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Exercise 2.1: Reformulations

a) Write the epigraph reformulation of the problem

minimize
x∈Rn

∥x∥∞,

where ∥x∥∞ = max1≤i≤n |xi|.
b) Using that ∥x∥∞ ≥ 0, reformulate the epigraph problem so that it consists of a

linear objective function and linear constraints.

c) More generally, consider the Chebyshev approximation problem

minimize
y∈Rm

∥Ay − b∥∞ where A ∈ Rn×m and b ∈ Rn. (1)

Find a reformulation of problem (1) as a linear program with the same optimal
value.

d) Consider now a function ϕ : Rm → Rn defined by ϕ(y) = [ϕi(y)]
n
i=1, where every

ϕi : Rm → R is a nonnegative convex function.

Using the result of the previous question, reformulate the problem

minimize
y∈Rm

∥ϕ(y)∥∞

as a convex optimization problem in standard form.
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Exercise 2.2: Nonlinear equality constraints

Consider the optimization problem{
minimizex∈Rn f(x) := 1

2∥x− a∥22
subject to

∑n−1
i=1 x2i = 0.

where a ∈ Rn.

a) Show that the feasible set of this problem is convex, and give a description of this
set that only involves convex inequalities and/or linear equalities.

b) Justify that the problem is convex.

c) Find the unique solution to this problem by hand.

d) Use the first-order optimality condition to compute the solution to this problem.
NB: The gradient of the objective is ∇f(x) = x− a.

Exercise 2.3: Existence and optimality

We consider the following optimization problem:
minimizex∈R3 f(x) := x21 + x22 + x23
subject to x1 + 2x2 − x3 = 4

x1 − x2 + x3 = −2.

a) Justify that the problem is convex, and give a standard form reformulation.

b) Show that there is a unique solution to the problem.
Hint: Use that f is strictly convex.

c) Using the first-order optimality condition, check that the point x∗ =
[
2
7 ,

10
7 ,−

6
7

]T
is the solution.

d) What happens to the solution set of this problem in absence of constraints (i.e. the
problem becomes minimizex∈R3 f(x)) ?

Exercise 2.4: Convex conjugate

Let f : Rn → R ∪ {∞}. The convex conjugate of f , denoted by f(·), is given by

∀y ∈ Rn, f(y) = sup
x∈dom(f)

(yTx− f(x)).

a) Using that the supremum of convex functions is always convex, justify that the
function f is convex.

b) Suppose that f is convex and differentiable on dom(f) = Rn. Using the result of
question a), show that for z ∈ Rn, we have

f(∇f(z)) = zT∇f(z)− f(z).

c) Give a closed-form expression for f when f is linear on Rn, i.e. f(x) = aTx + b
for some a ∈ Rn and b ∈ R;
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d) Show that if f(x) = 1
2∥x∥

2 = 1
2x

Tx for all x ∈ Rn, then f = f .

e) Consider the problem
minimizex∈Rn f(x)
subject to Ax = b.

where A ∈ Rℓ×n et b ∈ Rℓ. Show that the dual function of this problem, denoted
by d(µ), is given by

d(µ) = −bTµ− f(−ATµ).

Exercise 2.5: Weak duality

Consider the problem

minimizex∈R2 f(x)

subject to
x2
1

x2
≤ 0,

, where f(x) =

{
exp(−x1) if x2 > 0
∞ otherwise.

(2)

The domain of the problem is X = {(x1, x2)|x2 > 0}.

a) Justify that this problem is convex. What is its optimal value?

b) Write the dual problem of (2), give a formula for its solution λ∗ and its optimal
value d∗. What is then the duality gap?

