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Introduction

About data science

Data science tasks have grown to prominence in modern society. Numerous economical models are
now based on the value of data, and the way this data is exploited. Handling massive amounts of
data, as in biology, poses a number of mathematical and computational challenges. More globally,
data-driven approaches are taking over model-based approaches, in that the former apply when the
latter cannot be implemented.

Course summary

This course aims at describing the mathematical foundations of data science tasks. The underlying
goal is for students to become comfortable with these models, not only for subsequent courses but
also to leverage those tools in academic or industrial settings.

The first part of the course is centered around mathematical optimization. We focus on convex
optimization problems, that remain the formulations of choice for many data science tasks. From
a mathematical perspective, these problems possess a structure that allows for characterizing their
solutions.

The second part of the course revolves around statistical aspects, that are prevalent in data
science. We will present a series of results associated with estimation and regression problems,
combining convex problems with statistics. We will also investigate concentration inequalities, and
how those are used to provide statistical guarantees on certain problems.
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Chapter 0

Notations and background

This chapter gathers all the notations and mathematical background that will be used throughout
the course.

0.1 Notations

• Scalars (i.e. reals) are denoted by lowercase letters: a, b, c, α, β, γ.

• Vectors are denoted by bold lowercase letters: a, b, c,α,β,γ.

• Matrices are denoted by bold uppercase letters: A,B,C.

• Sets are denoted by bold uppercase cursive letters : A,B, C.

• A new operator or quantity is defined using :=.

• The following quantifiers are used throughout the notes: ∀ (for every), ∃ (it exists), ∃! (it
exists a unique), ∈ (belongs to), ⊆ (subset of), ⊂ (proper subset).

• The Σ operator is used for sums. To lighten the notation, and in the absence of ambiguity,
we may omit the first and last indices, or use one sum over multiple indices. As a result, the
notations

∑m
i=1

∑n
j=1,

∑
i

∑
j and

∑
i,j may be used interchangeably.

• The Π operator is used for products. To lighten the notation, and in the absence of ambiguity,
we may omit the first and last indices, or use one sum over multiple indices. As a result, the
notations

∏m
i=1

∏n
j=1,

∏
i

∏
j and

∏
i,j may be used interchangeably.

• The notation i = 1, . . . ,m indicates that the variable i takes all integer values between 1 and
m.

0.1.1 Scalar and vector notations

• The set of natural numbers (nonnegative integers) is denoted by N; the set of integers is
denoted by Z.

• The set of real numbers is denoted by R. Our notations for the subset of nonnegative real
numbers and the set of positive real numbers are R+ and R++, respectively. We also define
the extended real line R := R ∪ {−∞,∞}.

5



6 Maths. Data Science - 2023/2024

• The notation Rn is used for the set of vectors with n ∈ N real components; although we do
not explicitly indicate it in the rest of these notes, we always assume that n ≥ 1.

• A vector x ∈ Rn is thought as a column vector, with xi ∈ R denoting its i-th coordinate in

the canonical basis of Rn. We thus write x =

 x1
...
xn

, or, in a compact form, x = [xi]1≤ı≤n.

• Given a column vector x ∈ Rn, the corresponding row vector is denoted by xT, so that
xT = [x1 · · · xn] and [xT]T = x.

• For any integer n ≥ 1, the vectors 0n and 1n correspond to the vectors of Rn for which all
elements are 0 or 1, respectively. For simplicity, we may write x ≥ 0 to indicate that all
components of x are nonnegative.

0.1.2 Matrix notations

• We use Rm×n to denote the set of real rectangular matrices with m rows and n columns,
where m et n will always be assumed to be at least 1. If m = n, Rn×n refers to the set of
square matrices of size n.

• We identify a matrix in Rm×1 with its corresponding column vector in Rm.

• Given a matrix A ∈ Rm×n, Aij or [A]ij refers to the coefficient from the i-th row and the j-th
column of A. Provided this notation is not ambiguous, we use the notations A, [Aij ]1≤i≤m

1≤j≤n

and [Aij ] interchangeably.

• Depending on the context, we may use aT
i to denote the i-th row of A or aj to denote the

j-th column of A, leading to A =

 aT
1
...

aT
m

 or A = [a1 · · · an] , respectively.

• The diagonal of a square matrix A ∈ Rd×d is given by the coefficients Aii. The trace of such
a matrix is trace(A) :=

∑d
i=1Aii.

• Given A = [Aij ] ∈ Rm×n, the transpose of matrix A, denoted by AT (read “A transpose”),
is defined as the matrix in Rn×m (or “n-by-m matrix”) such that

∀i = 1 . . .m, ∀j = 1 . . . n, [AT]ji = Aij .

Note that this generalizes the notation used for row vectors.

• For every n ≥ 1, In refers to the identity matrix in Rn×n (with 1s on the diagonal and 0s
elsewhere).

0.2 Linear algebra

This section provides useful linear algebra results for this course. Unlike general linear algebra classes,
we focus on linear algebra in Rn.
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0.2.1 Vector linear algebra

We always consider vectors in the normed vector space Rn, of dimension n. The following operations
are defined in this space:

• For any x,y ∈ Rn, the sum of x and y is denoted by x+ y = [xi + yi]1≤i≤n;

• For any λ ∈ R, we define λx
n
= λ · x = [λxi]1≤i≤n. In this context, the real value λ is called

a scalar.

Using these operations, we can build linear combinations of vectors in Rn that produce a vector
in Rn of the form

∑p
i=1 λixi, where xi ∈ Rn and λi ∈ R for any i = 1, . . . , p.

The matrix space Rm×n can also be endowed with a vector space structure of dimension mn:

• For any A,B ∈ Rm×n, the sum of A and B is denoted by A+B = [Aij +Bij ]1≤i≤m
1≤j≤n

;

• For any scalar λ ∈ R, we define λA
n
= λ ·A = [λAij ]1≤i≤m

1≤j≤n
.

Definition 0.1 A set S ⊆ Rn satisfying the conditions

1. 0n ∈ S;

2. ∀(x,y) ∈ S, x+ y ∈ S;

3. ∀x ∈ S, ∀λ ∈ R, λx ∈ S.

is called a (linear) subspace of Rn.

Definition 0.2 Let x1, . . . ,xp be p vectors in Rn. The span (or linear span) of x1, . . . ,xp, denoted
by Span(x1, . . . ,xp), is the linear subspace of Rn defined by

Span(x1, . . . ,xp) :=

{
x =

p∑
i=1

αixi

∣∣∣∣∣αi ∈ R ∀i

}
.

We now recall various properties of vector sets.

Definition 0.3 • The vectors in a set {xi}ki=1 ⊂ Rn are called linearly independent if for any

scalars λ1, . . . , λk satisfying
∑k

i=1 λixi = 0, we have λ1 = · · · = λk = 0. In that case, k ≤ n.

• If the above property does not hold, the vectors are called linearly dependent.

• A spanning set is a set of vectors {xi} ⊂ Rn such that their span is Rn.

• A set of vectors {xi}ni=1 ⊂ Rn is a basis if it is both linearly independent and a spanning set.
In that case, any vector in Rn can be written as a uniquely defined linear combination of the
xis. Any basis in Rn has exactly n vectors.

Since the size of a basis in Rn is n, we say that the dimension of the space is n. Consequently,
any linear subspace of Rn has dimension at most n.

Example 0.1 Any vector x in Rn can be written as x =
∑n

i=1 xiei, where ei = [0 · · · 0 1 0 · · · 0]T
is the ith vector of the canonical basis (with a 1 in the ith coordinate).
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Norm and scalar product Using a Euclidean norm and its associated scalar product allows to
compare vectors by measuring the distance between them. This ability is particularly useful to
establish that a sequence of vector generated by an optimization method converges toward the
solution of a given problem.

Definition 0.4 The Euclidean norm ∥ · ∥ on Rn is defined by

∀x ∈ Rn, ∥x∥ :=

√√√√ n∑
i=1

x2i .

Remark 0.1 This is indeed a norm, since it fulfills the four axioms that define what a norm is:

1. ∀x,y ∈ Rn, ∥x+ y∥ ≤ ∥x∥+ ∥y∥;

2. ∥x∥ = 0 ⇔ x = 0Rn ;

3. ∀x, ∥x∥ ≥ 0;

4. ∀x ∈ Rn,∀λ ∈ R, ∥λx∥ = |λ|∥x∥.

A vector x ∈ Rn is called a unit vector if ∥x∥ = 1.

Definition 0.5 For any vectors x,y ∈ Rn, the scalar product derived from the Euclidean norm is
a function of x and y, denoted by xTy, defined as follows:

xTy :=

n∑
i=1

xiyi.

Two vectors x and y are called orthogonal if xTy = 0.

Note that yTx = xTy, hence the scalar product defines a “product” between a row vector and
a column vector.

Proposition 0.1 Let x and y be two vectors in Rn. Then, the following properties hold

i) |x+ y∥2 = ∥x∥2 + 2xTy + ∥y∥2;

ii) ∥x− y∥2 = ∥x∥2 − 2xTy + ∥y∥2;

iii) ∥x∥2 + ∥y∥2 = 1
4

(
∥x+ y∥2 + ∥x− y∥2

)
;

iv) Cauchy-Schwarz inequality :

∀x,y ∈ Rn, xTy ≤ ∥x∥∥y∥.

Remark 0.2 The last inequality is a key result in both linear algebra and analysis.
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0.2.2 Matrix linear algebra

We can define the product of two matrices that have compatible dimensions. More precisely, for any
A ∈ Rm×n and B ∈ Rn×p, the product matrix AB is defined as the matrix C ∈ Rm×p such that

∀i = 1, . . . ,m, ∀j = 1, . . . , p, Cij =

n∑
k=1

AikBkj .

Using this definition, the product of a matrix A ∈ Rm×n with a (column) vector x ∈ Rn is the
vector y ∈ Rm given by

∀i = 1, . . . ,m, yi =
n∑

j=1

Aijxj .

Remark 0.3 Note that the scalar product on Rn corresponds to the matrix product for matrices of
sizes 1× n and n× 1: the result of this operation is a 1× 1 matrix, that is, a scalar.

When one work with matrices, the following linear subspaces are of interest.

Definition 0.6 (Fundamental subspaces) Let A ∈ Rm×n.

• The null space of A is the linear subspace

Null(A) := {x ∈ Rn | Ax = 0m}

• The range space of A is the linear subspace

Range(A) := {y ∈ Rm | ∃x ∈ Rn,y = Ax}

The dimension of this linear subspace is called the rank of A. We denote it by rank(A). One
always has rank(A) ≤ min{m,n}.

Theorem 0.1 (Rank-nullity theorem) Let A ∈ Rm×n. Then,

dim((A)) + rang(A) = n.

Definition 0.7 (Matrix norms) Consider the space Rm×n. The operator norm ∥ · ∥ and the Frobe-
nius norm ∥ · ∥F are defined by

∀A ∈ Rm×n,


∥A∥ := maxx∈Rn

x̸=0n

∥Ax∥
∥x∥ = maxx∈Rn

∥x∥=1
∥Ax∥

∥A∥F :=
√∑

1≤i≤m
1≤j≤n

A2
ij .

Definition 0.8 (Symmetric matrix) A square matrix A ∈ Rn×n is called symmetric if AT = A.
The set of symmetric matrices in Rn×n is denoted by Sn.

Definition 0.9 (Invertible matrix) A square matrix A ∈ Rn×n is called invertible if there exists
B ∈ Rn×n such that BA = AB = In (where we recall that In denotes the identity matrix in
Rn×n).

When it exists, such a matrix B is unique. It is then called the inverse of A and denoted by
A−1.
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Definition 0.10 (Positive (semi)definite matrix) A square, symmetric matrix A ∈ Rn×n is called
positive semidefinite if

∀x ∈ Rn, xTAx ≥ 0,

which we write A ⪰ 0.
Such a matrix is called positive definite when xTAx > 0 for any nonzero vector x. We write

this as A ≻ 0.

Example 0.2 Let A ∈ Rn×n be symmetric and diagonally dominant with nonnegative diagonal
entries, i.e. Aii ≥ 0 for any i ∈ {1, . . . , n} and Aii >

∑
j ̸=iAij . Then A is positive semidefinite.

Moreover, if the diagonal entries are positive, the matrix is positive definite.

This example shows in particular that the identity matrix is positive definite.

Definition 0.11 (Orthogonal matrix) A square matrix P ∈ Rn×n is called orthogonal if PT =
P−1.

More generally, a matrix Q ∈ Rm×n, where m ≤ n, is called orthogonal if QQT = Im (the
columns of Q are orthonormal in Rm).

When Q ∈ Rn×n is orthogonal, then so is its transpose QT (this result only applies to square
matrices). Orthogonal matrices have the following desirable property.

Lemma 0.1 Let A ∈ Rm×n and U ∈ Rm×m, V ∈ Rn×n be two orthogonal matrices. Then,

∥A∥ = ∥UA∥ = ∥AV ∥ and ∥A∥F = ∥UA∥F = ∥AV ∥F ,

i.e. multiplying by an orthogonal matrix preserves the norm.

As a corollary of the previous lemma, we observe that an orthogonal matrix Q ∈ Rm×n with
m ≤ n must satisfy ∥Q∥ = 1 and ∥Q∥F =

√
m.

