
Exercises on Chapter 1: Convexity
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September-October 2024

Exercise 1.1: Partial sum

Let C1 and C2 be two convex sets in Rm+n. Show that the set

C :=

{[
x

y1 + y2

]∣∣∣∣x ∈ Rm,y1 ∈ Rn,y2 ∈ Rn,

[
x
y1

]
∈ C1,

[
x
y2

]
∈ C2

}
is also convex.

Exercise 1.2: Characterizing convexity

Show that a set C ⊆ Rn is convex if and only if (α+ β)C = αC + βC for any α ≥ 0 and β ≥ 0.

Exercise 1.3: Normal cone

Let X ⊆ Rn be a arbitrary set (not necessarily convex) and let x0 ∈ X . The normal cone of X at
x0 is defined by

NX (x0) :=
{
y ∈ Rn

∣∣ yT(x− x0) ≤ 0 ∀x ∈ X
}
.

Show that NX (x0) is a convex cone.
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Exercise 1.4: Retraction set

Let C ∈ Rn be a convex set and r ≥ 0. The purpose of this exercise is to establish that the retraction
set

C−r := {x ∈ Rn | Br(x) ⊆ C}

is convex.

a) Given any x,y ∈ C−r and t ∈ [0, 1], show that tx+ (1− t)y ∈ C.

b) Consider now z ∈ Br(tx+ (1− t)y), and write

z = w + tx+ (1− t)y.

Show that w + x ∈ Br(x) and w + y ∈ Br(y).

c) Show finally that z ∈ C, and explain how it proves the desired result.

Exercise 1.5: Convex and affine hulls

Show that the following properties hold for any set X ∈ Rn:

a) conv(X ) ⊆ aff(X );

b) aff(X ) = aff(conv(X )).

Exercise 1.6: Convexity and upper bounds

Let f : Rn → R be convex and differentiable. Suppose that there exists M ∈ R such that f(x) ≤ M
for all x ∈ Rn. Show then that the gradient of f is zero at every point, which implies that the function
f is constant.
Hint: For any linear function g(x) = Ax+ b, g is bounded if and only if A = 0.

Exercise 1.7: Convexity and extended values

Let X ⊂ Rn be a convex set and f : X → R be a convex function. Show that

a) dom(f) is a convex set;

b) the sublevel sets of f are convex sets.
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Exercise 1.8: Inequalities and convexity

a) Let p > 1. We define the ℓp norm by

∀x ∈ Rn, ∥x∥p =

(
n∑

i=1

|xi|p
)1/p

.

Show that the function x 7→ ∥x∥pp is convex.

b) Using the convexity of x 7→ − ln(x), show that

aθb1−θ ≤ θa+ (1− θ)b

for any a, b ≥ 0 and any θ ∈ [0, 1].

c) Let p > 1 and q > 1 be two values such that 1
p + 1

q = 1. Use the previous question to construct
n inequalities that can be combined to show the so-called Hölder inequality:

∀(x,y) ∈ (Rn)2,

n∑
i=1

xiyi ≤ ∥x∥p∥y∥q.

Hint: Show that the result holds when
∑n

i=1 xiyi is replaced by
∑n

i=1 |xi||yi|, then conclude.

Exercise 1.9: Log-concave functions

A function f : Rn → R is called log-concave (short for logarithmically concave) if f(x) ≥ 0 for all
x ∈ dom(f) and x 7→ ln(f(x)) is concave (where we let ln(f(x)) = −∞ when f(x) = 0). The
concept of log-convex functions is defined in a similar way.

a) Given a ∈ R, show that the function x 7→ xa is log-concave on R++ when a ≥ 0 and log-convex
on R++ when a ≤ 0.

b) We will now show that the determinant function is log-concave on Sn
++. For any X ∈ Sn

++, the
determinant of X has the expression det(X) =

∏n
i=1 λ

X
i , where λX

1 , . . . , λX
n are positive real

numbers corresponding to the eigenvalues of X.

(i) Show that the set Sn
++ is convex.