Exercise 2.6: KKT and optimality conditions

Let f : x 7→ 2x21 + 4x22 − x1 − x2 be a function from R2 to R and let

C =
{
(x1, x2) ∈ R2 | x1 ≥ 0 et x2 ≥ 0

}
.

a) Justify that f is convex.

b) Justify that C is a convex cone and express then the first-order optimality condition
for the problem minimizex∈C f(x). Give then the solution of this problem.

c) Write the KKT conditions for this problem, and justify that they can be used to
compute a solution.
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Exercise 2.7: Trust-region subproblem (Bonus)

Let H ∈ Rn×n be a symmetric matrix, g ∈ Rn and δ > 0. We consider the so-called trust-region
subproblem defined by {

minimizex∈Rn q(x) := gTx+ xTHx
subject to xTx ≤ δ,

(3)

where dom(q) = Rn.

a) Find a diagonal matrix D ∈ Rn×n and a vector c ∈ Rn such that problem (3) is equivalent to{
minimizex∈Rn f(x) := cTx+ xTDx
subject to xTx ≤ 1,

(4)

where dom(f) = Rn.

b) Write the primal and dual problems corresponding to (4), and justify that the primal problem is
equivalent to (4).

c) Suppose now that D is not positive semidefinite, i.e. that there exists i ∈ {1, . . . , n} such that
[D]ii < 0. In that case, it can be shown that problem (4) is equivalent to{

minimizex∈Rn f(x)
subject to xTx = 1,

(5)

i) Justify that problem (5) has a solution.

ii) Show that for any λ > 0,

inf
x∈Rn

{
f(x)

∣∣xTx = 1
}

= −λ+ inf
x∈Rn

{
cTx+ xT(D + λI)x

∣∣xTx = 1
}
.

iii) For any λ ≥ max1≤i≤n |[D]ii|, show that strong duality holds for problem

minimizex∈Rn fλ(x) = cTx+ xT(D + λI)x− λ
s.t. xTx = 1.

(6)

How is strong duality expressed using the Lagrangian of problem (6)?

iv) Use the result from the previous question to conclude that strong duality holds between
problem (5) and its dual.
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Solutions

Solution for Exercise 2.1: Chebyshev approximation

Question a) By definition, the epigraph reformulation of the problem is

minimizex∈Rn

t∈R
t

subject to ∥x∥∞ ≤ t.

Question b) Using the definition of ∥x∥∞, we have that

∥x∥∞ ≤ t ⇔ max
1≤i≤n

|xi| ≤ t

⇔ |xi| ≤ t ∀i = 1, . . . , n

⇔ t ≥ 0 and − t ≤ xi ≤ t ∀i = 1, . . . , n

As a result, the problem can be equivalently reformulated as the linear program

minimizex∈Rn

t∈R
t

subject to −t− xi ≤ 0 ∀i = 1, . . . , n
−t+ xi ≤ 0 ∀i = 1, . . . , n
−t ≤ 0.

Question c) Let [aT
i ]

n
i=1 denote the rows of the matrix A, and let ϕi(y) = aT

i y − bi, where bi
is the corresponding coefficient of the vector b. Applying the same reasoning as in question b), we
obtain the following reformulation:

minimizey∈Rm

t∈R
t

subject to −t+ aT
i y − bi ≤ 0 ∀i = 1, . . . , n

−t− aT
i y + bi ≤ 0 ∀i = 1, . . . , n

−t ≤ 0.

This problem has a linear objective as well as linear constraints.
The solutions of the problem are that of the epigraph formulation of the original problem. As a

result, if (y∗, t∗) is a solution of the problem, then y∗ is a solution of the original problem, and we
must have t∗ = ∥Ay∗ − b∥∞, otherwise this point would not be an optimal solution.

Question d) NB: The problem is already in standard form, but we seek another formulation.
By using the epigraph form of the problem and applying the same reasoning as in question b), we
obtain the formulation

minimizey∈Rm

t∈R
t

subject to −t− ϕi(y) ≤ 0 ∀i = 1, . . . , n
−t+ ϕi(y) ≤ 0 ∀i = 1, . . . , n
−t ≤ 0.
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Since ϕi(y) ≥ 0 for any y, the constraint −t− ϕi(y) ≤ 0 is always satisfied for t ≥ 0. As a result,
the problem can be equivalently reformulated as

minimizey∈Rm

t∈R
t

subject to −t+ ϕi(y) ≤ 0 ∀i = 1, . . . , n
−t ≤ 0.

Since a sum of convex functions is convex, all functions of the form (y, t) 7→ −t+ ϕi(y) involved in
the inequality constraints are convex, hence the problem is a convex problem in standard form.