Definition 0.12 (Eigenvalue) Let A ∈ Rn×n. A scalar λ ∈ R is called an eigenvalue of A if

∃v ∈ Rn,v ̸= 0n, Av = λv.

The vector v is called an eigenvector associated with the eigenvalue λ. The set of eigenvalues
of A is the spectrum of A.

The span of eigenvectors associated to the same eigenvalue is called the eigenspace. Its dimension
corresponds to the multiplicity of the eigenvalue relatively to the matrix.

Proposition 0.2 For any matrix A ∈ Rn×n, the following holds:

• A has n complex eigenvalues.

• IfA is symmetric positive semidefinite (resp. definite), then its eigenvalues are real nonnegative
(resp. real positive).

• The null space of A is spanned by the eigenvectors associated with the 0 eigenvalue.
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Theorem 0.2 (Eigenvalue decomposition theorem) Any symmetric matrix A ∈ Rn×n has an
eigenvalue decomposition of the form

A = PΛP T ,

where P ∈ Rn×n is an orthogonal matrix,and Λ ∈ Rn×n is a diagonal matrix that contains the n
eigenvalues of A λ1, . . . , λn on its diagonal.

The eigenvalue decomposition is not unique, but the set of eigenvalues that appears in the
decomposition is uniquely defined.

Remark 0.4 There are matrices that possess an eigenvalue decomposition of the form PΛP−1,
where P is invertible (but not necessarily orthogonal). Those matrices are called diagonalizable.

Link with singular value decomposition Let A ∈ Rm×n. In general, m ̸= n and the notion of
eigenvalue that we introduced above does not apply. However, we can always consider the eigenvalues
of

ATA ∈ Rn×n and AAT ∈ Rm×m.

These matrices are real and symmetric, hence they can be diagonalized. This property is what gives
rise to the singular value decomposition (or SVD).

Definition 0.13 (SVD) For any matrix A ∈ Rm×n, there exist a decomposition A = USV T called
singular value decomposition, or SVD, satisfying the following properties:

i) The matrix U ∈ Rm×m is orthogonal, i.e. its columns form an orthonormal basis of Rm, hence
UUT = UTU = Im.

ii) The matrix V ∈ Rn×n is orthogonal, i.e. V V T = V TV = In.

iii) The matrix S ∈ Rm×n has all entries equal to zero except for the first r ≤ min{m,n} entries on
its diagonal {Sii|1 ≤ i ≤ min{m,n}}, that are positive. Without loss of generality, we assume
that these values appear in decreasing order, that is, S11 ≥ · · · ≥ Srr > 0.

The values S11, . . . ,Srr are called the singular values or A, and the value r is called the rank of A.

Remark 0.5 Some definitions of the singular value decomposition allow for zero singular values,
others directly shrink the size of the decomposition by keeping the first r columns of U and V . The
latter decomposition, called truncated SVD, gives

X = U rSrV
T
r ,

where U r ∈ Rm×r consists of the first r columns of U , V r ∈ Rn×r consists of the first r columns
of V , and Sr ∈ Rr×r is a diagonal matrix with diagonal coefficients S11 ≥ · · · ≥ Srr > 0.

The singular value decomposition is widely used in image and signal processing, as it allows
to compute approximations of the matrix A by using the information corresponding to the largest
singular values.
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0.3 Sets and basic topology

Rather than introducing topological notions in a general fashion, we will focus on topologies that
are defined through norms. Norms are a fundamental component of mathematical thinking, as they
allow to quantify the distance between two objects. The various concepts from topology that will
be used throughout the course involve a norm in some capacity, along with the concepts form set
theory below.

Definition 0.14 1. The empty set in Rn will be denoted by ∅.

2. For any sets A and B in Rn, we write A ⊆ B to indicate that A is contained in B. A strict
inclusion (i.e. A ⊆ B but the two sets are not equal), we write A ⊂ B. In both cases, we say
that A is a subset of B.

3. For any (sub)sets A and B in Rn, we let A ∩ B denote the intersection of those two sets and
A∪B denote their union. These definitions apply recursively to define intersections and unions
of several sets.

4. For any S ⊆ Rn, the complement of S in Rn, denoted by Rn \ S, is defined as

{ x ∈ Rn |x /∈ S} .

Similarly, for any A ⊆ B ⊆ Rn, we define the complement of A in B as the set of all elements
of B that do not belong to A, and denote it by B \ A.

5. The Minkowski sum of two sets S1 and S2 in Rn is defined by

S1 + S2 := {x+ y | x ∈ S1,y ∈ S2} .

6. When the set S1 consists in one vector x ∈ Rn, we write x+ S2 for the sum {x}+ S2.

Using a norm (in our case, the Euclidean norm) allows for defining key topological concepts in
Rn.

Definition 0.15 (Closed and open balls) Let c be a vector in Rn.

• The closed ball centered at c with radius r > 0 is defined by

Br(c) = {x ∈ Rn | ∥x− c∥ ≤ r} .

• The open ball centered at c with radius r > 0 is defined by

BO
r (c) = {x ∈ Rn | ∥x− c∥ < r} .

Definition 0.16 • An open set in Rn is a set that contains an open ball centered around each
of its points.

• A closed set in Rn is a set such that its complement is open.

Example 0.3 • An open ball is an open set.
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• A closed ball is a closed set.

• A linear subspace of Rn is closed.

Proposition 0.3 • An intersection of closed sets is a closed set.

• A union of open sets is an open set.

• A finite union of closed sets is a closed set.

Definition 0.17 Let S ⊆ Rn.

• The interior of S, denoted by int(S), is the largest open set included in S.

• The closure S, denoted by cl(S), is the smallest closed set containing S.

• The boundary of S is defined by ∂(S) = cl(S) \ int(S).

• A set S is called bounded if it is contained in a ball (the ball can be open or closed).

• A set S is called compact if it is both closed and bounded.

Sequences and connection to topology Given an arbitrary set S, we let SN denote the set of
sequences of elements of S, i.e. families of elements of S indexed by nonnegative integers. Se-
quences are particularly relevant for convergence of certain algorithmic procedures, such as sampling
in statistics. They also serve to characterize various topological concepts. We describe below the
results in the case of vector sequences, but point out that similar results can be obtained in the
context of matrix spaces.

Definition 0.18 (Subsequence) Let S ⊆ Rn. A subsequence of a sequence {xk}k∈N ∈ SN is a
subset of the elements of the sequence indexed by {ϕ(k)}k∈N, where ϕ(k) ≥ k and ϕ(k+1) > ϕ(k)
for every k ∈ N.

Definition 0.19 (Convergence of a sequence in Rn) A sequence {xk}k ∈ (Rn)N converges to-
wards x∗ ∈ Rn if

∀ϵ > 0, ∃K ∈ N, ∀k ≥ K, ∥xk − x∗∥ ≤ ϵ.

The vector x∗ is called the limit of the sequence.

The limit of a converging subsequence of {xk}k is called a limit point, or an accumulation point.

Proposition 0.4 Let S ⊂ Rn.

• The set S is closed if any converging sequence in S converges towards a point in S.

• The set S is compact if every sequence in S has a limit point.

• The closure of S is the set of limit points of sequences in S.
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Supremum and maximum Given a set A ⊆ R, we say that a is an upper bound on A if ∀x ∈
A, x ≤ a. The smallest upper bound on A is called the supremum of A, and denoted by supA
(by convention, sup ∅ = −∞ and supA = ∞ for any A without a finite upper bound). When
supA ∈ A, the supremum is reached by an element in A, in which case it is called a maximum of
A and denoted by maxA.

Similarly, we say that a is a lower bound on A if ∀x ∈ A, x ≥ a. The largest lower bound is
called the infimum of A and denoted by inf A (by convention, inf ∅ = ∞ and inf A = −∞ if A
does not have a finite lower bound). When inf A ∈ A, the infimum is reached by an element of A,
in which case it is called a minimum of A and denoted by minA.

0.4 Calculus

Definition 0.20 (Continuity) A function f : Rn → Rm is called continuous in x ∈ Rn if

∀ϵ > 0, ∃δ > 0, ∀y ∈ Rn, ∥y − x∥ < δ ⇒ ∥f(y)− f(x)∥ < ϵ.

The function f is continuous on a set A ⊆ Rn if it is continuous at every point of A. When A = Rn,
we simply say that f is continuous.

Remark 0.6 In certain textbooks, the notion above is termed uniform continuity. For simplicity of
exposure, we will use it as our definition of continuity.

An alternate characterization of continuity based on sequences is given below. Sequences typically
appear when considering iterative algorithms, hence the relevance of this notion here.

Definition 0.21 (Continuity (sequential definition)) A function f : Rn → Rm is continuous at
x ∈ Rn if

∀{xn} ∈ (Rn)N, {xn} → x, lim
n→∞

f(xn) = f(x).

Example 0.4 A linear map f : Rn → Rm, where f(x) = Ax+ b for any x ∈ Rn with A ∈ Rm×n

and b ∈ Rm, is a continuous function on Rn.

Definition 0.22 (Differentiability Jacobian matrix) A function f : Rn → Rm is called differen-
tiable at a point x ∈ Rn if there exists a matrix Jf (x) ∈ Rm×n such that

lim
z→x
z ̸=x

∥f(z)− f(x)− Jf (x)(z − x)∥
∥z − x∥

= 0.

• Jf (x) is called the Jacobian of f at x, and is uniquely defined.

• If f(·) = [f1(·), . . . , fm(·)]T, then

∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n, [Jf (x)]ij =
∂fi
∂xj

(x).

The following special cases are instrumental to optimization and basic analysis.
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Corollary 0.1 • When m = 1, we define the (column) vector ∇f(x) ≡ Jf (x)
T, called the

gradient of f at x. In this case, the gradient is the vector of partial derivatives of f :

∀i = 1, . . . , n, ∇f(x) =

[
∂f

∂xi
(x)

]
1≤i≤n

.

• When n = m = 1, both the Jacobian and the gradient are equivalent to a scalar f ′(x) ≡
∇f(x) ≡ Jf (x)

T, called the derivative of f at x.

Remark 0.7 When needed, we may consider f to be defined on a product space, in which case we
will specify the variables on which we compute the gradient. For instance, given f : Rn × Rm → R
with f : (x,y) 7→ f(x,y), the notation ∇xf(x,y) will denote the gradient of f with respect to the
first n variables (it will thus be a vector in Rn, computed at (x,y).

In these notes, we assume familiarity with the common derivative formulas for functions from R
to R. More complex formulas are typically obtained thanks to the rule below.

Theorem 0.3 (Chain rule) If f : Rn 7→ Rm and g : Rm 7→ Rp are both differentiable, respectively
on Rn and Rm, then h : Rn 7→ Rp is differentiable on Rn and

∀x ∈ Rn, Jh(x) = Jg(f(x))Jf (x).

Remark 0.8 Special cases of the chain rule:

• m = p = 1 : ∇h(x) = g′(f(x))∇f(x);

• n = m = p = 1 : h′(x) = g′(f(x))f ′(x).

Theorem 0.4 (Mean-value theorem in dimension 1) Let f : [a, b] → R. If f is continuous on
[a, b] and differentiable on (a, b), there exists c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

Definition 0.23 (Taylor expansion) Let f : [a, b] 7→ R be C1 on [a, b], then

f(b) = f(a) + f ′(c)(b− a) where c ∈ [a, b]

f(b) = f(a) +

∫ 1

0
f ′(a+ t(b− a))(b− a) dt.

Theorem 0.5 (Mean-value theorem in dimension d) Let f : Rd → R f ∈ C1(Rd). For any
x,y ∈ Rd, x ̸= y, there exists t ∈ (0, 1) such that

f(y) = f(x) +∇f(x+ t(y − x))T(y − x).

Definition 0.24 (Function classes) Let f : Rd → R. We say that f is Cp(Rd) (or simply Cp) if it
is differentiable p times with a continuous pth-order derivative (in which case all derivatives up to
order p are continuous). The class of C∞ functions is the intersection of all Cp with p ∈ N.

Theorem 0.6 (Taylor expansion of order 1) Let f ∈ C1(Rd). For any vectors x and y of Rd, we
have

f(y) = f(x) +

∫ 1

0
∇f(x+ t (y − x))T(y − x) dt.



Chapter 1

Convexity

Convexity plays a major role in continuous optimization, as an indicator on the difficulty to solve
a given problem. In computational mathematics, one often considers a gap between linear and
nonlinear problems (for instance, a system of linear equations is usually more difficult to solve than
a system of nonlinear equations. In optimization, this divide evolved during the second half of the
20th century, so that the key gap in problem solving is now between convex and nonconvex problems
(this may still change in the future!).

1.1 Convex sets

Convexity is by essence a geometrical notion, that applies to sets rather than functions. In this
section, we thus introduce convexity for subsets of Rn.

1.1.1 Affine sets

As a warmup to convex sets, we first define a closely related notion from standard linear algebra.

Definition 1.1 (Affine set) A set X ⊆ Rn is called affine if

∀(x1,x2) ∈ X 2, ∀α ∈ R, αx1 + (1− α)x2 ∈ X . (1.1.1)

Equivalently, the set X is affine if it can be written as X = x+S, where S is a subspace of Rn. This
subspace is called the parallel subspace to X , and the dimension of X is defined as the dimension
of its parallel subspace.