(ii) For any X,Y in Sn
++, the matrix Z = Y X−1 belongs to Sn

++. Using this property, show
that

ln(det(αX + (1− α)Y )) =
n∑

i=1

ln(λX
i ) +

n∑
i=1

ln(α+ (1− α)λZ
i ) (1)

for any α ∈ [0, 1].

(iii) With the same notations than in the previous question, show that

α ln(det(X)) + (1− α) ln(det(Y )) =

n∑
i=1

ln(λX
i ) + (1− α)

n∑
i=1

ln(λZ
i ). (2)

(iv) Conclude that ln det is concave on Sn
++.
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Solutions

Solution for Exercise 1.1: Partial sum

In order to show that C is a convex set, it suffices to show that any line segment formed by two points in C
lies in C.

Let (z, z̄) ∈ C2. By definition of these sets, there exist (x, x̄) ∈ (Rm)2 and (y1,y2, ȳ1, ȳ2) ∈
(Rn)4 such that

z =

[
x

y1 + y2

]
,

[
x
y1

]
∈ C1,

[
x
y2

]
∈ C2,

and

z̄ =

[
x̄

ȳ1 + ȳ2

]
,

[
x̄
ȳ1

]
∈ C1,

[
x̄
ȳ2

]
∈ C2.

Let now α ∈ [0, 1], and consider the vector z∗ = αz + (1− α)z̄. Then,

z∗ = αz + (1− α)z̄

= α

[
x

y1 + y2

]
+ (1− α)

[
x̄

ȳ1 + ȳ2

]
=

[
αx+ (1− α)x̄

αy1 + (1− α)ȳ1 + αy2 + (1− α)ȳ2

]
=

[
x∗

y∗
1 + y∗

2

]
,

where we define x∗ = αx+(1−α)x̄ ∈ Rm, y∗
1 = αy1+(1−α)ȳ1 ∈ Rn and y∗

2 = αy2+(1−α)ȳ2 ∈
Rn.

With these notations, we have that[
x∗

y∗
1

]
= α

[
x
y1

]
+ (1− α)

[
x̄
ȳ1

]
,

hence this vector belongs to C1 as a convex combination of two elements of C1.

Similarly, the vector

[
x∗

y∗
2

]
belongs to C2 as a convex combination of C2. Overall, we have shown

that

z∗ =

[
x∗

y∗
1 + y∗

2

]
, x∗ ∈ Rn, (y∗

1,y
∗
2) ∈ (Rm)2,

[
x∗

y∗
1

]
∈ C1,

[
x∗

y∗
2

]
∈ C2.

hence this vector belongs to C, showing that the set is convex.
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Solution for Exercice 1.2: Characterizing convexity

We first show ⇐, i.e. that a set C satisfying (α + β)C = αC + βC is convex. We then show the
other direction.

⇐ For any nonnegative values α and β, one has (α+ β)C = αC + βC. Thus, for any α ∈ [0, 1],
letting β = 1− α leads to

C = (α+ (1− α))C = αC + (1− α)C.

As a result, for any pair (x,y) ∈ C2,

αx︸︷︷︸
∈αC

+(1− α)y︸ ︷︷ ︸
∈(1−α)C

∈ C.

Since this property holds for any (x,y) ∈ C2 and any α ∈ [0, 1], we have shown that C is a convex
set.

⇒ When α = β = 0 (and independently of the convexity of C), we clearly have (α + β)C =
αC + βC. Suppose now that α and β are nonnegative real values with α+ β > 0 (i.e. one of these
values is nonzero). We will show that

C =
α

α+ β
C +

β

α+ β
C, (3)

which is equivalent to showing (α + β)C = αC + βC. To prove (3), we establish that each set
contains the other.

• C ⊆ α
α+βC + β

α+βC : Every x ∈ C admits the decomposition

x =
α

α+ β
x+

β

α+ β
x,

where α
α+βx ∈ α

α+βC and β
α+βx ∈ β

α+βC. Therefore, x ∈ α
α+βC + β

α+βC.