Solution for Exercise 2.2: Nonlinear equality constraints

Question a) Let F denote the feasible set. For any x ∈ F , we have x1 = x2 = · · · = xn−1, and
this property is preserved by convex combinations. As a result,

∀(x,y) ∈ (Rn)2,∀α ∈ [0, 1],
n−1∑
i=1

(αxi + (1− α)yi)
2 = 0,

hence αx + (1 − α)y ∈ F , proving that the set is convex. Our reasoning provides the following
description of F :

F = {x ∈ Rn | x1 = 0, . . . , xn−1 = 0} .

Question b) General justification: The objective function is a sum of quadratic functions of the
entries of x, that are all convex functions. As a result, the objective function is convex, hence the
problem is a convex optimization problem.

Detailed justification for the convexity of f : There are several ways to justify that the function
f is convex on Rn. One possibility is to express it as a sum of n functions of one variable, then to
use the fact that x 7→ 1

2(x − a)2 is a convex function. The proof of the latter observation follows
from that in the general case.

The general case is to show convexity of f : x 7→ 1
2∥x − a∥2 directly. For any (x,y) ∈ (Rn)2

and any α ∈ [0, 1], our goal is to show that

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ⇔ αf(x) + (1− α)f(y)− f(αx+ (1− α)y) ≥ 0.

Focusing on the latter expression, we have

αf(x) + (1− α)f(y)− f(αx+ (1− α)y) = 1
2

(
α∥x− a∥2 + (1− α)∥y − a∥2 − ∥(αx+ (1− α)y)− a∥2

)
= 1

2

(
α∥x− a∥2 + (1− α)∥y − a∥2 − ∥α(x− a) + (1− α)(y − a)∥2

)
.

Using then the identity ∥u+ v∥2 = ∥u∥2 + 2uTv + ∥v∥2 leads to

αf(x) + (1− α)f(y)− f(αx+ (1− α)y) = 1
2

(
α∥x− a∥2 + (1− α)∥y − a∥2 − α2∥x− a∥2

−2α(1− α)(x− a)T(y − a)− (1− α)2∥vy − a∥2
)

= 1
2

(
α(1− α)∥vx− a∥2 − 2α(1− α)(x− a)T(y − a)

+(1− α− (1− α)2)∥y − a∥2
)
.
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Noticing that 1−α− (1−α)2 = α(1−α), we can factorize α(1−α) in the last expression, and we
obtain

αf(x) + (1− α)f(y)− f(αx+ (1− α)y) = α(1−α)
2

(
∥x− a∥2 − (x− a)T(y − a) + ∥y − a∥2

)
= α(1−α)

2 ∥y − x∥2,

where we again used the identity (but with v = −v). Since the last value is always nonnegative, we
have established convexity (and even 1-strong convexity).

Note that f is differentiable on Rn with ∇f(x) = x − a, hence we can also use the first-order
characterization. For any (x,y) ∈ (Rn)2, we obtain that

f(y) = 1
2∥y − a∥2

= 1
2∥(x− a) + (y − x)∥2

= 1
2∥x− a∥2 + (x− a)T(y − x) + 1

2∥y − x∥2

≥ 1
2∥x− a∥2 + (x− a)T(y − x)

= f(x) +∇f(x)T(y − x),

showing the desired result.

Question c) For any x ∈ F , f(x) = 1
2(xn − an)

2 + 1
2

∑n
i=1 a

2
i . As a result, for any x ∈ F , we

have f(x) ≥ 1
2

∑n
i=1 a

2
i , and this value is only attained for x = [0 · · · 0 an]

T. As a result, we have

inf {f(x)|x ∈ F} =
1

2

n∑
i=1

a2i and argmin {f(x)|x ∈ F} = {[0 · · · 0 an]
T}.

Question d) Since the problem is convex and the objective is differentiable, we can characterize
solutions via the first-order optimality conditions. Since here the feasible set is a linear subspace, we
know that a point x̄ is a solution if and only if

x̄ ∈ F and ∇f(x̄)Tz = 0 ∀z ∈ F .

Thanks to the description of F , we know that any vector in F has its first n− 1 components equal
to 0. Thus, the conditions above translate to

x1 = 0
...
xn−1 = 0
[∇f(x̄)]n (zn − x̄n) = 0 ∀zn ∈ R.

