Exercises on Chapter 3: High Probability

Mathematics of Data Science, M1 IDD

November-December 2025

Exercise 3.1: With and without concentration inequalities

Suppose that we toss a fair coin (i.e. that has probability $\frac{1}{2}$ of landing on heads or tails) N times in an independent fashion. Let h_N be the number of times we obtain heads.

- a) Shown that $\mathbb{E}[h_N] = \frac{N}{2}$ and $\operatorname{Var}[h_N] = \frac{N}{4}$. Hint: Use the fact that if x and y are two independent random variables, then $\mathbb{E}[x+y] = \mathbb{E}[x] + \mathbb{E}[y]$ and $\operatorname{Var}[x+y] = \operatorname{Var}[x] + \operatorname{Var}[y]$.
- b) Chebyshev's inequality states that

$$\mathbb{P}\left(|y - \mathbb{E}\left[y\right]| \ge t\right) \le \frac{\operatorname{Var}\left[y\right]}{t^2} \qquad \forall t > 0$$

for any random variable y and any t>0. Apply Chebyshev's inequality to bound the probability of getting at least $\frac{3N}{4}$ heads.

c) For this particular problem, one can derive the following Hoeffding-type inequality:

$$\mathbb{P}(h_N \ge t) \le \exp\left[-\frac{(2t-N)^2}{2N}\right].$$

Using this inequality, provide another bound on the probability of getting at least $\frac{3N}{4}$ heads. Compare this inequality with that of question b).

Exercise 3.2: Boosting

Suppose that we perform $2\,m$ independent runs of a randomized algorithm designed to solve a decision problem (e.g. is a given convex optimization problem feasible?). Because of the randomness, the algorithm is only correct with probability $\frac{1}{2}+\delta$ for some $\delta\in(0,\frac{1}{2})$. To make a decision, we choose the output returned by the majority of runs.

a) Let y_i be a Bernoulli random variable such that $y_i = 1$ if the ith run returns the wrong output, and $y_i = 0$ otherwise. Compute $\mathbb{E}[y_i]$.

- b) Express the probability of making the right conclusion from the output of the 2m instances.
- c) Hoeffding's inequality for bounded random variables states that for any set of variables y_1, \ldots, y_N that are bounded in [m, M] and any $t \ge 0$, we have

$$\mathbb{P}\left(\sum_{i=1}^{N} (y_i - \mathbb{E}[y_i]) \ge t\right) \le \exp\left[-\frac{2t^2}{N(M-m)^2}\right].$$

Using Hoeffding's inequality, show that the probability expressed in question b) is at least 1-p when

$$m \ge \frac{1}{4\delta^2} \ln \left(\frac{1}{p} \right).$$

for every $p \in (0,1)$.

Exercise 3.3: Random projections (Exam 2023-2024)

In this exercise, we consider projections on random subspaces. Letting $r \leq n$, we define a random projection matrix $\mathbf{P} \in \mathbb{R}^{r \times n}$ such that the coefficients of \mathbf{P} are i.i.d. and follow a normal distribution $\mathcal{N}\left(0,\frac{1}{r}\right)$. Recall that the probability density function associated with $y \sim \mathcal{N}\left(0,\frac{1}{r}\right)$ is

$$p(y) = \sqrt{\frac{r}{2\pi}} \exp\left(-\frac{ry^2}{2}\right) \quad \forall y \in \mathbb{R}.$$

- a) Give a formula for the probability density function of a column of P (e.g. the first one).
- b) Show that this density is log-concave.
- c) Given any vector $a \in \mathbb{R}^n$ and any tolerance $\epsilon \in (0,1]$, it can be shown (using Johnson-Lindenstrauss-type arguments) that

$$\mathbb{P}(\|\boldsymbol{P}\boldsymbol{a}\| \le (1 - \epsilon)\|\boldsymbol{a}\|) \le \exp(-c r\epsilon^2), \tag{1}$$

where c > 0 is a constant independent of r,n and ϵ .

i) Using (1), find a sufficient condition for the bound

$$\mathbb{P}\left(\|\boldsymbol{P}\boldsymbol{a}\| > (1 - \epsilon)\|\boldsymbol{a}\|\right) \ge 0.99\tag{2}$$

to hold.