Remark 1.1 Any affine set contains every line passing by two of its points.

Remark 1.2 The second characterization of an affine set shows that such a set is implicitly defined
by a subspace. In the literature, an affine set is sometimes called an affine subspace. However, we
will adopt the affine set terminology, commonly used in optimization, and save the use of subspace
to refer to linear subspaces.

Because of their connections with subspaces, affine sets have the following desirable property.

Proposition 1.1 Every affine set is closed.

16
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The property stated in Proposition 1.1 means that if a sequence of elements in an affine set
converges, then it converges within the affine set.

Definition 1.2 (Affine combination) Let x1, . . . ,xk be k vectors in Rn. A vector x ∈ Rn is an
affine combination of x1, . . . ,xk if there exist k real values α1, . . . , αk satisfying

k∑
i=1

αi = 1 and x =
k∑

i=1

αixi.

For any set of vectors, the previous definition allows to build an affine set as follows.

Definition 1.3 (Affine hull) The affine hull of a set X , denoted by aff(X ), is the set of affine
combinations of points in X .

The affine hull can be equivalently defined as the intersection of all affine sets containing X , i.e.
as the smallest affine set containing X .

1.1.2 Convex sets and related properties

We now provide our first definition of convexity.

Definition 1.4 (Convex set) A set C ⊆ Rn is convex if

∀(x,y) ∈ C2, ∀α ∈ [0, 1], αx+ (1− α)y ∈ C. (1.1.2)

A set is therefore convex if it contains any line segment connecting two of its points.
By convention, the empty set is considered convex. However, to avoid ambiguous definitions

later on, we may restrain our study to non-empty convex sets.

Proposition 1.2 i) The intersection of a family of convex sets is convex.

ii) The closure and the interior of a convex set are convex.

iii) The sum of two convex sets is convex.

iv) For any λ ∈ R and any convex set C ⊂ Rn, the set λC is convex.

Definition 1.5 (Convex combination) Let x1, . . . ,xk be k vectors of Rn. A vector x ∈ Rn is a
convex combination of x1, . . . ,xk if there exist k nonnegative real values α1, . . . , αk such that

k∑
i=1

αi = 1 and x =

k∑
i=1

αixi.

Note that the concept of convex combination is a restriction of that of affine combination, since
the coefficients are required to be nonnegative.

The counterpart to affine hull for convexity is given below.

Definition 1.6 (Convex hull) The convex hull of a set X ⊆ Rn, denoted by conv(X ), is the set of
all convex combinations of points in X .
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Convex hulls and affine hulls allow for defining related topological notions.

Definition 1.7 (Relative interior) Let C ⊆ Rn be a nonempty convex set. The relative interior of C,
denoted by ri(C), is the set of points x ∈ C for which there exists ϵ > 0 satisfying BO

ϵ (x)∩aff(C) ⊆ C.

We say that C is relatively open when ri(C) = C, and we will define the relative boundary of C
as the set cl(C) \ ri(C).

Proposition 1.3 Let C ⊆ Rn be a nonempty convex set. The following properties hold:

i) The set cl(C) is convex and nonempty.

ii) The set int(C) is convex.

iii) The set ri(C) is convex and nonempty.

1.1.3 Cones

Cones (and, in particular, convex cones) are mathematical objects that are instrumental in formulating
optimality conditions for (convex) optimization problems, as seen in the next chapter.

Definition 1.8 (Cone) A set K ⊆ Rn is called a cone if

∀x ∈ K,∀t > 0, tx ∈ K.

Remark 1.3 Several authors define a cone using any t ≥ 0, implying that any (nonempty) cone
of Rn must contain the zero vector in Rn. Other authors follow Definition 1.8, and define pointed
cones as cones that contain the zero vector. We follow the latter approach, and stress out that cones
obtained via conic combinations will always be pointed.

Classical examples of cones include the empty set ∅, the whole space Rn, as well as any half-line
of the form {tx|t > 0} for some x ∈ Rn. Any linear subspace of Rn is also a cone.

Per the definition, a cone does not necessarily contain the origin and need not be convex. The
notion of convex cone must thus be defined in a separate fashion.

Definition 1.9 (Convex cone) A set K ⊆ Rn is called a convex cone if it is both a cone and a
convex set.

Example 1.1 The set {x ∈ R3 | x21 + x22 = x23} is a convex cone in R3.

Any cone is associated with two other cones as follows.

Definition 1.10 Let K be a cone in Rn. The dual cone of K, denoted by K∗, is given by

K∗ =
{
v ∈ Rn

∣∣vTx ≥ 0 ∀x ∈ K
}
.

The set K∗ is a closed convex cone.
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Definition 1.11 Let K be a cone in Rn. The polar cone of K, denoted by K◦, is given by

K◦ =
{
v ∈ Rn

∣∣vTx ≤ 0 ∀x ∈ K
}
.

The set K◦ is a closed convex cone.

An important result (due to the French mathematician Jean-Jacques Moreau) generalizes the
orthogonal decomposition in linear subspaces using convex cones.

Theorem 1.1 (Moreau decomposition) Let K be a closed convex cone in Rn. For any x ∈ Rn,
there exists u ∈ K v ∈ K◦ such that

x = u+ v and uTv = 0.

To end this section, we provide below counterpart definitions to that of convex (resp. affine)
combinations and convex (resp. affine) hull.

Definition 1.12 (Conic combination) Let x1, . . . ,xk be k vectors in Rn. A vector x ∈ Rn is a
conic combination of x1, . . . ,xk if there exist k nonnegative real values α1, . . . , αk such that

x =
k∑

i=1

αixi.

Conic combinations are more general that convex combinations, in that the coefficients of a conic
combination are not required to sum at 1.

Definition 1.13 (Conic hull) Let X ⊂ Rn be a nonempty set. The cone spanned by X , also known
as the conic hull of X and denoted by cone(X ), is the set of all conic combinations of points in X .

Remark 1.4 Unlike arbitrary cones, a conic hull always contains the origin (hence it is pointed), and
is a convex cone.

1.1.4 Examples of convex sets

In this section, we provide several key examples of convex sets, that will be used in the rest of the
lecture notes.

Proposition 1.4 Let x ∈ Rn and r > 0. The closed ball Br(x) as defined in Definition 0.15 is a
closed convex set.

The notion of ball (and its convex nature) can be generalized to that of ellipsoid.

Definition 1.14 (Ellipsoid) Let A ∈ Rn×n be a symmetric positive definite matrix and c ∈ Rn.
The set

E = {x ∈ Rn|(x− c)TA−1(x− c) ≤ 1}

is called an ellipsoid.

Proposition 1.5 Any ellipsoid in Rn is a compact convex set.



20 Maths. Data Science - 2023/2024

Definition 1.15 The second-order cone (also called Lorentz cone or ice-cream cone) associated with
the Euclidean norm in Rn is the subset of Rn+1 given by

{(x, t) | ∥x∥ ≤ t} .

The second-order cone is a convex cone in Rn+1.

To end this list of examples, we provide an example of cone in Sn, i.e. the set of symmetric
matrices in Rn×n.

Proposition 1.6 The set of symmetric positive semidefinite matrices

Sn
+ := {X ∈ Sn|X ⪰ 0},

and the set of symmetric positive definite matrices

Sn
++ := {X ∈ Sn|X ≻ 0}

are convex cones in Rn×n.

Hyperplanes and half-spaces We now relate convexity and linear (in)equalities, thanks to a few
additional definitions.

Definition 1.16 (Hyperplane) A set H ⊆ Rn is a hyperplane if it can be written as

H = {x ∈ Rn|aTx = b},

where a ∈ Rn is a nonzero vector and b ∈ R.

Theorem 1.2 (Separating hyperplane) Let X and Y by two distinct convex sets in Rn. There
exist a ̸= 0 and b ∈ R such that

aTx ≤ b ∀x ∈ X and aTx ≥ b ∀x ∈ Y.

The hyperplane {x|aTx = b} is called a separating hyperplane for X and Y.

Definition 1.17 (Vertically tangent hyperplane) Let X ⊆ Rn and x0 ∈ ∂X . A vertically tangent
hyperplane to X at x0 is a set {x|aTx = aTx0}, where a ∈ Rn is a nonzero vector such that
aTx ≤ aTx0 for any x ∈ X .

The next result will be used to formulate optimal conditions in the next chapter.

Theorem 1.3 For any nonempty convex set C ⊆ Rn and any x ∈ ∂C, there exists a vertically
tangent hyperplane to C at x0.

A hyperplane is an affine set (and even a linear subspace when b = 0) that “separates” Rn in
two parts, each associated with a half-space in the following sense.
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Definition 1.18 (Half-space) A set H ⊆ Rn is called a half-space if

H = {x ∈ Rn|aTx ≤ b},

where a ∈ Rn is a nonzero vector and b ∈ R.

Unlike hyperplanes, half-spaces are not affine sets. However, they satisfy another desirable prop-
erty in certain cases.

Proposition 1.7 A half-space of Rn of the form {x ∈ Rn|aTx ≤ 0} is a convex cone.

One can consider intersections of half-spaces, giving rise to the following definition.

Definition 1.19 (Polyhedral sets) A set P ⊆ Rn is called a polyhedron if

P = {x ∈ Rn|aT
i x ≤ bi pour i = 1, . . . ,m},

where m ≥ 1, {ai}mi=1 is a set of nonzero vectors in Rn and {bi}mi=1 is a set of real values.
When bi = 0 ∀i = 1, . . . ,m, the set P is a cone called a polyhedral cone.

The next result gives an example of polyhedral cone and justifies that linear subspaces have nice
structure, in that they can be characterized by linear inequalities.

Proposition 1.8 Every subspace is a polyhedral cone.

Another example of polyhedral set is given below.

Definition 1.20 (Simplex) Let x0, . . . ,xk be k + 1 vectors in Rn such that the vectors x1 −
x0, . . . ,xk − x0 are linearly independent (we say then that the xis are affinely indepedent). The
convex hull of {x0, . . . ,xk}, given by{

α0x0 + · · ·+ αkxk

∣∣∣∣∣
k∑

i=0

αi = 1, αi ≥ 0∀i = 0, . . . , k

}
,

is called a simplex in dimension k.

Simplices are used in particular to model discrete probability distributions.

1.2 Convex functions

1.2.1 Definitions and first properties

Definition 1.21 (Convex function) Let X ⊆ Rn be a convex set. A function f : X → R is called
a convex function if

∀x1,x2 ∈ X , ∀α ∈ [0, 1], f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2). (1.2.1)

We say that f is strictly convex if the inequality (1.2.1) is strict for any x1 ̸= x2 and α ∈ (0, 1).
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Figure 1.1: A convex function. Source: D. P. Robinson [4].

Figure 1.2: A concave function. Source: D. P. Robinson [4].

A function is convex whenever it lies “under” any line segment that connects two of its values
(see Figure 1.1. When it lies “above” any line segment, as in Figure 1.2, we obtain the companion
notion of concave function.

Definition 1.22 (Concave function) Let X ⊆ Rn. A function f : X → R is called concave (resp.
strictly concave) when its negative −f is a convex (resp. strictly convex).

The inequality (1.2.1) is a special case of a result of an inequality named after the Danish
mathematican Johan Jensen.

Theorem 1.4 (Jensen’s inequality) Let X ⊆ Rn be a convex set and f : Rn → R be a convex
function on X . Then, for any x1, . . . , xk in X and α1, . . . , αk in R+ such that

∑k
i=1 αi = 1, we

have:

f

(
k∑

i=1

αixi

)
≤

k∑
i=1

αif(xi).
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Proposition 1.9 Let C ⊆ Rn be a convex set. A function f : C → R that is both convex and concave
on C is called an affine function on C. It then exists a ∈ Rn and b ∈ R such that ∀x ∈ C, aTx+ b.

Remark 1.5 A function that is not convex need not be concave! For instance, x 7→ sin(x) is neither
convex nor concave on R.

Example 1.2 (Convex functions in one variable)

1. The function x 7→ xa is convex on R++ when a /∈ (0, 1) and concave when a ∈ [0, 1].

2. The function x 7→ − ln(x) (defined on R++) is convex on R++, and thus x 7→ ln(x) is concave
on R++.

3. The function x 7→ |x| is convex on R.

4. The negative entropy function x 7→ x ln(x) is convex on R++.

Example 1.3 (Convex functions in dimension n)

1. If f defines a norm on Rn, then it is a convex function since we automatically have f(αx) =
αf(x) and f(x+ y) ≤ f(x) + f(y) by properties of a norm.

2. A quadratic function of the form

x 7→ 1

2
xTAx+ bTx

where b ∈ Rn and A ∈ Sn
+ is postive semidefinite is a convex function.

