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Convex sets

Exercise 1.1: Partial sum

Let C1 and C2 be two convex sets in Rm+n. Show that the set

C :=

{[
x

y1 + y2

]∣∣∣∣x ∈ Rm,y1 ∈ Rn,y2 ∈ Rn,

[
x
y1

]
∈ C1,

[
x
y2

]
∈ C2

}
is also convex.

Exercise 1.2: Characterizing convexity

Show that a set C ⊆ Rn is convex if and only if (α+ β)C = αC + βC for any α ≥ 0 and β ≥ 0.

Exercise 1.3: Normal cone

Let X ⊆ Rn be a arbitrary set (not necessarily convex) and let x0 ∈ X . The normal cone of X at
x0 is defined by

NX (x0) :=
{
y ∈ Rn

∣∣ yT(x− x0) ≤ 0 ∀x ∈ X
}
.

Show that NX (x0) is a convex cone.

Exercise 1.4: Convex and affine hulls

Show that the following properties hold for any set X ∈ Rn:

a) conv(X ) ⊆ aff(X );

b) aff(X ) = aff(conv(X )).

c) aff(X ) is a closed set and aff(X ) = aff(cl(X ))
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Exercise 1.5: Retraction set

Let C ∈ Rn be a convex set and r ≥ 0. The purpose of this exercise is to establish that the retraction
set

C−r := {x ∈ Rn | Br(x) ⊆ C}

is convex.

a) Given any x,y ∈ C−r and t ∈ [0, 1], show that tx+ (1− t)y ∈ C.

b) Consider now z ∈ Br(tx+ (1− t)y), and write

z = w + tx+ (1− t)y.

Show that w + x ∈ Br(x) and w + y ∈ Br(y).

c) Show finally that z ∈ C, and explain how it proves the desired result.

Convex functions

Exercise 1.6: Convexity and upper bounds

Let f : Rn → R be convex and differentiable. Suppose that there exists M ∈ R such that f(x) ≤ M
for all x ∈ Rn. Show then that the gradient of f is zero at every point, which implies that the function
f is constant.
Hint: For any linear function g(x) = Ax+ b, g is bounded if and only if A = 0.

Exercise 1.7: Convexity and extended values

Let X ⊂ Rn be a convex set and f : X → R be a convex function. Show that

a) dom(f) is a convex set;

b) the sublevel sets of f are convex sets.
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Exercise 1.8: Inequalities and convexity

a) Let p > 1. We define the ℓp norm by

∀x ∈ Rn, ∥x∥p =

(
n∑

i=1

|xi|p
)1/p

.

Show that the function x 7→ ∥x∥pp is convex.

b) Using the convexity of x 7→ − ln(x), show that

aθb1−θ ≤ θa+ (1− θ)b

for any a, b ≥ 0 and any θ ∈ [0, 1].

c) Let p > 1 and q > 1 be two values such that 1
p + 1

q = 1. Use the previous question to construct
n inequalities that can be combined to show the so-called Hölder inequality:

∀(x,y) ∈ (Rn)2,
n∑

i=1

xiyi ≤ ∥x∥p∥y∥q.

Hint: Show that the result holds when
∑n

i=1 xiyi is replaced by
∑n

i=1 |xi||yi|, then conclude.

Exercise 1.9: Log-concave functions

A function f : Rn → R is called log-concave (short for logarithmically concave) if f(x) ≥ 0 for all
x ∈ dom(f) and x 7→ ln(f(x)) is concave (where we let ln(f(x)) = −∞ when f(x) = 0). The
concept of log-convex functions is defined in a similar way.

a) Given a ∈ R, show that the function x 7→ xa is log-concave on R++ when a ≥ 0 and log-convex
on R++ when a ≤ 0.

b) We will now show that the determinant function is log-concave on Sn
++. For any X ∈ Sn

++, the
determinant of X has the expression det(X) =

∏n
i=1 λ

X
i , where λX

1 , . . . , λX
n are positive real

numbers corresponding to the eigenvalues of X.

(i) Show that the set Sn
++ is convex.

(ii) For any X,Y in Sn
++, the matrix Z = Y X−1 belongs to Sn

++. Using this property, show
that

ln(det(αX + (1− α)Y )) =

n∑
i=1

ln(λX
i ) +

n∑
i=1

ln(α+ (1− α)λZ
i ) (1)

for any α ∈ [0, 1].

(iii) With the same notations than in the previous question, show that

α ln(det(X)) + (1− α) ln(det(Y )) =

n∑
i=1

ln(λX
i ) + (1− α)

n∑
i=1

ln(λZ
i ). (2)

(iv) Conclude that ln det is concave on Sn
++.


