned by the solver to suggest a moving plan.

Question 4 Can we avoid putting the students’ association offices next to that of the presidency
throughout the renovation? If so, adapt your model to enforce this guarantee.

2 Quadratic programming model

Since we know the final allocation of the offices, we may want to try to match the final allocation
as early as possible in the renovation process. For this purpose, we add a term to the objective that
quantifies how the allocation differs from the final one, of the form

λ
5∑

p=0

∥zp − zF ∥2 = λ(zp − zF )T(zp − zF ) (1)

where zp represents the vector of office allocations at phase p3, zF is the corresponding vector of
final affectations, and λ > 0 is a weight put on this penalty.

Question 5 Form a quadratic programming model based on the model of Part 1 that encodes this
penalization.

Question 6 Pass the problem to a solver such as cvxpy, or write your own interior-point imple-
mentation to solve the quadratic program.

2Other variables can -and likely should- be used in the model. In addition, students are free not to use the variables
xijp.

3This notation assumes that this information is stored in a vector. The formula should be adapted to fit the variable
representation chosen in Part 1.



Comput. Methods Optim. - 2023/2024 5

Question 7 Compute the solution for λ = 1 and λ = 100. Do you observe changes compared to
the solution obtained in Section 1?

Question 8 Replace the vector zF in (1) by zI , representing the initial affectation of the offices,
and compute the solution of the resulting quadratic program for λ = 1 and λ = 100. Comment on
your findings, and compare them with that of Question 7.

3 Semidefinite programming relaxation

We now come back to the problem studied in Section 1. Recall that we provided a linear programming
relaxation of the binary constraints that applied to every variable. The goal of this section is to explore
another relaxation based on semidefinite programming. As seen in class, optimizing over a vector of
binary variables 4 u ∈ {−1, 1}N amounts to considering a matrix U ∈ RN×N with constraints

U = uuT, U ii = 1 ∀i = 1, . . . , N.

Indeed, the constraints on the diagonal elements of U will imply that the elements of u have values
in {−1, 1}.

The problem is then relaxed into

U ⪰ uuT, U ii = 1 ∀i = 1, . . . , N. (2)

As seen in class, the system (2) corresponds to constraints of a semidefinite program.

Question 9 Form a semidefinite programming model of the problem based on the relaxation
idea (2).

Question 10 Compare the number of variables/constraints for the model of Question 9 and that
needed by the linear programming formulation of Question 1. Does the SDP formulation allow you
to use fewer variables/constraints?

Question 11 Pass the problem to a solver such as cvxpy, or write your own interior-point imple-
mentation to solve the semidefinite program.

Question 12 Incorporate the quadratic function of Section 3 into the semidefinite programming
formulation.

4Note that any vector v ∈ {0, 1}N can be converted into u ∈ {−1, 1}N through the linear transformation u = 2v−1.


	Linear programming relaxation
	Quadratic programming model
	Semidefinite programming relaxation