Using ∇f(x̄) = x̄− a, the last condition becomes (x̄n − an)(zn − x̄n) = 0, which only holds for all
zn ∈ R if x̄n − an = 0. As a result, we obtain the system

x1 = 0
...
xn−1 = 0
xn − an = 0,

confirming the result of Question c).
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Solution for Exercise 2.3: Existence and optimality

Question a) The objective function is convex on R3 as the sum of three convex functions. More-
over, the feasible set is an affine set in R3, hence it is convex. As a result, the problem is a convex
optimization problem. Up to the right-hand sides of the linear equality constraints, it is already in
standard form.

Question b) The objective function is coercive since it is a quadratic function based on a positive
definite matrix (the identity). Moreover, the feasible set is not empty as it contains the vector
[0 − 2 0]T and it is closed because it is a linear subspace. As a result, we are guaranteed that there
exists at least one solution to the problem.

Since f is strictly convex and the feasible set is convex, the problem has at most one solution,
from which we conclude that the solution is unique.

Question c) Given that the feasible set of the problem is an affine set, we know that the solution
x∗ of the problem is the unique vector such that

x∗1 + 2x∗2 − x∗3 = 4
x∗1 − x∗2 + x∗3 = −2
∇f(x∗)T(y − x∗) = 0 ∀y ∈ F ,

where F denotes the feasible set. It is clear that the choice x∗ =
[
2
7 ,

10
7 ,−

6
7

]T
satisfies the first two

conditions. Using ∇f(x) = 2x, the latter condition can be written (after division by 2) as

x∗1(y1 − x∗1) + x∗2(y2 − x∗2) + x∗3(y3 − x∗3) = 0 ⇔ 14y1 + 70y2 − 42y3 = 140.

Since y is feasible, it satisfies the two constraints

y1 + 2y2 − y3 = 4
y1 − y2 + y3 = −2

⇔ y3 = −3y1
y2 = 2− 2y1,

implying that

14y1 + 70y2 − 42y3 = 14y1 + 140− 140y1 + 126y1 = 140,

as desired. This shows that x∗ is the solution to the problem.

Question d) In absence of constraints, the problem still has a unique solution, which is immediately
found to be the zero vector.

Solution for Exercise 2.4: Convex conjugate

Question a) For any x ∈ dom(f), the function y 7→ yTx − f(x) is a linear function of y hence
it is a convex function of y. Since the supremum of convex functions is convex, this shows that f is
convex. N.B. The proof of convexity of supi∈I fi with fi convex follows from the definition of the
supremum.
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Question b) Computing f(∇f(z)) = supx∈Rn

{
∇f(z)Tx− f(x)

}
amounts to computing the

optimal value for the problem
maximize

x∈Rn
∇f(z)Tx− f(x),

which is the opposite of that of

minimize
x∈Rn

ϕ(x) = f(x)−∇f(z)Tx.

This problem is convex and differentiable. As a result, we know that the solutions to this problem
are characterized by the equation

∇ϕ(x) = ∇f(x)−∇f(z) = 0.

The point x = z is a solution of this equation, hence it gives the optimal value for the problem. As
a result,

inf
x∈Rn

ϕ(x) = f(z)−∇f(z)Tz,

and thus

f(∇f(z)) = sup
x∈Rn

{
∇f(z)Tx− f(x)

}
= − inf

x∈Rn
ϕ(x) = ∇f(z)Tz − f(z).

Question c) If f(x) = aTx − b, then f(y) = supx∈Rn yTx − aTx − b, hence f is defined as
the supremum of linear functions. Given that a linear function is only bounded when it is constant
(recall Exercise 1.6), we have f(a) = −b and f(y) = ∞ for any y ̸= a.

Question d) For any x,y ∈ (Rn)2, we have

yTx− f(x) = yTx− 1

2
∥x∥2 ≤ ∥y∥∥x∥ − 1

2
∥x∥2

by Cauchy-Schwarz inequality. The function t 7→ ∥y∥t− t2

2 is maximized at t = ∥y∥, hence

yTx− f(x) ≤ 1

2
∥y∥2 ⇒ f(y) ≤ 1

2
∥y∥2.