3. The function x 7→ ln(ex1 + · · ·+ exn) is convex.

Remark 1.6 Note that if a function from Rn to R, then it is convex with respect to all of its
variables, i.e. for fixed i ∈ {1, . . . , n} and fixed x1, . . . , xi−1, xi+1, . . . , xn in R, the function xi 7→
f(x1, . . . , xi−1, xi, xi+1, . . . , xn) is convex. However, the converse is not true. For instance, the
function (x1, x2) 7→ x21 − 3x1x2 + x22 is convex in x1 and x2 but not jointly convex in both variables
(the function violates (1.2.1) by taking x = [1 1]T, y = [−1 − 1]T and α = 0.5).

Convexity is a property that is preserved through several operations, some of which are given
below. For simplicity, we present the results assuming that those functions are defined on Rn.

Proposition 1.10 1. Let f1, . . . , fm be m convex functions from Rn to R and α1, . . . , αm are
m nonnegative real values. Then the function

∑m
i=1 αifi is convex (i.e. a conic combination

of convex functions is convex).

2. Let f : Rn → R be convex and g : Rm → R defined by g(x) = f(Ax + b) with A ∈ Rn×m

and b ∈ Rn. If f is convex (resp. concave), then g is convex (resp. concave).

3. Let f1 and f2 be two convex functions from Rn to R. Then the function f : x → max{f1(x), f2(x)}
is convex. More generally, if f1, . . . , fm are m convex functions from Rn to R. The function
x → max{f1(x), . . . , fm(x)} is also convex.
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4. Let {fi}i∈I be a family of convex functions from Rn to R, then

f : x 7→ sup
i∈I

fi(x)

is a convex function.

5. Let f : Rn → R be a convex function and g : R → R be a nondecreasing, convex function.
Then the function h : Rn → R defined by h(x) = g(f(x)) is convex.

6. Let fi : Rn → R be m convex functions and g : Rm → R be a convex function nondecreasing
with respect to each of its variables. Then, the function h : Rn → R defined by h(x) =
g(f1(x), . . . , fm(x)) is convex.

1.2.2 Extended-value functions and convexity

Up to this point, we only considered real-valued functions, i.e. functions that always output a real
number. Nevertheless, the theory of convex functions has long been adapted to accommodate for
infinite values, and accounting for those values even allows for studying a broader class of problems.

Consider for instance a family of functions {fi}i∈I where I a given index set and fi : Rn → R
for any i ∈ I. The supremum function x 7→ supi∈I fi(x) can take the value ∞1. Allowing infinite
values enables us to analyze this supremum function.

We thus define as extended value functions as functions that can take any real value along with
−∞ and ∞. This new setup is however not compatible with Definition 1.21, since it introduces
an ambiguity when considering two vectors x1 and x2 such that f(x1) = ∞ and f(x2) = −∞.
For such functions, the concept of convexity must be redefined. To this end, we introduce several
notions below.

Definition 1.23 Let X ⊆ Rn and f : X → R, where we recall that R = R ∪ {−∞,∞}. Then, the
effective domain of f , denoted by dom(f), is the subset of X of all points at which f does not take
the value ∞, i.e.

dom(f) := {x ∈ X | f(x) < ∞} .

This definition allows in particular to define the infimum and supremum of an extended value
function. These concepts are instrumental in studying convex optimization problems.

Definition 1.24 (Infimum and supremum) Let X ⊆ Rn and f : X → R. The infimum of f with
respect to X , denoted by infx∈X f(x) or inf f(X ), is defined as

inf f(X ) :=


∞ if X = ∅,
infx∈X f(x) if X ̸= ∅ and f(X ) ⊂ R,
∞ if X ̸= ∅ and ∀x ∈ X , f(x) = ∞,
−∞ if ∃x ∈ X , f(x) = −∞.

(1.2.2)

The supremum of f with respect to X , denoted by supx∈X f(x) or sup f(X ), is defined as

sup f(X ) :=


−∞ if X = ∅,
supx∈X f(x) if X ̸= ∅ and f(X ) ⊂ R,
−∞ if X ̸= ∅ and ∀x ∈ X , f(x) = −∞,
∞ if ∃x ∈ X , f(x) = ∞.

(1.2.3)

1Unless there is a need to emphasize this, we will always write ∞ for +∞.
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Another key concept for studying extended value functions is that of epigraph.

Definition 1.25 (Epigraph) Let X ⊆ Rn and f : X → R. The epigraph of f epi(f) is the set of
all vectors in Rn+1 that lie “above” the graph of f :

epi(f) :=
{
(x, y) ∈ Rn+1

∣∣ x ∈ X and y ≥ f(x)
}
.

Using epigraphs, one can generalize convexity (and concavity) to extended value functions.

Definition 1.26 (Convex extended value function) Let X ⊆ Rn be a convex set. A function
f : X → R is called convex if its epigraph epi(f) is a convex set.

Definition 1.27 (Concave extended value function) Let X ⊆ Rn be a convex set. A function
f : X → R is called concave if its negative −f is a convex function on X .

Note that the notion of epigraph also allows for extending other results to extended value func-
tions, such as that of Proposition 1.10. It is also helpful in defining the notion of a closed extended
value function.

Definition 1.28 A function f : X ⊆ Rn → R is called closed if is epigraph is a closed set (in the
sense of Definition 0.16).

One can show that both closedness and convexity are preserved through conic combinations,
maximum, supremum, and composition by an affine function.

Indicator functions Thanks to Definition 1.26, we can determine whether a function is convex by
looking at its epigraph. Conversely, one can determine whether a set is convex by checking convexity
of an appropriate extended-value function. To this end, we introduce the notion of indicator function,
that has numerous applications in constrained optimization.

Definition 1.29 (Indicator function) Let X ⊆ Rn. The indicator function of X , denoted by
δX : Rn → (−∞,∞], is given by

∀x ∈ Rn, δX (x) :=

{
0 if x ∈ X
∞ otherwise.

As claimed above, we have a direct relationship between the convexity of a set and that of its
indicator function.

Theorem 1.5 A set X ⊆ Rn is convex if and only if its characteristic function is convex on X .

To end this section, we investigate continuity properties of convex, extended value functions, by
first restricting ourselves to a subclass of extended value functions.

Definition 1.30 (Proper function) Let X ⊆ Rn and f : X → R. The function f is called proper
(for the infimum) if f(x) > −∞ for all x ∈ Rn and there exists x̄ ∈ Rn such that f(x̄) < ∞.

The notion of proper function correspond to saying that f : X → R ∪ {∞} with dom(f) ̸= ∅.
This class of functions conveniently excludes functions that only take infinite values.
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Remark 1.7 Definition 1.21 applies with no ambiguity to proper convex functions.

The following result illustrates the interest of considering proper convex functions.

Theorem 1.6 i) Let f : Rn → R be a convex function. Then f is continuous.

ii) Let f : Rn → (−∞,∞] be a proper convex function. Then the restriction of f to its domain
dom(f) is continuous on its relative interior.

1.2.3 Caracterizing convexity through derivatives

In this section, we consider convex differentiable functions, and show that convexity can be charac-
terized through first- and second-order derivatives. Such results have numerous consequences on the
behavior of optimization algorithms applied to convex optimization problems.

Theorem 1.7 Let X ⊆ Rn be a convex set and f : Rn → R be differentiable on an open set
containing X . Then, f is a convex function on X if and only if

∀(x,y) ∈ X 2, f(y) ≥ f(x) +∇f(x)T(y − x). (1.2.4)

The function f is strictly convex on X if and only if the inequality (1.2.4) is strict when x ̸= y.

Proof. We only prove the result in the case of convex functions, as the proof readily adapts to
the strictly convex case.

Suppose first that f satisfies (1.2.4). Our goal is to prove that f is convex on X . Let thus x and
y be two points in X , and let α ∈ [0, 1]. Defining z = αx+ (1− α)y, we have z ∈ X by convexity
of X . Applying (1.2.4) to the pairs (z,x) and (z,y) gives

f(x) ≥ f(z) +∇f(z)T(x− z)

f(y) ≥ f(y) +∇f(z)T(y − z).

We multiply the first inequality by α, the second one by (1−α) and sum the two resulting inequalities.
We thus obtain

αf(x) + (1− α)f(y) ≥ f(z) +∇f(z)T(αx+ (1− α)y − z) = f(z) = f(αx+ (1− α)y),

where the equalities come from the definition of z. We have thus derived the very definition of
convexity (1.2.1), from which we conclude that f is convex.

Conversely, suppose that the function f is convex on X , and let (x,y) ∈ X 2. If x = y,
then (1.2.4) trivially holds. In the rest of the proof, we will therefore assume that x ̸= y. Let
g : (0, 1] → R be defined as

g(α) =
f(x+ α(y − x))− f(x)

α
.

Since f is differentiable at x, we have

lim
x+α(y−x)→x
x+α(y−x)̸=x

|f(x+ α(y − x))− f(x)−∇f(x)T(α(y − x))|
∥α(y − x)∥

= lim
x+α(y−x)→x
x+α(y−x)̸=x

|g(α)−∇f(x)T(y − x)|
∥y − x∥

= 0.
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Consequently, using y ̸= x implies that

lim
α�0

g(α) = ∇f(x)T(y − x).

Let us show now that g is nondecreasing. For any α1 and α2 such that 0 < α1 < α2 < 1, it holds
that

ᾱ =
α1

α2
∈ (0, 1) and z = x+ α2(y − x) ∈ X .

Applying Definition (1.2.1) at the point x+ ᾱ(z − x) ∈ X , we get

f(x+ ᾱ(z − x)) ≤ ᾱf(z) + (1− ᾱ)f(x)

f(x+ ᾱ(z − x))− f(x)

ᾱ
≤ f(z)− f(x)

f(x+ α1(y − x)− f(x)

α1
≤ f(x+ α2(y − x)− f(x)

α2
,

hence g(α1) ≤ g(α2). As a result, we have shown that

lim
α�

g(α) = ∇f(x)T(y − x) ≤ g(1) = f(y)− f(x),

which corresponds to (1.2.4). □

Remark 1.8 The property (1.2.4) is useful to show that a quadratic function based on a positive
semidefinite matrix is convex. Indeed, letting f : x 7→ 1

2x
TAx + bTx denote such a quadratic, we

have ∇f(x) = Ax+ b and thus, for any (x,y) ∈ (Rn)2, we obtain

f(y) =
1

2
yTAy + bTy

=
1

2
xTAx+ bTx+

1

2
(y + x)TA(y − x) + bT(y − x)

= f(x) +∇f(x)T(y − x) +
1

2
(y − x)TA(y − x)

≥ f(x) +∇f(x)T(y − x)

using that A ⪰ 0.

Although the next property is less important for the purpose of these notes, it provides a nice
characterization of convexity for twice differentiable functions.

Theorem 1.8 Let X ⊆ Rn be a convex set and f : Rn → R be twice differentiable on an open set
containing X . Then, the following properties hold:

1. If ∇2f(x) ⪰ 0 for any x ∈ X , then f is convex on X ;

2. If ∇2f(x) ≻ 0 for any x ∈ X , then f is strictly convex on X ;

3. If X is open and f is convex on X , then ∇2f(x) ⪰ 0 for any x ∈ X .
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Remark 1.9 Recall the function f : x 7→ ln(
∑n

i=1 e
xi) from Example 1.3. This function is twice

continuously differentiable on Rn, and for any x ∈ Rn, one has

∇2f(x) =
1(∑n

j=1 e
xj

)2


∑
i ̸=1 e

x1+xi −ex1+x2 · · · −ex1+xn

−ex1+x2
∑

i ̸=2 e
x2+xi

. . . −ex2+xn

...
. . .

. . .
...

−ex1+xn−1 · · ·
∑

i ̸=n−1 e
xn−1+xi −ex1+xn

−ex1+xn · · · −exn−1+xn
∑

i ̸=n e
xn+xi

 ,

and this matrix is positive semidefinite as diagonally dominant with non-negative diagonal entries
(for more on this notion, see Example 0.2).

Corollary 1.1 The results of Theorems 1.7 and 1.8 also apply to an extended value function f :
Rn → R when its domain dom(f) is a convex set, assuming appropriate differentiability properties
on this domain.

1.2.4 Strongly convex functions

For sake of generality, we introduce this concept (a special case of convexity) in the framework of
extended value functions.

Definition 1.31 (Strongly convex functions) Let X ⊆ Rn be a convex set and f : X → R be a
proper convex function. Let µ > 0. The function f is called µ-strongly convex (or strongly convex
with parameter µ) if

∀(x,y) ∈ X 2, ∀α ∈ [0, 1], f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− µ
α(1− α)

2
∥x− y∥2.

Remark 1.10 Any strongly convex function is strictly convex and convex, however the converse is
false. For instance, the function x 7→ x4 is convex on R but not strongly convex. Similarly, the
function x 7→ exp(−x) is strictly convex but not strongly convex.

As in the case of convex functions, one can characterize convexity using the derivatives of f when
they exist. We present those results in the context of real-valued functions.

Theorem 1.9 Let X ⊆ Rn be a convex set and f : Rn → R be differentiable on an open set
containing X . Then, f is µ-strongly convex on X if and only if

∀x,y ∈ X 2, f(y) ≥ f(x) +∇f(x)T(y − x) +
µ

2
∥y − x∥2 (1.2.5)

The function f is strictly convex on X if and only if the inequality (1.2.4) is strict when x ̸= y.