- ii) Use the condition from the previous question to determine \bar{r} such that (2) holds whenever $r > \bar{r}$.
- iii) Suppose that we cannot generate matrices using $r=\bar{r}$, but that we can generate matrices $P\in\mathbb{R}^{r\times n}$ with $\underline{r}<\bar{r}$ such that

$$\mathbb{P}(\|\mathbf{P}a\| > (1 - \epsilon)\|\mathbf{a}\|) \ge 0.6.$$

How many such matrices would be necessary to ensure that one of them satisfies $\|Pa\| > (1 - \epsilon)\|a\|$ with probability at least 0.99?

Exercise 3.4: Erdös-Rényi graphs

Graphs generated using the Erdös-Rényi model G(n,p) are undirected random graphs with $n \geq 2$ vertices. For every *possible* edge (i,j), the probability that (i,j) is an edge of the graph is p, independently of the other edges.

- a) For any vertex $i \in \{1, ..., n\}$, we let d_i denote the degree of this vertex, that is the number of edges that include that vertex. Express d_i as a sum of n-1 independent Bernoulli variables.
- b) Show then that $\mathbb{E}[d_i] = \bar{d} := (n-1)p$.
- c) A version of Chernoff's inequality states that if x_1, \ldots, x_N are independent Bernoulli variables with parameters p_1, \ldots, p_N , then

$$\forall \delta \in (0,1], \qquad \mathbb{P}\left(\left|\sum_{j=1}^{N} x_j - \mu\right| \ge \delta \mu\right) \le 2 \exp(-c\mu \delta^2),$$
 (3)

where $\mu = \mathbb{E}\left[\sum_{j=1}^{N} x_j\right]$ and c>0. Use (3) to show that for any $i=1,\ldots,n$, we have

$$\mathbb{P}\left(|d_i - \bar{d}| \ge 0.1\bar{d}\right) \le 2\exp(-C\bar{d})\tag{4}$$

where C > 0 is a universal constant.

d) Use the inequality (4) to find a bound on

$$\mathbb{P}\left(\exists i \in \{1, \dots, n\}, \quad |d_i - \bar{d}| \ge 0.1\bar{d}\right).$$

e) Conclude that there exists a constant $\hat{c} > 0$ such that

$$\mathbb{P}\left(\max_{1 \le i \le n} |d_i - \bar{d}| < 0.1\bar{d}\right) \ge 0.9 \quad \text{when} \quad p \ge \hat{c} \frac{\ln(n)}{n-1}.$$

NB: This result shows that when $\bar{d} = \mathcal{O}(\ln(n))$, the degrees of all vertices is approximately equal to \bar{d} .

Exercise 3.5: Chernoff inequalities

In this exercise, we study another type of concentration inequalities than that seen in class called *Chernoff bounds* or *Chernoff inequalities*. In the general form, this inequality states that for any random variable y and any $t \in \mathbb{R}$, we have

$$\mathbb{P}(y \ge t) \le \min_{\lambda > 0} \mathbb{E}\left[\exp(\lambda(y - t))\right]. \tag{5}$$

a) Proving (5) amounts to proving

$$\ln\left(\mathbb{P}\left(y \ge t\right)\right) \quad \le \quad \min_{\lambda \ge 0} \ln\left(\mathbb{E}\left[\exp(\lambda(y-t))\right]\right). \tag{6}$$

Justify that right-hand side of (6) is the solution to a convex optimization problem. To this end, you may use a generalization of the Hölder inequality from Exercise 1.8, that states that for any random variables w, z, we have

$$\mathbb{E}_{w,z}[w z] \le \mathbb{E}_w[|w|^p]^{1/p} \mathbb{E}_z[|z|^q]^{1/q}$$

any pair (p,q) such that p>1, q>1 and $\frac{1}{p}+\frac{1}{q}=1$.

b) Suppose that $y \sim \mathcal{N}(0,1)$. In that case, one can show that $\ln (\mathbb{E}[\exp(\lambda y)]) = \frac{\lambda^2}{2}$. Use this property to deduce from (5) that

$$\mathbb{P}(y \ge t) \le \exp\left(-\frac{t^2}{2}\right)$$

for any t > 0. What inequality do you obtain for $t \le 0$?