It suffices then to notice that the first inequality is an equality for x = y to obtain

1

2
∥y∥2 = yTy − f(y) ≤ sup

x∈Rn

{
yTx− f(x)

}
= f(y) ≤ 1

2
∥y∥2,

hence the result.

Question e) By definition of the dual function, we have for any µ ∈ Rℓ :

d(µ) = inf
x∈Rn

(
f(x) + µT(Ax− b)

)
= −bTµ+ inf

x∈Rn

([
ATµ

]T
x+ f(x)

)
= −bTµ− sup

x∈Rn

([
−ATµ

]T
x− f(x)

)
= −bTµ− f(−ATµ).
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Solution for Exercise 2.5: Weak duality

Question a) The function f is convex (it satisfies the function inequality for every pair of points in
the domain) on the feasible set of the problem {(0, x2) | x2 > 0}. The feasible set is a convex set,
hence the problem is convex. Given that the objective function is constant on the problem domain,
we have p∗ = f(0) = 1.

Question b) The Lagrangian of the problem is given by

L(x, λ) = exp(−x1) + λ
x2
1

x2

where λ ∈ R. As a result, the dual function of the problem is defined for every λ ∈ R as

d(λ) = inf
x∈X

{
exp(−x1) + λ

x2
1

x2

}
.

When λ < 0, we have d(λ) = −∞ (taking x2 to be constant and taking x1 to +∞). When λ = 0,
we obtain d(0) = infx∈X exp(−x1) = 0. Finally, when λ > 0, we get

inf
x1∈R,x2>0

exp(−x1) + λ
x2
1

x2
= inf

x1∈R
inf
x2>0

exp(−x1) + λ
x2
1

x2
= inf

x1∈R
exp(−x1) = 0

hence d(λ) = 0 in that case as well. Overall, we obtain that

d(λ) =

{
−∞ if λ < 0
0 if λ ≥ 0,

hence d∗ = supλ≥0 d(λ) = 0. As a result, the duality gap is p∗ − d∗ = 1, and strong duality does
not hold.

Solution for Exercise 2.6: KKT and optimality conditions

Question a) The function f is a quadratic defined by the positive definite matrix A =

[
4 0
0 8

]
,

hence it is convex (even strictly convex). Another possibility to prove convexity relies on computing
the gradient

∀x ∈ R2,∇f(x) =

[
4x1 − 1
8x2 − 1

]
.

and checking the characterization of convexity for differentiable functions.

Question b) The set C is a cone since tx ≥ 0 for any x ∈ C and t > 0, and it is also convex since
αx+ (1− α)y ≥ 0 for any (x,y) ∈ C2 and α ∈ [0, 1]. As a result, a solution x∗ = (x∗1, x

∗
2) of the

problem satisfies x∗1 ≥ 0, x∗2 ≥ 0 as well as

∇f(x∗)Tx∗ = 0 and ∀y ∈ C,∇f(x∗)Ty ≥ 0.

Putting all conditions together, we obtain
x∗1 ≥ 0
x∗2 ≥ 0
(4x∗1 − 1)x∗1 + (8x∗2 − 1)x∗2 = 0
∀y1 ≥ 0,∀y2 ≥ 0, (4x∗1 − 1)y1 + (8x∗2 − 1)y2 ≥ 0.
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Letting y1 = 0 and y2 = 0 in the last condition gives 4x∗1 − 1 ≥ 0 and 8x∗2 − 1 ≥ 0. Combining with
the previous two, we obtain

(4x∗1 − 1)x∗1 = (8x∗2 − 1)x∗2 = 0.

If x∗1 = 0, then 4x∗1 − 1 < 0, contradicting what we had before. Similarly, x∗2 = 0 leads to the
contradiction 8x∗2 − 1 < 0. Overall, we must have

4x∗1 − 1 = 8x∗2 − 1 = 0,

hence x∗1 =
1
4 and x∗2 =

1
8 .