Theorem 1.10 Let X ⊆ Rn be a convex set and f : Rn → R be twice differentiable on an open set
containing X . Then, f is µ-strongly convex with µ > 0 if and only if

∀x ∈ X , ∇2f(x) ⪰ µIn.
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1.2.5 Level sets and quasiconvexity

The notion of level set arises naturally in the context of optimization problems, to be studied in the
next chapter.

Definition 1.32 (Level sets) Let f : Rn → R and α ∈ R. The α-sublevel set of f is defined as

Sα := {x ∈ dom(f) | f(x) ≤ α} ,

while the α-superlevel set is defined by

{x ∈ dom(f) | f(x) ≥ α} .

Sublevel sets are particularly relevant for studying convex functions, as shown by the result below.

Proposition 1.11 Let f : Rn → R be a convex function. For any α ∈ R, the sublevel set Sα is a
convex set.

Note that the result of Proposition 1.11 is not an equivalence. Indeed, the function x 7→ −ex is
strictly concave on R even though all its sublevel sets are convex. In fact, functions that satisfy this
property belong to a class of their own called quasi-convex functions.

Definition 1.33 (Quasiconvex functions) A function f : Rn → R is called quasiconvex on dom(f)
if for any α ∈ R, the sublevel set Sα is a convex set.

Similarly, we can define a quasiconcave function as the negative of a quasiconvex function, and
a quasilinear function as a function that is both quasiconvex and quasiconcave.

Example 1.4 • The logarithm x 7→ ln(x) is quasilinear on R++.

• The function x → inf{z ∈ Z|z ≥ x} is quasilinear on R.

• The function f : Rn → R defined by f(x) = max{1 ≤ i ≤ n | xi ̸= 0} and f(0) = 0 is
quasiconvex.

• The function f : R2
++ → R defined by f(x1, x2) = x1 x2 is quasi concave on R2

++ (but not
on R2).

Interestingly, the concept of quasiconvexity can be characterized in a similar way than Defini-
tion 1.21 for convexity.

Theorem 1.11 Let f : Rn → R. The function f is quasiconvex on dom(f) if and only if

∀(x,y) ∈ dom(f)2, ∀α ∈ [0, 1], f(αx+ (1− α)y) ≤ max{f(x), f(y)}. (1.2.6)

Finally, under differentiability assumptions on f , one can derive properties that are similar in
spirit to that of Theorems 1.7 and 1.8.

Theorem 1.12 Let f : Rn → R such that dom(f) is a convex set.

i) If f is differentiable on dom(f), then f is quasiconvex if and only if

∀(x,y) ∈ dom(f)2, f(y) ≤ f(x) ⇒ ∇f(x)T(y − x) ≤ 0. (1.2.7)

ii) If f is twice continuously differentiable and quasiconvex, then

∀(x,y) ∈ dom(f)2, yT∇f(x) = 0 ⇒ yT∇2f(x)y ≥ 0. (1.2.8)



Chapter 2

Convex optimization

In Chapter 1, we have explored convex sets and convex functions in detail. We will now leverage
these concepts to define convex optimization problems, which are commonly used to model data
science tasks. We begin by defining the key components of an optimization problem in Section 2.1,
together with several results for proving that a given problem has a solution. Of particular interest
of us is the case of convex optimization problems, that arises naturally through the notion of duality.
We explore that notion in detail in Section 2.2.

2.1 Definitions and examples

2.1.1 Optimization problem

An optimization problem is a mathematical model of taking the best decision out of a set of al-
ternatives. For this course, we will consider optimization problems under the following canonical
form:

minimizex∈Rn f(x)
s. t. gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , ℓ,
(2.1.1)

The mathematical object (2.1.1) represents a minimization problem, symbolized by the word mini-
mize. The goal is to determine the lowest possible value of an objective function f : Rn → R̄. To
this end, we act on the inputs of the function, gathered in a vector x ∈ Rn of decision variables1

In order to be acceptable, a vector of decision variables must satisfy a set of constraints (we say
that it is subject to the constraints), that we describe through m inequality constraints (of the form
gi(x) ≤ 0 with gi : Rn → R) and ℓ equality constraints (of the form hi(x) = 0 with hi : Rn → R).
We allow m = ℓ = 0, in which case there are no constraints on the problem. We then simply write
minimizex∈Rn f(x), and we say that this is an unconstrained problem. Otherwise, we say that it
is a constrained problem.

Remark 2.1 By introducing the vector-valued functions g : Rn → (R)m and h : Rn → (R)ℓ such

1In this course, we will only consider real-valued decision variables, which is the most common setting in a variety
of fields, including data science (where it corresponds to a parametric approach).

30
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that g(x) = [gi(x)] and h(x) = [hi(x)], the problem (2.1.1) can be rewritten:
minimizex∈Rn f(x)
subject to g(x) ≤ 0

h(x) = 0,
(2.1.2)

The domain of the optimization problem (2.1.1) is defined by

X := dom(f) ∩
m⋂
i=1

dom(gi) ∩
ℓ⋂

i=1

dom(hi).

Discarding points where any function value (objective or constraint function) is equal to +∞ makes
sense given that such points would not satisfy the constraints nor lead to the smallest objective value
in general.

The feasible set of the optimization problem (2.1.1) is defined by

F :=

{
x ∈

m⋂
i=1

dom(gi) ∩
ℓ⋂

i=1

dom(hi)

∣∣∣∣∣ g(x) ≤ 0, h(x) = 0

}
. (2.1.3)

Remark 2.2 When the objective function is constant, solving problem (2.1.1) amounts to finding
points in the feasible set. We then call this problem a feasibility problem. Finding a feasible point
(i.e. a point in the feasible set) can be as difficult as minimizing a function over that set, as we will
see later.

We define the optimal value of problem (2.1.1) as

f∗ := inf {f(x) | g(x) ≤ 0m, h(x) = 0ℓ} . (2.1.4)

Note that f∗ ∈ R.If the feasible set is empty, we set f∗ = ∞.

A vector x∗ ∈ Rn is called a solution2 of problem (2.1.1) if

x∗ ∈ F and f(x∗) = f∗,

where F and f∗ are defined in (2.1.3) and (2.1.4), respectively. The set of such optimal points is
denoted by

argmin
x∈D

{f(x) | g(x) ≤ 0, h(x) = 0} .

Note that this set can be empty even if the feasible set is not empty.

2.1.2 Reformulations

In the previous section, we presented problem (2.1.1) under a canonical form, where inequality
constraints are written as gi(x) ≤ 0 and equality constraints have a 0 right-hand side. It is always
possible to write a problem under this form, as illustrated by the following example.

2Other terms include optimal point, optimum or minimum.
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Example 2.1 (Bound constraints) Consider the following bound-constrained problem:

minimizex∈Rn f(x)
subject to li ≤ xi ≤ ui i = 1, . . . , n,

where li ≤ ui are (finite) bounds on the variable xi. The problem can be rewritten as

minimizex∈Rn f(x)
subject to g(x) ≤ 0,

where g : Rn → R2n is defined as

g(x) =



l1 − x1
...

ln − xn
x1 − u1

...
xn − un


.

This new problem has the same feasible set, optimal value and optimal solutions than the original
one.

There exist infinitely many ways to formulate the same optimization problem, typically by chang-
ing the functions describing the feasible set. In addition, an optimization problem can be connected to
other problems, even though they may have different feasible sets, optimal values, optimal solutions
or even different decision variables. To highlight this connection, we will say that two optimization
problems are equivalent when the solution of one is immediately obtained from that of the other,
and vice-versa.

With that definition, one can see that problem (2.1.1) is equivalent to

minimizex∈Rn α0 f(x)
subject to αi gi(x) ≤ 0, i = 1, . . . ,m

βi hi(x) = 0 i = 1, . . . , ℓ,

for any αi ∈ R++ ∀i = 0, . . . ,m and βi ̸= 0 ∀i = 1, . . . , ℓ. Indeed, the feasible sets, problem
domains and sets of optimal solutions coincide for both problems, although they do not have the
same objective and optimal value.

Remark 2.3 The previous observation can be extended further. The optimization problem (2.1.1)
is equivalent to any problem of the form

minimizex∈Rn ϕ0(f(x))
subject to ϕi(gi(x)) ≤ 0, i = 1, . . . ,m

ϕm+i(hi(x)) = 0 i = 1, . . . , ℓ,

where ϕ0 : R → R is monotone increasing, ϕi : R → R satisfies ϕi(t) ≤ 0 ⇔ t ≤ 0 for any
i = 1, . . . ,m and ϕi : R → R satisfies ϕi(t) = 0 ⇔ t = 0 for any i = m+ 1, . . . ,m+ ℓ.

In general, we say that an optimization problem admits a reformulation as an equivalent problem.
We review popular reformulation techniques below.
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Reformulations based on constraints One classical way to reformulate an optimization problem is
by modifying the description of its feasible set. A common transformation is based on the observation
that gi(x) ≤ 0 if and only if it exists si ≥ 0 such that gi(x) + si = 0. Using this observation, we
can reformulate the problem (2.1.1) as

minimizex∈Rn

s∈Rm
f(x)

subject to si ≥ 0, i = 1, . . . ,m
gi(x) + si = 0, i = 1, . . . ,m
hi(x) = 0 i = 1, . . . , ℓ,

(2.1.5)

The problem now features m additional variables si, that are called slack variables. Their use leads
to a problem in which constraints are either nonnegativity (bound) constraints or equalities. This
problem is equivalent to (2.1.1): if (x∗, s∗) is a solution of (2.1.5), then x∗ solves (2.1.5).

Similarly, one can transform an equality constraint hi(x) = 0 into two constraints hi(x) ≤ 0 and
−hi(x) ≤ 0, creating a reformulation of problem (2.1.1) with m+ 2ℓ inequality constraints.

Epigraph reformulation The epigraph formulation of problem (2.1.1) is given by
minimizex∈Rn

t∈R
t

subject to f(x)− t ≤ 0
gi(x) ≤ 0, i = 1, . . . ,m
hi(x) = 0 i = 1, . . . , ℓ.

(2.1.6)

The feasible set of (2.1.6) involves the epigraph of the function f introduced in Section 1.2. This
reformulation is equivalent to the original one, and can be viewed as bringing the objective function
into the constraints.

Indicator function Problem (2.1.1) is equivalent to the unconstrained optimization problem

minimize
x∈Rn

f(x) + δF (x),

where δF (·) is the indicator function of the feasible set (recall Definition 1.29). This reformulation
can be viewed as bringing the constraints into the objective. Extended value functions can often be
formulated as the sum of a real-valued function plus the indicator function of a given set in Rn.

Maximum and optimization problems The canonical form (2.1.9) is that of a minimization prob-
lem, in that we seek the smallest possible objective value. It is also possible to define a maximization
problem, written as

maximizex∈Rn f(x)
subject to g(x) ≤ 0m, i = 1, . . . ,m

h(x) = 0ℓ, i = 1, . . . , ℓ,
(2.1.7)

as a reformulation of
minimizex∈Rn −f(x)
subject to g(x) ≤ 0m, i = 1, . . . ,m

h(x) = 0ℓ, i = 1, . . . , ℓ,
(2.1.8)
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where −f denotes the opposite function to f . 3 Those problems have the same domain and feasible
set. We then define the optimal value of (2.1.7) as

g∗ = − inf
x∈Rn

{−f(x)|g(x) ≤ 0,h(x) = 0} ,

which we will write
g∗ = sup

x∈Rn
{f(x)|g(x) ≤ 0,h(x) = 0} .

Similarly, we define the set of optimal solutions of problem (2.1.7) as

argmax
x∈Rn

{f(x)|g(x) ≤ 0,h(x) = 0} := argmin
x∈Rn

{−f(x)|g(x) ≤ 0,h(x) = 0} .

2.1.3 Convex optimization problems

A convex optimization problem essentially consists in a convex feasible set on which the objective
function is convex. Mathematically, this means that there exists a reformulation of the problem as

minimizex∈Rn f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

aT
i x− bi = 0, i = 1, . . . , ℓ,

(2.1.9)

where f, g1, . . . , gm are convex (extended-value functions) and (ai, bi) ∈ Rn×R for any i = 1, . . . , ℓ.
Under these assumptions, the problem domain and the feasible set are convex sets.

The formulation (2.1.9) is called a standard form of a convex optimization problem4. Note that
convex problems are not necessarily written in standard form. For instance, the problem

minimizex∈R2 x21 + x22
subject to x1

1+x2
2
≤ 0

(x1 + x2)
2 = 0,

is not written in standard form. However, by looking at the feasible set, one observes that it is equal
{x|x1 ≤ 0, x1 + x2 = 0}. As a result, the problem admits the reformulation

minimizex∈R2 x21 + x22
subject to x1 ≤ 0

x1 + x2 = 0,

which is a convex optimization problem in standard form.
We will see numerous examples of convex problems in the rest of the course. To end this section,

we describe the most classical (and most studied) category of such problems.

Example 2.2 (Linear programming) A linear program, or linear optimization problem, can be put
in the form

minimizex∈Rn cTx
subject to Ax = b

x ≥ 0,
(2.1.10)

3One can of course define maximization problems independently of minimization problems. However, we adopt this
unified view for consistency.

