Mathematics for Data Science *

Homework Assignment

M1 IDD, 2023-2024

Dauphine \mid PSL *

Assignment

- This homework consists of proving several statements used without proofs in various papers accepted to machine learning conferences and journals.
- Students may discuss the project with their classmates, but answers must be written and submitted individually.
- Students may submit their answers in either French or English.
- Students are expected to send their answers in PDF format to clement.royer@lamsade.dauphine.fr. The PDF name must clearly indicate the student's first and last name.
- The deadline is set to February 11, 2024 AOE (Anywhere On Earth).

Major updates to the document

- 2024.01.22: Clarified the notation $\|x\|$ (Euclidean norm) in Statement 3. Added a missing minus sign on the right-hand side of Statement 4.

[^0]
Statement 1 (Journal of Machine Learning Research, 2011)

Let $p \in[0,1], \boldsymbol{A}, \boldsymbol{B} \succ \mathbf{0}$ and $\alpha \in[0,1]$. Then,

$$
(\alpha \boldsymbol{A}+(1-\alpha) \boldsymbol{B})^{p} \succeq \alpha \boldsymbol{A}^{p}+(1-\alpha) \boldsymbol{B}^{p}
$$

where two matrices $\boldsymbol{X}, \boldsymbol{Y} \succ \mathbf{0}$ satisfy $\boldsymbol{X} \succeq \boldsymbol{Y}$ if and only if $\boldsymbol{X}-\boldsymbol{Y} \succeq \mathbf{0}$.

Statement 2 (International Conference on Machine Learning, 2016)

Let $\boldsymbol{x}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{d}$ be vectors in \mathbb{R}^{d} such that $\left\{\boldsymbol{v}_{i}\right\}_{i=1}^{d}$ is an orthonormal basis of \mathbb{R}^{d} and the variables $\left\{\boldsymbol{v}_{i}^{T} \boldsymbol{x}\right\}_{i=1}^{d}$ are i.i.d. standard normal variables. Then,

$$
\mathbb{P}\left(\sqrt{\sum_{2 \leq i \leq d}\left(\boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{x}\right)^{2}} \leq \mathcal{C} d\right) \geq 1-\exp \left(-\frac{d}{\mathcal{K}}\right),
$$

where $\mathcal{C}>0$ and $\mathcal{K}>0$ do not depend on d.

Statement 3 (Conference on Learning Theory, 2022)

Let $\boldsymbol{v} \in \mathbb{R}^{d}$ be a random vector uniformly distributed in $\left\{-\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\right\}^{d}$. Then, for any vector $\boldsymbol{x} \in \mathbb{R}^{d}, \boldsymbol{x}^{\mathrm{T}} \boldsymbol{v}$ is a mean zero, sub-gaussian random variable such that

$$
\left\|\boldsymbol{x}^{\mathrm{T}} \boldsymbol{v}\right\|_{\psi_{2}} \leq 2 c \frac{\|\boldsymbol{x}\|}{\sqrt{d}}
$$

where $\|\boldsymbol{x}\|=\sqrt{\sum_{i=1}^{d} x_{i}^{2}}$ denotes the Euclidean norm, and $c>0$ is a universal constant that does not depend on d.

Statement 4 (Neural Information Processing Systems, 2023)

Consider a random matrix $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ such that $\|\boldsymbol{A}\|_{F}^{2}=\sum_{j=1}^{d} \sum_{k=1}^{d}[\boldsymbol{A}]_{j k}^{2}$ follows a chi-square distribution with degree of freedom d^{2}, and a value $\epsilon>0$. Then,

$$
\mathbb{P}\left(\|\boldsymbol{A}\|_{F}^{2}-d^{2} \geq d^{2}+\frac{3}{\epsilon}\right) \leq \exp \left(-\frac{1}{\epsilon}\right)
$$

[^0]: *Version of January 22, 2024. The last version of this document can be found at: https://www.lamsade.dauphine.fr/~croyer/ensdocs/MDS/DMMDS.pdf

