Exercises on Chapter 1: Convexity

Mathematics of Data Science, M1 IDD

2025-2026

Convex sets

Exercise 1.1: Partial sum

Let \mathcal{C}_1 and \mathcal{C}_2 be two convex sets in \mathbb{R}^{m+n} . Show that the set

$$\mathcal{C} := \left\{egin{bmatrix} oldsymbol{x} \ oldsymbol{y}_1 + oldsymbol{y}_2 \end{bmatrix} oldsymbol{x} \in \mathbb{R}^m, oldsymbol{y}_1 \in \mathbb{R}^n, oldsymbol{y}_2 \in \mathbb{R}^n, egin{bmatrix} oldsymbol{x} \ oldsymbol{y}_1 \end{bmatrix} \in \mathcal{C}_1, \ egin{bmatrix} oldsymbol{x} \ oldsymbol{y}_2 \end{bmatrix} \in \mathcal{C}_2
ight\}$$

is also convex.

Exercise 1.2: Characterizing convexity

Show that a set $\mathcal{C} \subseteq \mathbb{R}^n$ is convex if and only if $(\alpha + \beta)\mathcal{C} = \alpha\mathcal{C} + \beta\mathcal{C}$ for any $\alpha \geq 0$ and $\beta \geq 0$.

Exercise 1.3: Normal cone

Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a arbitrary set (not necessarily convex) and let $x_0 \in \mathcal{X}$. The *normal cone* of \mathcal{X} at x_0 is defined by

$$\mathcal{N}_{\mathcal{X}}(\boldsymbol{x}_0) := \left\{ \boldsymbol{y} \in \mathbb{R}^n \mid \boldsymbol{y}^{\mathrm{T}}(\boldsymbol{x} - \boldsymbol{x}_0) \leq 0 \ \forall \boldsymbol{x} \in \mathcal{X} \right\}.$$

Show that $\mathcal{N}_{\mathcal{X}}(\boldsymbol{x}_0)$ is a convex cone.

Exercise 1.4: Convex and affine hulls

Show that the following properties hold for any set $\mathcal{X} \in \mathbb{R}^n$:

- a) $\operatorname{conv}(\mathcal{X}) \subseteq \operatorname{aff}(\mathcal{X});$
- b) $\operatorname{aff}(\mathcal{X}) = \operatorname{aff}(\operatorname{conv}(\mathcal{X})).$
- c) $\operatorname{aff}(\mathcal{X})$ is a closed set and $\operatorname{aff}(\mathcal{X}) = \operatorname{aff}(\operatorname{cl}(\mathcal{X}))$

Exercise 1.5: Retraction set

Let $C \in \mathbb{R}^n$ be a convex set and $r \geq 0$. The purpose of this exercise is to establish that the retraction set

$$\mathcal{C}_{-r} := \{oldsymbol{x} \in \mathbb{R}^n \mid \mathcal{B}_r(oldsymbol{x}) \subseteq \mathcal{C}\}$$

is convex.

- a) Given any $x, y \in C_{-r}$ and $t \in [0, 1]$, show that $tx + (1 t)y \in C$.
- b) Consider now $z \in \mathcal{B}_r(tx + (1-t)y)$, and write

$$z = w + tx + (1 - t)y.$$

Show that $w + x \in \mathcal{B}_r(x)$ and $w + y \in \mathcal{B}_r(y)$.

c) Show finally that $z \in \mathcal{C}$, and explain how it proves the desired result.

Convex functions

Exercise 1.6: Convexity and upper bounds

Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Suppose that there exists $M \in \mathbb{R}$ such that $f(x) \leq M$ for all $x \in \mathbb{R}^n$. Show then that the gradient of f is zero at every point, which implies that the function f is constant.

Hint: For any linear function g(x) = Ax + b, g is bounded if and only if A = 0.

Exercise 1.7: Convexity and extended values

Let $\mathcal{X} \subset \mathbb{R}^n$ be a convex set and $f: \mathcal{X} \to \overline{\mathbb{R}}$ be a convex function. Show that

- a) dom(f) is a convex set;
- b) the sublevel sets of f are convex sets.

Exercise 1.8: Inequalities and convexity

a) Let p > 1. We define the ℓ_p norm by

$$\forall \boldsymbol{x} \in \mathbb{R}^n, \quad \|\boldsymbol{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Show that the function $x\mapsto \|x\|_p^p$ is convex.

b) Using the convexity of $x \mapsto -\ln(x)$, show that

$$a^{\theta}b^{1-\theta} \le \theta a + (1-\theta)b$$

for any $a, b \ge 0$ and any $\theta \in [0, 1]$.

c) Let p>1 and q>1 be two values such that $\frac{1}{p}+\frac{1}{q}=1$. Use the previous question to construct n inequalities that can be combined to show the so-called Hölder inequality:

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in (\mathbb{R}^n)^2, \qquad \sum_{i=1}^n x_i y_i \leq \|\boldsymbol{x}\|_p \|\boldsymbol{y}\|_q.$$

Hint: Show that the result holds when $\sum_{i=1}^{n} x_i y_i$ is replaced by $\sum_{i=1}^{n} |x_i| |y_i|$, then conclude.

Exercise 1.9: Log-concave functions

A function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is called *log-concave* (short for logarithmically concave) if $f(x) \geq 0$ for all $x \in \text{dom}(f)$ and $x \mapsto \ln(f(x))$ is concave (where we let $\ln(f(x)) = -\infty$ when f(x) = 0). The concept of *log-convex* functions is defined in a similar way.

- a) Given $a \in \mathbb{R}$, show that the function $x \mapsto x^a$ is log-concave on \mathbb{R}_{++} when $a \geq 0$ and log-convex on \mathbb{R}_{++} when $a \leq 0$.
- b) We will now show that the determinant function is log-concave on \mathcal{S}^n_{++} . For any $X \in \mathcal{S}^n_{++}$, the determinant of X has the expression $\det(X) = \prod_{i=1}^n \lambda_i^X$, where $\lambda_1^X, \dots, \lambda_n^X$ are positive real numbers corresponding to the eigenvalues of X.
 - (i) Show that the set S_{++}^n is convex.
 - (ii) For any X, Y in \mathcal{S}^n_{++} , the matrix $Z=YX^{-1}$ belongs to \mathcal{S}^n_{++} . Using this property, show that

$$\ln(\det(\alpha \boldsymbol{X} + (1 - \alpha)\boldsymbol{Y})) = \sum_{i=1}^{n} \ln(\lambda_i^{\boldsymbol{X}}) + \sum_{i=1}^{n} \ln(\alpha + (1 - \alpha)\lambda_i^{\boldsymbol{Z}})$$
 (1)

for any $\alpha \in [0,1]$.

(iii) With the same notations than in the previous question, show that

$$\alpha \ln(\det(\boldsymbol{X})) + (1 - \alpha) \ln(\det(\boldsymbol{Y})) = \sum_{i=1}^{n} \ln(\lambda_i^{\boldsymbol{X}}) + (1 - \alpha) \sum_{i=1}^{n} \ln(\lambda_i^{\boldsymbol{Z}}).$$
 (2)

(iv) Conclude that $\ln \det$ is concave on \mathcal{S}_{++}^n .