4Standard forms can actually be formulated using upper inequalities gi(x) ≥ 0 and putting bis on the right-hand
side of the inequalities.
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where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. This formulation is called the standard form of a linear
program. Note that it matches the standard form of convex programs in the sense of (2.1.9)

Remark 2.4 By convention, a maximization problem of the form

maximizex∈Rn f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

aT
i x− bi = 0, i = 1, . . . , ℓ

(2.1.11)

where f is a concave function and g1, . . . , gm are convex functions is viewed as a convex optimization
problem, in the sense that it can be reformulated as

minimizex∈Rn −f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

aT
i x− bi = 0, i = 1, . . . , ℓ,

(2.1.12)

which is a convex optimization problem in standard form.

2.1.4 Existence of solutions

Optimization theory is concerned with proving that a given problem possesses a solution. In con-
tinuous optimization, one of the most classical results is the following theorem, attributed to the
German mathematician Karl Weierstrass (Weierstraß in German).

Theorem 2.1 (Weierstrass) Let f : Rn → R ∪ {∞} be continuous and C ⊂ Rn be a nonempty
compact set. Then, the problem

minimizex∈Rn f(x)
subject to x ∈ C

has at least one solution.

The previous theorem is restricted to compact feasible domains, which is restrictive as it excludes
(in particular) unconstrained problems. To establish existence results on unbounded domains, we
leverage the following concept.

Definition 2.1 (Coercive function) Let X ⊆ Rn be a unbounded, nonempty set. A function
f : X → R ∪ {∞} is called coercive if

lim
x∈X

∥x∥→∞

f(x) = ∞.

A classical example of a coercive function is x 7→ 1
2∥x∥

2 on any unbounded subset of Rn.
Coercive objective functions are amenable to minimization, as shown by the following result.

Theorem 2.2 Let f : Rn → R ∪ {∞} be a coercive, continuous function and let F ⊆ Rn be a
nonempty closed set. Then, the problem

minimizex∈Rn f(x)
subject to x ∈ F

has at least one solution.
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Finally, in the context of a convex problem, even stronger results can be provided.

Theorem 2.3 Let f : Rn → R ∪ {∞} be convex on a nonempty closed convex set C ⊆ Rn. Then,

(i) The solution set

argmin
x∈Rn

{f(x) | x ∈ C}

is either empty or convex.

(ii) If f is strictly convex on C, the problem has at most one solution.

(iii) If f is strongly convex on C, the problem has a unique solution.

Finally, if we further assume differentiability in addition to convexity, we can provide checkable
conditions for a point to be a solution of the problem, that involve the derivative of f and are called
optimality conditions.

Theorem 2.4 (First-order optimality conditions) Let C ⊆ Rn be a nonempty, convex set, and
f : Rn → R be convex and differentiable on an open set containing C. A point x∗ ∈ Rn is a solution
of the problem

minimizex∈Rn f(x)
subject to x ∈ C, (2.1.13)

if and only if

x∗ ∈ C and ∇f(x∗)T(z − x∗) ≥ 0 ∀z ∈ C. (2.1.14)

In practice, condition (2.1.14) is not necessarily straightforward to check, since it depends on the
structure of C. In certain cases, however, the condition can be simplified.

Corollary 2.1 (Special first-order conditions) Let the assumptions of Theorem 2.4 hold.

i) If C is a linear subspace of Rn, then condition (2.1.14) is equivalent to ∇f(x∗) ∈ C⊥, i.e.

x∗ ∈ C and ∀y ∈ C, ∇f(x∗)Ty = 0.

ii) If C is an affine set, then condition (2.1.14) is equivalent to

x∗ ∈ C and ∀y ∈ C, ∇f(x∗)T(y − x∗) = 0.

iii) If C is a convex cone containing 0, then condition (2.1.14) is equivalent to

x∗ ∈ C, ∇f(x∗)Tx∗ = 0 and ∀y ∈ C, ∇f(x∗)Ty ≥ 0.

In the next section, we will leverage the description of the feasible set based on inequalities and
equalities to derive more existence results and characterizations of solutions.
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2.2 Duality

Duality is a fundamental concept in constrained optimization. For any given problem (called “primal
problem”), one defines another problem (called “dual problem”) that provides information about
solving the original problem. In particular, it allows to state special optimality conditions called the
KKT conditions.

For the rest of this chapter, we will focus on a generic optimization problem of the form
minimizex∈Rn f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , ℓ,
(2.2.1)

where f : Rn → (−∞,∞], g = [gi] : Rn → (−∞,∞]m and h = [hi] : Rn → (−∞,∞]ℓ. We will
suppose that the problem X := dom(f) ∩

⋂m
i=1 dom(gi) ∩

⋂ℓ
i=1 dom(hi) is not empty, and we let

p∗ denote the optimal value problem, i.e.

p∗ = inf
x∈Rn

{f(x) | g(x) ≤ 0,h(x) = 0} .

Note that we do not assume convexity of the problem.

2.2.1 Lagrangian function and dual problem

In this course, we work with one of several notions of duality, namely Lagrangian duality. This theory
is based on the Lagrangian function, named after the French-Italian mathematician Joseph-Louis
Lagrange.

Definition 2.2 (Lagrangian function) The Lagrangian function (or Lagrangian in short) associ-
ated with problem (2.2.1) is the function
L : Rn × Rm × Rℓ → R defined by

L(x,λ,µ) := f(x) + λTg(x) + µTh(x) = f(x) +

m∑
i=1

λigi(x) +

ℓ∑
i=1

µihi(x). (2.2.2)

In that setting, the components of the vector x are called the primal variables, while that of the
vectors λ and µ are called the dual variables, or the Lagrange multipliers associated with inequality
and equality constraints, respectively.

Note that the Lagrangian is an extended value function, with domain X × Rm × Rℓ (recall that X
is the domain of problem (2.2.1)).

For any x ∈ X that is feasible for the primal problem (2.2.1), it is straightforward to see that

L(x,λ,µ) ≤ f(x)

for any λ ∈ (R+)
m and any µ ∈ Rℓ. This property shows that the Lagrangian function is an

underapproximation of the objective function under certain conditions. This is formalized in the
following definition.
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Definition 2.3 Consider problem (2.2.1) and define the set

Y :=
{
(λ,µ) ∈ Rm × Rℓ

∣∣∣ λi ≥ 0 ∀i = 1, . . . ,m
}
.

The primal function of the problem the function p : Rn → R defined by

p(x) :=

{
sup(λ,µ)∈Y L(x,λ,µ) if x ∈ X
∞ if x /∈ X .

(2.2.3)

Similarly, the dual function of the problem is the function d : Rm × Rℓ → R defined by

d(λ,µ) :=

{
infx∈X L(x,λ,µ) if (λ,µ) ∈ Y
−∞ if (λ,µ) /∈ Y.

(2.2.4)

Both the primal and the dual functions are extended value functions. As their name suggest, they
represent two dual views of the optimization problem of interest. We first describe the connection
between the primal function and the primal problem (2.2.1).

Proposition 2.1 The primal problem minimizex∈Rn p(x) is equivalent to the problem (2.2.1) when
the latter is feasible, i.e. when the feasible set is not empty.

The result of Proposition 2.1 justifies that problem (2.2.1) is often called the primal problem.
In general, the dual function has a more intricate expression than the primal function, and its

connection with the original problem is less immediate. To build towards such a connection, we begin
by an important property of the dual function.

Proposition 2.2 The dual function (2.2.4) is concave.

Recall that a function is concave if its negative is convex. As a result, we can define a convex
optimization problem involving the dual function.

Definition 2.4 The dual problem (or simply dual) of problem (2.2.1) is

maximize
(λ,µ)∈Rm×Rℓ

d(λ,µ) subject to λ ≥ 0. (2.2.5)

Since the constraint on λ can be rewritten as −λ ≤ 0, which is a convex constraint, and −d
is a convex function per Proposition 2.2, the problem (2.2.5) is a convex optimization problem. Its
domain is dom(−d). A point (λ,µ) ∈ dom(−d) is called dual feasible if λ ≥ 0. Finally, the optimal
value of problem (2.2.5) is given by

d∗ := sup
λ,µ

{d(λ,µ) | λ ≥ 0} = − inf
λ,µ

{−d(λ,µ) | λ ≥ 0} (2.2.6)

Example 2.3 (Dual linear program) Consider the linear program
minimizex∈Rn cTx
subject to xi ≥ 0, i = 1, . . . , n,

Ax = b,
(2.2.7)
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where A ∈ Rℓ×n and b ∈ Rℓ. The dual function of this problem is the function d : Rn ×Rℓ → R by

d(λ,µ) =

{
−bTµ if ATµ− λ+ c = 0
−∞ otherwise.

As a result, the dual problem can be reformulated as
maximize(λ,µ)∈Rn×Rℓ −bTµ

subject to ATµ− λ+ c = 0,
λ ≥ 0,

which is itself equivalent to 
minimizeµ∈Rℓ bTµ

subject to ATµ− λ+ c = 0,
λ ≥ 0.

We then see that the dual problem to a linear program has the same structure than the original
problem, in that it is also a linear program.

2.2.2 Weak duality and strong duality

The interest of deriving dual formulations lies in their link with the primal problem. The first key
property of dual problems, called weak duality, is described below.

Theorem 2.5 (Weak duality) Let p and d be the primal and dual functions associated with prob-
lem (2.2.1). Then,

∀x ∈ Rn, ∀(λ,µ) ∈ Rm × Rℓ, d(λ,µ) ≤ p(x). (2.2.8)

In particular,
∀x ∈ X , ∀(λ,µ) ∈ Y, d(λ,µ) ≤ f(x) ⇔ d∗ ≤ p∗. (2.2.9)

In general, the above weak duality result is the best one can obtain, in the sense that d∗ < p∗ in
general. This naturally leads to the following concept.

Definition 2.5 (Duality gap) The duality gap of problem (2.2.1) is given by the quantity p∗ − d∗.

We stay that strong duality holds for problem (2.2.5) when the duality gap is empty, i.e. when
p∗ = d∗.

As mentioned above, strong duality does not hold for most problems. However, for convex
optimization problems, strong duality typically holds under certain conditions called constraint qual-
ification. An example of such condition is given below.

Definition 2.6 (Slater’s condition) Consider a convex optimization problem in standard form:
minimizex∈Rn f(x)
subject to gi(x) ≤ 0 i = 1, . . . ,m

Ax = b,

where A ∈ Rℓ×n, b ∈ Rℓ, et f : Rn → R ∪ {∞} and g = [gi] : Rn → (−∞,∞]m are convex
functions. Let X be the problem domain. We say that Slater’s condition holds if it exists x ∈ ri(D)
such that

gi(x) < 0 ∀i = 1, . . . ,m and Ax = b.
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Slater’s condition typically holds for classical classes of convex problems (such as linear program-
ming as long as the problem is feasible). As expected, it is a sufficient condition for strong duality
to hold.

Theorem 2.6 Consider a convex optimization problem of the form (2.1.9) for which Slater’s condi-
tion holds. Then, strong duality holds.

Remark 2.5 With strong duality, one can “swap” the infimum and supremum in the expressions
of the primal and dual optimal value. It makes then sense to talk about a primal-dual solution
(x∗,λ∗,µ∗) such that

L(x∗,λ∗,µ∗) = inf
x∈Rn

sup
(λ,µ)∈Rm×Rℓ

λ≥0

L(x,λ,µ) = sup
(λ,µ)∈Rm×Rℓ

λ≥0

inf
x∈Rn

L(x,λ,µ).

As a result, x∗ ∈ X and (λ∗,µ∗) ∈ Y are solutions of the primal and dual problems, respectively, if

∀(x,λ,µ), L(x∗,λ,µ) ≤ L(x∗,λ∗,µ∗) ≤ L(x,λ∗,µ∗)

for any triplet (x,λ,µ). A primal-dual solution is in fact a saddle point of the Lagrangian (minimum
with respect to x and maximum with respect to λ and µ).

2.2.3 Karush-Kuhn-Tucker conditions

In this section, we show how duality theory can be combined with regularity properties of the problem
to derive optimality conditions. Those form an alternative to the conditions derived in Section 2.1.4.

We again consider problem (2.2.1), and recall that the Lagrangian for this problem is given by

L : (x,λ,µ) 7→ f(x) + λTg(x) + µTh(x) = f(x) +

m∑
i=1

λigi(x) +

ℓ∑
i=1

µihi(x).

We now make the following assumption on the objective and constraint functions.

Assumption 2.1 The functions f , {gi}mi=1,{hi}ℓi=1 appearing in problem (2.2.1) are differentiable
on an open set containing the problem domain.

Thanks to Assumption 2.1, one can compute the gradient of L with respect to x, λ and µ5. For
the primal variables, we obtain

∇xL(x,λ,µ) = ∇f(x) +
m∑
i=1

λi∇gi(x) +
ℓ∑

i=1

µi∇hi(x),

which is a linear combination of the objective gradient and the gradients for the constraint functions.
In addition, given that the Lagrangian function is linear in the dual variables λ and µ (which is
directly connected to the concave nature of the dual function), we also have{

∇λL(x,λ,µ) = g(x)
∇µL(x,λ,µ) = h(x).