Question c) Since the constraints defining C are linear, constraint qualification and strong duality
hold for this problem. A solution of the problem is then also a solution of the KKT equations

4x∗1 − 1− λ∗
1 = 0

8x∗2 − 1− λ∗
2 = 0

x∗1 ≥ 0
x∗2 ≥ 0
λ∗
1 ≥ 0

λ∗
2 ≥ 0

λ∗
1x

∗
1 = 0

λ∗
2x

∗
2 = 0,

where λ∗ = [λ∗
1 λ∗

2]
T is a vector of dual variables, and the first two conditions correspond to the

gradient of the Lagrangian function

∇xL(x,λ) = ∇f(x)− λ.

Solving this system leads to x∗1 = 1
4 , x

∗
2 = 1

8 en λ∗
1 = λ∗

2 = 0, recovering the solution computed in
question b).
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Solution for Exercise 2.7: Trust-region subproblem

Question a) The matrix H is a symmetric real matrix, hence there exist an orthogonal matrix
Q ∈ Rn×n (i.e. such that QT = Q−1) and a diagonal matrix Λ ∈ Rn×n such that

H = QΛQT,

where the diagonal elements of D correspond to the eigenvalues of H. The objective function of
problem (3) can thus be written as

q(x) = gTx+
1

2
xTQTDQx.

Since Q is orthogonal, for any x ∈ Rn, there is a unique y such that y = Qx. Using yTy =
xTQTQx = xTx, it follows that the problem{

minimizex∈Rn q(x) := gTx+ xTHx
s.t. xTx ≤ δ.

can equivalently be reformulated as{
minimizey∈Rn gTQTy + yTDy
s.t. yTy ≤ δ.

.

Letting z = x√
δ
, c =

√
δQg and D = δΛ, the problem can be further reformulated as

{
minimizez∈Rn cTz + zTDz
s.t. zTz ≤ 1,

which is the desired result.

Question b) The Lagrangian function associated with problem (4) is given by

∀(x,λ) ∈ Rn × R, L(x,λ) := f(x) + λ(xTx− 1) = cTx+ xTDx+ λ(xTx− 1)

The dual problem of (4) is given by

maximize
λ∈R

d(λ), d(λ) :=

{
infx∈Rn L(x, λ) if λ ≥ 0
−∞ otherwise.

The primal problem corresponds to

minimize
x∈Rn

p(x), p(x) :=

{
supλ≥0 L(x, λ) if x ∈ dom(f)
∞ otherwise.

Since dom(f) = Rn, we have p(x) = supλ≥0 L(x, λ) for any x ∈ Rn. Finally, since the feasible set
is not empty (unit ball in Rn), the primal problem is equivalent to (4).
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Question c) D ̸⪰ 0.

i) The function f is continuous and the feasible set is a nonempty compact set (unit sphere), hence
the problem has a solution.

ii) Using the properties of the feasible set, we have for any λ > 0 that

inf
x∈Rn

{
f(x)

∣∣xTx = 1
}

= inf
x∈Rn

{
f(x) + λxTx− λxTx

∣∣xTx = 1
}

= inf
x∈Rn

{
f(x) + λxTx− λ

∣∣xTx = 1
}

= −λ+ inf
x∈Rn

{
f(x) + λxTx

∣∣xTx = 1
}

= −λ+ inf
x∈Rn

{
cTx+ xT(D + λI)x

∣∣xTx = 1
}
.

iii) Let λ > 0 such that D + λI ⪰ 0. Then, the problem (6) is convex and satisfies LICQ at every
feasible point (∇(∥ ·∥2−1)(x) = 2x ̸= 0 for any feasible point). Therefore, strong duality holds
for that problem. Letting Lλ(x, µ) := fλ(x) + µ(xTx − 1) denote the Lagrangian function of
problem (6), we have

inf
x∈Rn

sup
µ∈R

Lλ(x, µ) = sup
µ∈R

inf
x∈Rn

Lλ(x, µ) = L(x∗, µ∗). (7)

iv) Letting L denote the Lagrangian function of problem (5), we have

L(x, ν) := f(x) + ν(xTx− 1).

For any λ > 0, we thus have Lλ(x, µ) = L(x, λ+ µ). It follows that

sup
µ∈R

Lλ(x, µ) = sup
ν∈R

L(x, ν),

while (7) implies

inf
x∈Rn

sup
ν∈R

L(x, ν) = sup
ν∈R

inf
x∈Rn

L(x, ν) = L(x∗, λ+ µ∗),

which matches the definition of strong duality.