• α
α+βC + β

α+βC ⊆ C Let x ∈ α
α+βC + β

α+βC. Then x = xα + xβ, where xα ∈ α
α+βC and

xβ ∈ β
α+βC. Moreover, there exists y ∈ C such that xα = α

α+βy and z ∈ C such that

xβ = β
α+βz. Thus,

x =
α

α+ β
y +

β

α+ β
z,

showing that the vector x can be written as a convex combination of two elements of C. Since
C is a convex set, we conclude that x ∈ C.

Overall, we have shown that (α+β)C = αC+βC for any nonnegative real values α and β, which
proves the implication.
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Solution for Exercice 1.3: Normal cone

We begin by showing that the normal cone of X at x0 is a cone using the definition. We then show that this

set is convex by the standard technique (it includes every line segment passing through two of its points).

We first show that NX (x0) is a cone using the definition. Let y ∈ NX (x0) and t > 0. Since y
belongs to NX (x0), it satisfies

yT(x− x0) ≤ 0 ∀x ∈ X .

Since t > 0, we also have

(ty)T(x− x0) = t
(
yT(x− x0)

)
≤ 0 ∀x ∈ X .

As a result, ty ∈ NX (x0), showing that this set is a cone.
We now show that this cone is convex. To this end, let (y1,y2) ∈ NX (x0)

2 and α ∈ [0, 1]. For
any x ∈ X , we have

(αy1 + (1− α)y2)
T(x− x0) = αyT

1 (x− x0) + (1− α)yT
2 (x− x0)

≤ (1− α)yT
2 (x− x0)

≤ 0,

where we successively used the linearity of the inner product, the fact that α ≥ 0 and yT
1 (x−x0) ≤ 0,

and finally the fact that (1− α) ≥ 0 and yT
2 (x− x0) ≤ 0. Therefore, the vector αy1 + (1− α)y2

satisfies
(αy1 + (1− α)y2)

T(x− x0) ∀x ∈ X ,

hence it belongs to NX (x0). This proves the convexity of NX (x0).

Solution for Exercice 1.4: Retraction set

a) Since C−r ⊆ C, we have x ∈ C and y ∈ C. Using the convexity of C, we immediately conclude
that tx+ (1− t)y ∈ C.

b) By definition of w, we have

∥w∥ = ∥z − tx− (1− t)y∥ ≤ r,

where the inequality follows from z ∈ Br(tx+ (1− t)y). Moreover,

∥w + x− x∥ = ∥w∥ ≤ r and ∥w + y − y∥ = ∥w∥ ≤ r.

It results from these two inequalities that w + x ∈ Br(x) and w + y ∈ Br(y).

c) Recalling the result of the previous question, we have that w + x ∈ Br(x) ⊆ C and w + y ∈
Br(y) ⊆ C. By convexity of C, we have

t(w + x) + (1− t)(w + y) ∈ C.

Since t(w + x) + (1− t)(w + y) = w + tx+ (1− t)y = z, we have show that z ∈ C.
Overall, the previous questions have established that for any (x,y) ∈ C2

−r and any t ∈ [0, 1], we
have Br(tx+ (1− t)y) ⊆ C and thus tx+ (1− t)y ∈ C−r. We conclude that C−r is convex.
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Solution for Exercice 1.5: Convex and affine hulls

a) Any vector x ∈ conv(X ) can be written as a convex combination of elements of X . A convex
combination is a special case of an affine combination, hence x can be written as an affine
combination of elements in X and x ∈ aff(X ), from which we conclude that conv(X ) ⊆ aff(X ).

b) aff(X ) ⊆ aff(conv(X )) By definition of the convex hull, X ⊆ conv(X ), from which we directly

obtain aff(X ) ⊂ aff(conv(X )) (any affine combination of elements in X is also an affine combi-
nation of elements in conv(X )).

aff(conv(X )) ⊂ aff(X ) Any vector x ∈ aff(conv(X )) can be written as

x =
∑
i

αiyi,

where
∑

i αi = 1, αi ∈ R, and yi ∈ conv(X ) for any i (the index set need not be finite). Besides,
any yi ∈ conv(X ) can be written as

yi =
∑
j

βijzij ,

where
∑

j βij = 1, βij ≥ 0, and zij ∈ X for any j. Combining both decompositions, the vector
x can be decomposed as

x =
∑
i,j

αiβijzij ,

where ∑
i,j

αiβij =
∑
i

αi

∑
j

βij =
∑
i

αi = 1.