5Note that these gradients correspond to partial gradients, in the sense of Remark 0.7.
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As explained in the previous section, a primal-dual solution maximizes the Lagrangian function in
the dual variables and minimizes the Lagrangian function with respect to the primal variables, hence
all gradients must be 0. To form optimality conditions, one must distinguish two situations for the
inequality constraints: if x∗ is a solution, then for any i = 1, . . . ,m, either gi(x

∗) = 0 or gi(x
∗) < 0.

When the latter property holds, this implies that the constraint does not matter for characterizing
the solution in the optimality conditions, and therefore the corresponding dual variable must be 0.
This crucial observation is at the heart of KKT conditions 6, that are stated in Theorem 2.7.

Theorem 2.7 Consider the problem (2.2.1) and its dual (2.2.5) under Assumption 2.1. Suppose
that strong duality holds. Then, for any primal-dual solution (x∗,λ∗,µ∗), we have

∇xL(x∗,λ∗,µ∗) = 0 (2.2.10a)

g(x∗) ≤ 0 (2.2.10b)

h(x∗) = 0 (2.2.10c)

λ ≥ 0 (2.2.10d)

λigi(x
∗) = 0 ∀i = 1, . . . , ℓ. (2.2.10e)

The system of equations (2.2.10) is called the (first-order) KKT conditions. A solution of these
equations is called a (first-order) KKT point.

Note that a vector x∗ of primal variables is sometimes called a KKT point, which then means that
there exist dual variables λ∗ and µ∗ such that (x∗,λ∗,µ∗) solves (2.2.10)

Remark 2.6 • The first KKT condition (2.2.10a) means that the gradient of the objective and
that of the constraints are linearly dependent when the dual variables are non all zeros.

• The last KKT condition (2.2.10e) is called the complementarity condition, and showcases
the difficulty of dealing with inequality constraints. Note that when gi(x

∗) < 0 for some
i = 1, . . . ,m, this condition implies that λ∗

i = 0.

The KKT conditions are necessary optimality conditions, that are not sufficient to characterize
solutions in general. However, in the convex setting, these conditions become necessary and sufficient.

Theorem 2.8 Consider problem (2.2.1) and its dual (2.2.5) under Assumption 2.1. Suppose that the
functions f and gi are convex, while the functions hi are linear, and suppose further that strong duality
holds. Then, a triplet (x∗,λ∗,µ∗) ∈ Rn × Rm × Rℓ is a primal-dual solution of the problem if and
only if it satisfies the KKT conditions (2.2.10), in which case we have p(x∗) = p∗ = d∗ = d(λ∗,µ∗).

Theorem 2.8 thus shows that the KKT conditions are both necessary and sufficient for optimality
in the convex setting.

6KKT stands for Karush-Kuhn-Tucker. Harold Kuhn (USA) and Albert Tucker (Canada) published these conditions
in 1951, but it was found out years later that William Karush (USA) had already obtained these conditions in his 1939
Master thesis!
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Constraint qualification and KKT conditions The results of both Theorem 2.7 and 2.8 are valid
under strong duality. As we saw before, strong duality holds when Slater’s condition is satisfied (for a
convex description of the feasible set), however there exists more conditions that validate the use of
KKT conditions. These assumptions are termed constraint qualifications, and we provide several
examples below.

The most classical case of constraint qualifications is the case of linear constraints.

Theorem 2.9 Suppose that all constraint functions in problem (2.2.1) are linear. Then, constraint
qualification and strong duality hold.

In particular, strong duality holds for linear programming.
When the constraint functions are differentiable, other conditions can be provided, that tie to

the first KKT condition (2.2.10a). We state the two most classical ones below.

Definition 2.7 (LICQ) Consider problem (2.2.1) under Assumption 2.1. Let x̄ ∈ Rn be a feasible
point for the problem, and consider the set A(x̄) = {i ∈ {1, . . . ,m} | gi(x̄) = 0}. We say that
Linear Independence Constraint Qualification (LICQ) holds at x̄ if the vectors

{∇gi(x̄)}i∈A(x̄)

⋃
{∇hi(x̄)}i=1,...,ℓ

are linearly independent.

Definition 2.8 (MFCQ) Consider problem (2.2.1) under Assumption 2.1. Let x̄ ∈ Rn be a feasible
point for the problem, and consider the set A(x̄) = {i ∈ {1, . . . ,m} | gi(x̄) = 0}. We say that
Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds at x̄ if

i) The vectors {∇hi(x̄)}i=1,...,ℓ are linearly independent, and

ii) There exists d ∈ Rn such that{
∇gi(x̄)

Td < 0 ∀i ∈ A(x̄),
∇hi(x̄)

Td = 0 ∀i = 1, . . . , ℓ.

The Mangasarian-Fromovitz condition7 implies the Linear Independence Constraint Qualification,
but the converse is not true, as shown by the following example.

Example 2.4 Consider the problem

minimizex∈R2 ∥x∥2
subject to x1 ≤ 0

x1 ≤ 0
x2 ≤ 0.

The feasible set does not satisfy LICQ at x∗ = 0, however it satisfies MFCQ at this point (consider

d =

[
−1
0

]
).

As a final comment for this chapter, we note that it is theoretically possible to compute the
primal-dual solution of an optimization problem by solving its KKT equations. However, the nature
of these equations is such that the solution cannot be found in closed form in general. In practice,
we thus resort to iterative algorithms to compute approximate solutions.

7Developed at Stanford by Olvi Mangasarian (born in Iraq) and Stan Fromovitz (born in Poland).



Chapter 3

Statistics and concentration inequalities

Probability theory and statistics are of primary importance in the context of data science. On one
hand, it is generally useful to think of the data at hand as originating from a certain distribution, in
order to infer future behavior of other samples emanating from the same distribution. On the other
hand, the use of randomized algorithms in data science has become standard, due in part to the
cheaper cost of these alternatives.

This chapter is concerned with deriving useful inequalities on random quantities, called concen-
tration inequalities. Those are particularly useful to analyze random data and algorithms, and will
be presented for random variables, vectors as well as matrices.

3.1 Basics of probability theory

The concept of probability originates from measure theory. All results in probability and statistics
implicitly rely on probability spaces, i.e. triplets (Ω,A,P), where

• Ω is a set of possible values, or outcomes;

• A is a family of subsets of Ω called set of events, that satisfy certain properties that make it
a σ-algebra;

• P : A → [0, 1] is a probability measure, that satisfies in particular P (∅) = 0 and P (Ω) = 1.

Given this definition, a random variable is a mapping from a probability space to another space that
induces a new probability measure on the latter. The term random variable is often used for scalar
quantities, thus we will make a distinction between several random quantities

• random variables y defined on a probability space (R,B(R),P) by

∀B ∈ B(R), P (y ∈ B) = P (B) ;

• random vectors y =

 y1
· · ·
yd

 of size d, defined on the probability space (Rd,B(Rd),P);

• random matrices Y = [Yij ] of size n× d, defined on the probability space (Rn×d,B(Rd),P).

In both cases, the set of events will be the Borel σ-algebra B(·).

43
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3.1.1 Random variables

Although a generic study of random variables can be performed by considering them as taking
a continuum of values, we begin by providing the more elementary definition of discrete random
variables.

Definition 3.1 (Discrete random variable) A discrete random variable y is defined by

• A discrete set of possible values Y = {yi} ⊂ R;

• An associated set of probabilities p = {pi} such that pi ≥ 0,
∑

i pi = 1 and

∀S ⊂ Y, P (y ∈ S) =
∑
yi∈S

pi.

Definition 3.2 (Continuous random variable) A continuous random variable y is defined by

• A continuous set of possible values Y ⊂ R;

• An associated probability density p : Y → R+ such that
∫
R p(y) dy = 1 and

∀S ⊂ Y, P (y ∈ S) =

∫
y∈S

p(y) dy.

For both continuous and discrete random variables, we will say that y follows a distribution char-
acterized by (p,Y), or simply p when the set of possible values is implicit from the definition of
p.

Example 3.1 A Gaussian/normally distributed random variable y of law N (µ, σ2) where µ ∈ R and
σ > 0 is defined by the density

p(y) =
1√
2πσ

exp(− 1

2σ2
y2) ∀y ∈ R.

3.1.2 Moments

To understand the behavior of random variables, one can look at the moments of their distribution
(provided they are well defined). The canonical example of such a quantity is the mean (also called
the expected value) of a random variable.

Definition 3.3 (Expected value/Mean) Let y be a random variable with a distribution (p,Y),
which we indicate as y ∼ p. The expected value of y is defined by

E [y] = Ey [y] =


∑

yi∈Y yi p(y = yi) (discrete case)∫
Y y p(y) dy (continuous case).

The expected value has several desirable properties that facilitate its use, especially the following.
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Proposition 3.1 The expected value is a linear operator: that is, for every random variable y and
every α, β ∈ R, one has:

E [α y + β] = αE [z] + β;

The expected value has several nice properties. In particular, for any convex function f , we have
E [f(y)] ≥ f(E [y]).

Definition 3.4 (Variance and standard deviation) Let y be a random variable.

• The variance of y is defined by

Var [y] = E
[
y2
]
− E [y]2 .

• The standard deviation of y is the square root of the variance.

Lemma 3.1

• If y is a discrete random variable, then Var [y] =
∑

i piy
2
i − [

∑
i piyi]

2;

• If y has zero mean, i.e. E [y] = 0, then Var [y] = E
[
y2
]
.

3.2 From random variables to random vectors and matrices

Statistics are not only based on multiple instances of random variables, that can be structured under
the form of vectors and/or matrices. In this section, we provide the tools necessary to understand
such quantities.

3.2.1 Pair of random variables

When two random variables possess the same distribution on the same probability space, we say that
those variables are identically distributed. In a general setting, one can study the distribution of
the pair formed by two random variables.

Definition 3.5 (Joint distribution (discrete case)) Let y and z be two discrete random variables
taking values in Y = {yi} and Z = {zj}, respectively. The distribution of the pair of random
variables (y, z) is defined by

• The set of possible values Y × Z = {(yi, zj)};

• The discrete probability density p = {pi,j}, where

pi,j = P (y = yi, z = zj) .

Definition 3.6 (Joint distribution (continuous case)) Let y and z be two continuous random
variables taking values in Y and Z. The distribution of the pair of random variables (y, z) is defined
by

• The set of possible values Y × Z;
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• The continuous probability density p : Y × Z → R+ such that∫
y

∫
z
p(y, z) dy dz = 1.

In the above definitions, we started from two random variables to obtain the joint distribution
of the pair formed by these variables. It is also possible to go the other way around, by defining
marginal laws.

Definition 3.7 (Marginal laws (discrete case)) Let y and z be two discrete random variables tak-
ing values in Y = {yi} and Z = {zj}, respectively. Let {pi,j} be the joint distribution of (y, z).

• The marginal law of y is given by {pi•}i, where

pi• := P (y = yi) =
∑

j|zj∈W

P (y = yi, z = zj) =
∑
j

pi,j .

• Similarly, the marginal law of w is given by {p•j}j , where

p•j := P (z = zj) =
∑

i|yi∈Y

P (y = yi, z = zj) =
∑
i

pi,j .

Definition 3.8 (Marginal laws (continuous case)) Let y and z be two continuous random vari-
ables taking values in Y and Z, respectively. Let p : (y, z) 7→ p(y, z) be the joint density of (y, z).

• The marginal law of y, denoted by py or p(y, •), is the function py : Y → R+ given by

∀y ∈ Y, py(y) =

∫
Z
p(y, z) dz.

• The marginal law of z, denoted by pz or p(•, z), is the function pz : Z → R+ given by

∀z ∈ Z, pz(z) =

∫
Y
p(y, z) dy.

Definition 3.9 (Covariance and correlation) Let y and z be two random variables. The covari-
ance of y and z is defined by

Cov [y, z] = Ey,z [(y − E [y]) (z − E [z])] .

The correlation of y and z is

Corr [y, z] =
Cov [y, z]√

Vary [y]
√
Varz [z]

.
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Independent random variables Independence is widely used in statistics, where it is often com-
bined with the notion of identically distributed variables: we then say that the random variables are
i.i.d., which stands for “independent, identically distributed”.

Definition 3.10 (Independent variables) Let y and z be two random variables with distributions
(py,Y) and (pz,Z), respectively. The variables y and z are called independent if the pair (y, z)
satisfies

∀S × T ⊂ Y × Z, P (y ∈ S, z ∈ T ) = P (y ∈ S)P (z ∈ T ) .

Independence allows for an easy characterization of the joint distribution, as illustrated by the fol-
lowing result.

Proposition 3.2 Let y and z be two independent random variables. Then, their joint distribution is
obtained as the product of the marginal distributions. We thus have{

pij = pi• × p•j (discrete case)
p(y, z) = py(y)× pz(z) (continuous case).

Proposition 3.3 Let y and z be two independent random variables. Then, these values are decor-
related, i. e. Cov [y, z] = Corr [y, z] = 0.

3.2.2 Random vectors

Most of the previous results on random variables can be extended to the case of random vectors,
i.e. multidimensional random quantities. We provide below the basic concepts.

