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Convex sets

Exercise 1.1: Partial sum

Let C; and Cy be two convex sets in R™ 1", Show that the set

e={l,, 3.

is also convex.
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Exercise 1.2: Characterizing convexity

Show that a set C C R" is convex if and only if (o + 8)C = aC + 5C for any a > 0 and 5 > 0.

Exercise 1.3: Normal cone

Let X C R™ be a arbitrary set (not necessarily convex) and let &y € X. The normal cone of X at
x is defined by
Nx(mg) :={y e R" ‘ y(x — ) <0V € X}

Show that Ny () is a convex cone.

Exercise 1.4: Convex and affine hulls

Show that the following properties hold for any set X € R™:
a) conv(X) C aff(X);
b) aff(X) = aff(conv(X)).

c) aff(X) is a closed set and aff (X)) = aff(cl(X))
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Exercise 1.5: Retraction set

Let C € R™ be a convex set and r > 0. The purpose of this exercise is to establish that the retraction
set
C_r:={xeR"|B.(x) CC}

is convex.
a) Given any ¢,y € C_, and t € [0, 1], show that tx + (1 — t)y € C.

b) Consider now z € B,.(tx + (1 — t)y), and write
z=w+tex+ (1-1t)y.
Show that w4+ x € B.(x) and w + y € B, (y).

c) Show finally that z € C, and explain how it proves the desired result.

Convex functions

Exercise 1.6: Convexity and upper bounds

Let f : R™ — R be convex and differentiable. Suppose that there exists M € R such that f(x) < M
for all z € R™. Show then that the gradient of f is zero at every point, which implies that the function
f is constant.
Hint: For any linear function g(x) = Ax + b, g is bounded if and only if A = 0.

Exercise 1.7: Convexity and extended values
Let X C R" be a convex set and f : X — R be a convex function. Show that

a) dom(f) is a convex set;

b) the sublevel sets of f are convex sets.
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Exercise 1.8: Inequalities and convexity

a) Let p > 1. We define the £, norm by

n 1/1’7
Ve € R, |||, = (Z \xiw) .
i=1

Show that the function x s |||} is convex.
b) Using the convexity of x — — In(z), show that
a®b' =% < fa+ (1 -0)b
for any a,b > 0 and any 6 € [0, 1].
c) Let p> 1 and ¢ > 1 be two values such that % + é = 1. Use the previous question to construct
n inequalities that can be combined to show the so-called Holder inequality:
n
V(@,y) e R D i < lplyll,.
i=1

Hint: Show that the result holds when " | z;y; is replaced by > ;" | |xil|yi

, then conclude.

Exercise 1.9: Log-concave functions

A function f : R"™ — R is called log-concave (short for logarithmically concave) if f(x) > 0 for all
x € dom(f) and & — In(f(x)) is concave (where we let In(f(x)) = —oo when f(x) = 0). The
concept of log-convex functions is defined in a similar way.

a) Given a € R, show that the function = +— 2z is log-concave on Ry, when a > 0 and log-convex
on R; 4 when a <0.

b) We will now show that the determinant function is log-concave on S% . For any X € 87, the
determinant of X has the expression det(X) = [[i; A, where A\, ..., AX are positive real
numbers corresponding to the eigenvalues of X.

(i) Show that the set ST, is convex.
(ii) For any XY in 87, the matrix Z = Y X ! belongs to S, . Using this property, show
that
n n
In(det(aX + (1 - a)Y)) = > In(A5)+ Y In(a+ (1 - a)r?) (1)
i=1 i=1
for any v € [0, 1].
(iii) With the same notations than in the previous question, show that

n

aln(det(X)) + (1 - ) In(det(Y)) = > Im(\)+(1-a)d In(A?). (2)
i=1 =1

(iv) Conclude that Indet is concave on S7, .