We have thus established that x can be written as an affine combination of elements in x, hence
x ∈ aff(X ), i.e. that aff(conv(X )) ⊆ aff(X ).
Combining both results gives

aff(conv(X )) = aff(X ).

Solution for Exercice 1.6: Convexity and upper bounds

The function f is differentiable and convex. We then now that (see Theorem 1.7 in the lecture
notes)

∀(x,y) ∈ (Rn)2, f(y) ≥ f(x) +∇f(x)T(y − x).

Since f is assumed to be bounded, there exists M ∈ R such that f(y) ≤ M for any y ∈ Rn.
Combining this property with the above inequality leads to

∀(x,y) ∈ (Rn)2, f(x) +∇f(x)T(y − x) ≤ M.

The left-hand side of this inequality is a linear function of y, that can only be bounded if it is
constant, i.e. if ∇f(x) = 0. We thus conclude that ∇f(x) = 0 for all x ∈ Rn, implying that the
function is constant.



8 Tuto 01 MDS - 2024/2025

Solution for Exercice 1.7: Convexity and extended value functions

a) Let x and y be two points in dom(f) ⊂ X , and let α ∈ [0, 1]. We aim at showing that the point
αx+(1−α)y belongs to dom(f). Since f is convex, we can use the inequality that characterizes
convexity for any pair of points in dom(f) (this inequality is not ambiguous).
Indeed, convexity for function f is defined as convexity of the epigraph

epi(f) = {(x, t) ∈ X × R | t ≥ f(x)} .

Consider two points x,y ∈ dom(f), and α ∈ [0, 1]. If both f(x) and f(y) are finite, then
(x, f(x)) and (y, f(y)) belong to epi(f). Since this set is convex, it follows that

α(x, f(x)) + (1− α)(y, f(y)) = (αx+ (1− α)y, αf(x) + (1− α)f(y)) ∈ epi(f).

By definition of epi(f), we obtain

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (4)

If one of the values (say f(x)) is equal to −∞ and the other is finite, then (y, f(y)) ∈ epi(f)
and (x, t) ∈ epi(f) for any t ∈ R. Thus,

∀t ∈ R, (αx+ (1− α)y, αt+ (1− α)f(y)) ∈ epi(f) ⇔ ∀u ∈ R, (αx+ (1− α)y, u) ∈ epi(f),

from which it follows that f(αx+ (1− α)y) = −∞, and thus (4) holds (with both sides being
equal to −∞).

Finally, if f(x) = f(y) = −∞, then for any t ∈ R, the points (x, t) and (y, t) both belong to
epi(f). since this set is convex, it follows that

∀α ∈ [0, 1], (αx+ (1− α)y, αt+ (1− α)t) = (αx+ (1− α)y, t) ∈ epi(f).

As a result, we necessarily have f(αx + (1 − α)y) = −∞, and thus (4) holds (with both sides
being equal to −∞).

one can show that (y, t) ∈ epi(f) and (x, u) ∈ epi(f) for all (t, u) ∈ R2, hence

∀v ∈ R, (αx+ (1− α)y, v) ∈ epi(f),

and therefore (4) also holds with both sides equal to −∞. Overall, when f(x) < ∞ and
f(y) < ∞, we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) < ∞.

As a result, we have f(αx+(1−α)y) < ∞, and thus αx+(1−α)y ∈ dom(f), from which we
conclude that dom(f) is a convex set.
Remark: Writing the inequality is technically correct, however students are encouraged to think
about why the result holds.

b) We proceed similarly to the previous question. Let α ∈ R, and consider two points x,y in Sα,
where we recall that