Definition 3.11 (Law of a random vector) Let y = [yi]i be a random vector in Rn : the law (or
the distribution) of y is given by the joint distribution of its components. In particular, we define
the following moments of this distribution:

• the expected value of y is the vector of the expected values of each component:

E [y] = {E [yi]}i ∈ Rn;

where the expected value is taken with respect to y;

• the covariance matrix of y, denoted by Σy is the matrix of the covariances between each
component

∀1 ≤ i, j ≤ n, [Σy]i,j := E [(yi − E [yi])(yj − E [yj ])] .

Note that the covariance matrix can be written as

Σy = E
[
(y − E [y])(y − E [y])T

]
∈ Rn×n.

Lemma 3.2 If the components of a random vector are independent, then its covariance matrix is
diagonal.

Example 3.2 (Gaussian vectors) A vector y ∈ Rn is a Gaussian vector N (0,Σ) with Σ ∈ Sn
++ if

its density is given by

f(y) =
1√

(2π)n(detΣ)
exp

{
−1

2y
TΣ−1y

}
.

When the components of y are Gaussian i.i.d. variables N (0, σ2) with σ > 0, we further have

f(y) =
1√

(2πσ2)n
exp

{
− 1

2σ2

n∑
i=1

y2i

}
.
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About random matrices In these notes, we will mostly not require specific distributions of random
matrices, but will rather consider random matrices produced from random vectors or random vari-
ables. With that perspective, we note that the probability distribution of a matrix can be understood
either as the joint distribution of its entries or that of its columns/rows.

3.3 Scalar concentration inequalities

Concentration inequalities are used to show that random variables concentrate around a certain
interval of values.

3.3.1 Markov’s inequality

Markov’s inequality1 is the most classical concentration inequality for random variable with finite
expected value.

Theorem 3.1 (Markov’s inequality) Let y ∈ R be a random variable with E [|y|] < ∞. Then, for
any t > 0,

P (|y| ≥ t) ≤ E [|y|]
t

. (3.3.1)

In the literature, one can find several results termed Markov’s inequality. This includes the result
below.

Theorem 3.2 (Markov’s inequality (alternate form)) Let y ∈ R+ be a random variable with
E [y] < ∞. Then, for any t > 0,

P (y ≥ t) ≤ E [y]

t
. (3.3.2)

Although simple proofs of this result exist, we provide below a proof based on convex optimization,
that shows that (3.3.1) provides the best bound based on the expected value.

Proof. We seek the tightest possible inequality of the form

P (y ≥ t) ≤ x1 + x2 E [y] ,

where x1 ∈ R and x2 ∈ R. This can be modeled as the following optimization problem:
minimizex∈R2 x1 + x2 E [z]
s.t. f(z) = x1 + x2z ≥ 1 ∀z ≥ t

f(z) = x1 + x2z ≥ 0 ∀z ∈ [0, t).
(3.3.3)

Although the feasible set of this problem has infinitely many constraints, it admits the following
simple description: {

x ∈ R2
∣∣ x1 + tx2 ≥ 1, x1 ≥ 0, x2 ≥ 0

}
.

It can then be shown that problem (3.3.3) is convex, and that it has a unique solution given by
x∗1 = 0 and x∗2 =

1
t . Thus, the optimal inequality is

P (y ≥ t) ≤ x∗1 + x∗2 E [y] =
E [y]

t
.

1Also called Markov inequality.
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□
A related inequality, called Chebyshev’s inequality, provides a bound based on variance.

Theorem 3.3 (Chebyshev’s inequality) Let y be a real random variable with Var [y] < ∞. Then,
for any t > 0,

P (|y − E [y]| ≥ t) ≤ Var [y]

t2
. (3.3.4)

Proof. Since
P (|y − E [y]| ≥ t) = P

(
|y − E [y]|2 ≥ t2

)
,

it suffices to apply Markov’s inequality to the random variable |y − E [y] |2. This gives

P
(
|y − E [y]|2 ≥ t2

)
≤

E
[
|y − E [y] |2

]
t2

=
Var [y]

t2
,

where the last equality uses the definition of Var [y]. □

Corollary 3.1 Let y be a random variable such that E [y] < ∞ and Var [y] = σ2 ∈ R++. Then, for
any t > 0,

P (|y − µ| ≥ tσ) ≤ 1

t2
. (3.3.5)

Example 3.3 Let y1, . . . , ym be m random variables i.i.d. following a distribution with mean µ and
variance σ2 ∈ R++. Then, for any t > 0, we have

P

(∣∣∣∣∣ 1m
m∑
i=1

yi − µ

∣∣∣∣∣ ≥ t

)
≤ σ2

nt2
.

3.3.2 Hoeffding’s inequality

Hoeffding’s inequality applies to binary-valued variables.

Definition 3.12 (Bernoulli variables)

• A random variable y follows a Bernoulli distribution of parameter p ∈ [0, 1] if Y = {0, 1} and
P (y = 0) = 1− p, P (y = 1) = p.

• A random variable y follows a symmetric Bernoulli or Rademacher distribution if Y = {−1, 1}
and P (y = 1) = P (y = −1) = 1

2 .

Theorem 3.4 (Hoeffding’s inequality) Let y1, . . . , yN be i.i.d. Rademacher variables. Then, for
any t ≥ 0 and any a ∈ RN ,

P

(
N∑
i=1

aiyi ≥ t

)
≤ exp

(
− t2

2∥a∥2

)
. (3.3.6)

Since the right-hand side of (3.3.6) goes to zero exponentially fast as t → ∞, the result of

Theorem 3.4 guarantees that P
(∑N

i=1 aiyi ≥ t
)
≪ P

(∑N
i=1 aiyi < t

)
for sufficiently large t.
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Remark 3.1 The proof of Hoeffding’s inequality is based on Markov’s inequality applied to

P

(
exp

(
λ

N∑
i=1

aiyi

)
≥ exp (λt)

)
.

Similarly to the proof of Markov’s inequality, it also involves a convex optimization problem over λ.

Similarly to Markov’s inequality, a number of variants of Theorem 3.4 are also referred to as
Hoeffding’s inequality. We provide below two of these variants, the first one being a direct corollary
of Theorem 3.4.

Corollary 3.2 Let y1, . . . , yN be i.i.d. Rademacher variables. Then, for any t ≥ 0,

P

(
1

N

N∑
i=1

yi ≥ t

)
≤ exp

(
−N t2

2

)
. (3.3.7)

The right-hand side of (3.3.7) goes to zero when t → ∞, but also when N → ∞. In the limit,
this non-asymptotic result shows that 1

N

∑N
i=1 yi → 0, i. e. the empirical mean converges to the

mean of the yis.

The second variant on Hoeffding’s inequality shows that it applies to other distributions than
Bernoulli distributions.

Theorem 3.5 Let y1, . . . , yN be i.i.d. variables such that m ≤ yi ≤ M for i = 1, . . . , N . Then, for
any t ≥ 0,

P

(
N∑
i=1

(yi − E [yi]) ≥ t

)
≤ exp

(
− 2t2

N (M −m)2

)
. (3.3.8)

3.3.3 Sub-gaussian random variables

So far we have obtained inequalities for certain distributions.

Definition 3.13 A random variable is called a sub-gaussian random variable if there exists a con-
stant K > 0 such that

• E
[
exp

(
y2

K2

)]
≤ 2;

• It exists c > 0 such that for any t ≥ 0,

P (|y| ≥ t) ≤ 2 exp

(
−c

t2

K2

)
.

In that case, we say that y follows a sub-gaussian distribution.

The smallest positive constant K such that the two properties hold is denoted by ∥y∥Ψ2 , and
called the sub-gaussian norm of y.2

2This is actually a norm on the space of sub-gaussian distributions.
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Note that the two items in the definition are actually equivalent.

The family of sub-gaussian distributions include classical examples of probabilty distributions,
some of which are given below.

Example 3.4

• Any Gaussian variable y ∼ N (0, σ2) is sub-gaussian, and ∥y∥Ψ2 ≤ Cσ, where C is a bound
on the value of ∥ · ∥Ψ2 for a standard Gaussian variable.

• A Rademacher variable y is sub-gaussian with ∥y∥Ψ2 = 1√
ln(2)

.

• Any bounded random variable y is sub-gaussian with ∥y∥Ψ2 ≤ 1√
ln(2)

∥y∥∞, where ∥y∥∞ =

max{|y| | y ∈ Y}.

Lemma 3.3 If y is a sub-gaussian random variable and a ∈ R, then y + a is also a sub-gaussian
random variable.

The properties of sub-gaussian random variables allow for deriving yet other variants of Hoeffding’s
inequality.

Theorem 3.6 Let y1, . . . , yN be independent, sub-gaussian random variables with zero mean (E [y1] =
· · · = E [yN ] = 0). Then, for any t ≥ 0 and any a ∈ RN ,

P

(∣∣∣∣∣
N∑
i=1

aiyi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− c t2

∥a∥2
∑N

i=1 ∥yi∥2Ψ2

)
, (3.3.9)

where c > 0 is a universal positive constant, that does not depend on n nor t.

A more general version of this inequality applies to sub-gaussian variables with nonzero mean, by
applying Theorem 3.6 to the variables {yi − E [yi]}Ni=1.

3.3.4 Sub-exponential random variables

Sub-gaussian random variables cover many classical distributions, but not all. In particular, the
square of a sub-gaussian random variable is not sub-gaussian, yet we expect the square variable to
concentrate if the original variable does. This leads to the following concept.

Definition 3.14 A random variable is called a sub-exponential random variable if there exists a
constant K > 0 such that

• E
[
exp

(
|y|
K

)]
≤ 2;

• It exists c > 0 such that for any t ≥ 0,

P (|y| ≥ t) ≤ 2 exp

(
−c

t

K

)
.
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In that case, we say that y follows a sub-gaussian distribution.
The smallest positive constant K such that the two properties hold is denoted by ∥y∥Ψ1 , and

called the sub-exponential norm of y.3

As expected, the square of a sub-gaussian random variable is sub-exponential. The connection
between the two families is even stronger, as shown by the following result.

Proposition 3.4 A random variable y is sub-gaussian if and only if the random variable y2 is sub-
exponential.

We now give a concentration inequality for sub-exponential variables.

Theorem 3.7 (Bernstein’s inequality) Let y1, . . . , yN be independent, sub-exponential random
variables with zero mean (E [y1] = · · · = E [yN ] = 0). Then, for any t ≥ 0 and any a ∈ RN ,

P

(∣∣∣∣∣
N∑
i=1

aiyi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cmin

{
t2

∥a∥2max1≤i≤N ∥yi∥2Ψ1

,
t

∥a∥∞max1≤i≤N ∥yi∥Ψ1

})
,

(3.3.10)
where c > 0 is a universal positive constant, that does not depend on n nor t.

Similarly to Hoeffding’s inequality, there exist several variants of Bernstein’s inequality.

Corollary 3.3 Let y1, . . . , yN be independent, sub-exponential random variables with zero mean
(E [y1] = · · · = E [yN ] = 0). Then, for any t ≥ 0,

P

(∣∣∣∣∣ 1N
N∑
i=1

yi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cN min

{
t2

max1≤i≤N ∥yi∥2Ψ1

,
t

max1≤i≤N ∥yi∥Ψ1

})
, (3.3.11)

3This is actually a norm on the space of sub-exponential distributions.



Bibliography

[1] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, Cambridge,
United Kingdom, 2004.
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Appendix A

French mathematical terminology

We provide here a short dictionary for the key mathematical terms used in these notes (commonly
used in academia as well as industry). Note that we adopted the American wording and spelling
rather than the British ones.

Accumulation point/Limit point Valeur d’adhérence
Affine/Linear (depend on authors) Affine

Chain rule Dérivée d’une composition
Classifier Classificateur
Closure Adhérence
Coercive Croissante à l’infini/0-coercive

Convex conjugate (function) Fonction conjuguée
Convex/affine hull Enveloppe affine/convexe

Feasible Réalisable (pour un problème)/Admissible (pour un point)
Infimum/supremum Borne inférieure/supérieure

Inner product/Dot product Produit scalaire
Kernel space/Null space Noyau

Likelihood Vraisemblance
Linear subspace Sous-espace vectoriel

(L-)Lipschitz continuous function Fonction (L-)lipschitzienne
Map Application

Mean squared error Erreur quadratique moyenne
Nonnegative (parfois non-negative) Positif ou nul

Positive Strictement positif
Proper function Fonction propre

Quasiconvex/Quasiconcave Quasi-convexe/quasi-concave
Quasilinear Quasi-linéaire
Range space Image

Ridge regression Régularisation écrêtée (ℓ2)
Self-concordant Autoconcordant(e)

Sequence (subsequence) Suite (extraite)
Slack variables Variable d’écart

Sublevel/Superlevel set Section inférieure/supérieure.

Remark A.1 There exists another notion of fonction propre corresponding to the English eigen-

54
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function, which we will not use in this course.

Remark A.2 The terminology Section inférieure/supérieure follows Delfour [2]. Other authors some-
times use sous/sur-ensembles de niveau, i.e. a direct translation from the English terms.

Remark A.3 The term quasi-linéaire might appear as quasi-affine in the literature.s

Notations The log notation is sometimes used in American (and computer science more globally)
literature to denote the base ⌉ logarithm. In the French literature, the former is almost exclusively
used for base 10 logarithm.
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