Sα = {x ∈ Rn | f(x) ≤ α} .
By definition of the sublevel sets, x and y belong to the domain of f . For any β ∈ [0, 1], convexity
of f implies that

f(βx+ (1− β)y) ≤ βf(x) + (1− β)y ≤ βα+ (1− β)α = α,

where the second inequality follows from the definition of a sublevel set. As a result, the point
βx+ (1− β)y belongs to Sα, proving that this set is indeed convex.
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Solution for Exercice 1.8: Inequalities and convexity

a) For any i = 1, . . . , n, the function xi 7→ |xi|p is convex as a composition of the absolute value
function (convex in R) with the pth power function, which is convex and nondecreasing on R++.
Consequently, the function x 7→ ∥x∥pp is a conic combination of convex functions, thus it is a
convex function.
N.B. An alternate proof uses the fact that the ℓp function is a norm for p > 1, and thus it is
convex. Composing with the pth power function then gives the desired result.

b) Using that x 7→ − lnx is convex on R++, we have

∀a, b ∈ R++, ∀θ ∈ [0, 1],− ln (θa+ (1− θ)b) ≤ −θ ln (a)− (1− θ) ln (b)

Using properties of the logarithm, we can rewrite this inequality as

∀a, b ∈ R++, ∀θ ∈ [0, 1], ln
(
aθb(1−θ)

)
≤ ln (θa+ (1− θ)b) .

Taking the exponential on both sides of the inequality (and noting that exponential is monoton-
ically increasing on R++, we obtain

∀a, b ∈ R++, ∀θ ∈ [0, 1], aθb(1−θ) ≤ θa+ (1− θ)b,

which is the desired result.

c) Let p > 1 and q > 1 such that 1
p +

1
q = 1, and let x,y ∈ Rn. For any i = 1, . . . , n, applying the

result from question b) to

a =

(
|xi|
∥x∥p

)p

, b =

(
|yi|
∥y∥q

)q

, θ =
1

p
= 1− 1

q

gives

aθb1−θ =
|xi|
∥x∥p

|yi|
∥y∥q

≤ θa+ (1− θ)b

=
1

p

(
|xi|
∥x∥p

)p

+
1

q

(
|yi|
∥y∥q

)q

.

Overall, we have

∀i = 1, . . . , n,
|xi|
∥x∥p

|yi|
∥y∥q

≤ 1

p

(
|xi|
∥x∥p

)p

+
1

q

(
|yi|
∥y∥q

)q

.

Summing these n inequalities then gives

n∑
i=1

|xi|
∥x∥p

|yi|
∥y∥q

≤
n∑

i=1

(
1

p

(
|xi|
∥x∥p

)p

+
1

q

(
|yi|
∥y∥q

)q)
1

∥x∥p∥y∥q

n∑
i=1

|xi||yi| ≤ 1

p

n∑
i=1

xpi
∥x∥pp

+
1

q

n∑
i=1

yqi
∥y∥qq

. (5)
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Now, by definition of the ℓp and ℓq norms, the right-hand side of (5) simplifies as follows:

1

p

n∑
i=1

xpi
∥x∥pp

+
1

q

n∑
i=1

yqi
∥y∥qq

=
1

p

∑n
i=1 x

p
i

∥x∥pp
+

1

q

∑n
i=1 y

q
i

∥y∥qq

=
1

p

∥x∥pp
∥x∥pp

+
1

q

∥y∥qq
∥y∥qq

=
1

p
+

1

q
= 1,

where we recall that the last equality is by definition of p and q. Plugging this result in (5) leads
to

1

∥x∥p∥y∥q

n∑
i=1

|xi||yi| ≤ 1 ⇔
n∑

i=1

|xi||yi| ≤ ∥x∥p∥y∥q.

It then suffices to observe that xiyi ≤ |xi||yi| for any i = 1, . . . , n to arrive at the desired
conclusion.

Solution for Exercice 1.9: Log-concave and log-convex functions

a) Let f : x → xa defined for a ∈ R. By convexity of the function x → − ln(x) on R++, we know
that

∀x, y ∈ R++,∀α ∈ [0, 1], − ln(αx+ (1− α)y) ≤ −α ln(x)− (1− α) ln(y).

Suppose first than a ≥ 0. Then, the previous inequality leads to

− ln(αx+ (1− α)y) ≤ −α ln(x)− (1− α) ln(y)

−a ln(αx+ (1− α)y) ≤ −aα ln(x)− a(1− α) ln(y)

− ln ((αx+ (1− α)y)a) ≤ −α ln(xa)− (1− α) ln(ya)

− ln(f(αx+ (1− α)y)) ≤ −α ln(f(x))− (1− α) ln(f(y)).

The last inequality shows that the function x :→ − ln(f(x)) is convex, hence x :→ ln(f(x)) is
concave and f is log-concave on R++.

Suppose now that a ≤ 0. Proceeding as in the case a ≥ 0, we obtain for any x, y ∈ R++ and
any α ∈ [0, 1] that

− ln(f(αx+ (1− α)y)) ≥ −α ln(f(x))− (1− α) ln(f(y)),

hence x 7→ ln(f(x)) is convex and f is log-convex on R++.

b) Determinant

(i) Let X,Y ∈ Sn
++ and α ∈ [0, 1]. Since X and Y are both elements of Sn

++, we know that

∀v ∈ Rn \ {0}, vTXv > 0 and vTY v > 0.

As a result,

∀v ∈ Rn \ {0},vT(αX + (1− α)Y )v = αvTXv + (1− α)vTY v

> min{vTXv,vTY v} > 0,

hence αX + (1− α)Y ∈ Sn
++, showing that this set is convex.
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(ii) Using properties of the inverse of a matrix as well as that of the logarithm function, we have

ln (det (αX + (1− α)Y )) = ln

det(X) det

αIn + (1− α)Y X−1︸ ︷︷ ︸
Z∈Sn

++


= ln(det(X)) + ln(det(αIn + (1− α)Z)).

The matrices X and αIn+(1−α)Z both belong to Sn
++, hence their determinant is equal

to the product of their eigenvalues, i.e. det(X) =
∏n

i=1 λ
X
i and

det (αIn + (1− α)Z) =
n∏

i=1

(
α+ (1− α)λZ

i

)
.

As a result,

ln (det (αX + (1− α)Y )) = ln(det(X)) + ln(det(αIn + (1− α)Z))

= ln

(
n∏

i=1

λX
i

)
+ ln

(
n∏

i=1

(α+ (1− α)λZ
i )

)

=
n∑

i=1

ln(λX
i ) +

n∑
i=1

ln
(
α+ (1− α)λZ

i

)
. (6)

(iii) We have

α ln (det(X)) + (1− α) ln (det(Y )) = α ln (det(X)) + (1− α) ln
(
det(Y X−1X)

)
= α ln (det(X)) + (1− α) ln

(
det(Y X−1) det(X)

)
= α ln (det(X)) + (1− α) ln

(
det(Y X−1)

)
+(1− α) ln (det(X))

= ln (det(X)) + (1− α) ln (det(Z))

=
n∑

i=1

ln(λX
i ) + (1− α)

n∑
i=1

ln
(
λZ
i

)
, (7)

where we successively used the properties of the determinant for product of positive definite
matrices, the properties of the logarithm function and finally the formula for the determinant.

(iv) Given two matrices X,Y ∈ Sn
++ and α ∈ [0, 1], our goal is to prove that

ln (det (αX + (1− α)Y )) ≥ α ln (det(X)) + (1− α) ln (det(Y )) . (8)

Thanks to the previous two questions, showing (8) is equivalent to showing that

n∑
i=1

ln(λX
i ) +

n∑
i=1

ln
(
α+ (1− α)λZ

i

)
≥

n∑
i=1

ln(λX
i ) + (1− α)

n∑
i=1

ln
(
λZ
i

)
, (9)

where Z = Y X−1. Using x → ln(x) on R++ yields

ln(α+ (1− α)λZ
i )) ≥ α ln(1) + (1− α) ln(λZ

i )) = (1− α) ln
(
λZ
i

)
. (10)
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Putting (6), (10) and (7) together leads to

ln (det(αX + (1− α)Y ) =
n∑

i=1

ln
(
λX
i

)
+

n∑
i=1

ln
(
α+ (1− α)λZ

i

)
≥

n∑
i=1

ln
(
λX
i

)
+ (1− α)

n∑
i=1

ln
(
λZ
i

)
= α ln (det(X)) + (1− α) ln (det(Y )) .

This final equality proves that the function det is indeed log-concave on Sn
++.