Exercise 3.6: Chernoff inequalities for vectors

In this exercise, we seek a Chernoff-type bound in a vector setting. More precisely, we consider a Gaussian vector $\boldsymbol{y} \sim \mathcal{N}(\mathbf{0}_{\mathbb{R}^n}, \boldsymbol{I}_n)$ and a nonempty polyhedral set defined by $\mathcal{C} = \{\boldsymbol{x} \in \mathbb{R}^n | \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b}\}$ with $\boldsymbol{A} \in \mathbb{R}^{\ell \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{\ell}$. Our goal is to provide a bound of the form

$$\mathbb{P}\left(\boldsymbol{y}\in\mathcal{C}\right)\leq\mathbb{E}\left[\exp\left(\boldsymbol{\lambda}^{\mathrm{T}}\boldsymbol{y}+\boldsymbol{\mu}\right)\right]\tag{7}$$

where $\lambda \in \mathbb{R}^n$ and $\mu \in \mathbb{R}$. As in the previous exercise, we would like to obtain the tightest bound possible.

- a) Using that $\mathbb{P}(\boldsymbol{y} \in \mathcal{C}) = \mathbb{E}[1_{\mathcal{C}}(\boldsymbol{y})]$, justify that any pair $(\boldsymbol{\lambda}, \mu) \in \mathbb{R}^n \times \mathbb{R}$ satisfying $\exp(\boldsymbol{\lambda}^T \boldsymbol{y} + \mu) \geq 1_{\mathcal{C}}(\boldsymbol{y})$ for every $\boldsymbol{y} \in \mathbb{R}^n$ also satisfies (7) with $-\boldsymbol{\lambda}^T \boldsymbol{y} \leq \mu \ \forall \boldsymbol{y} \in \mathcal{C}$.
- b) By considering logarithms, show that

$$\ln\left(\mathbb{P}\left(\boldsymbol{y}\in\mathcal{C}\right)\right) \leq \min_{\boldsymbol{\lambda}\in\mathbb{R}^{n}} \left\{ S_{\mathcal{C}}(-\boldsymbol{\lambda}) + \ln\mathbb{E}\left[e^{\boldsymbol{\lambda}^{\mathrm{T}}\boldsymbol{y}}\right]\right\},\tag{8}$$

with $S_{\mathcal{C}}: oldsymbol{y} \mapsto \max_{oldsymbol{x} \in \mathcal{C}} oldsymbol{y}^{\mathrm{T}} oldsymbol{x}.$

c) Since \boldsymbol{y} is Gaussian, we have that $\ln(\mathbb{E}\left[\exp\left(\boldsymbol{\lambda}^{\mathrm{T}}\boldsymbol{y}\right)\right]) = \frac{\boldsymbol{\lambda}^{\mathrm{T}}\boldsymbol{\lambda}}{2}$ for any $\boldsymbol{\lambda}$. In addition, we can show that

$$S_{\mathcal{C}}(oldsymbol{y}) = \min_{oldsymbol{u} \in \mathbb{R}^\ell} \left\{ oldsymbol{b}^{\mathrm{T}} oldsymbol{u} \middle| oldsymbol{A}^{\mathrm{T}} oldsymbol{u} = oldsymbol{y}, oldsymbol{u} \geq oldsymbol{0}
ight\}$$

for any $y \in \mathbb{R}^n$. Show then that the right-hand side of (8) corresponds to the optimal value of the quadratic problem

minimize
$$_{\boldsymbol{\lambda} \in \mathbb{R}^n, \boldsymbol{v} \in \mathbb{R}^\ell}$$
 $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{v} + \frac{\|\boldsymbol{\lambda}\|^2}{2}$
s.t. $\boldsymbol{v} \geq \boldsymbol{0},$ $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{v} + \boldsymbol{\lambda} = \boldsymbol{0}.$ (9)

d) The problem (9) is equivalent to

$$\underset{\boldsymbol{v} \in \mathbb{R}^{\ell}}{\text{minimize}} \, \boldsymbol{b}^{\mathrm{T}} \boldsymbol{v} + \frac{\|\boldsymbol{A}^{\mathrm{T}} \boldsymbol{v}\|^{2}}{2} \quad \text{s.t.} \quad \boldsymbol{v} \geq \boldsymbol{0}, \tag{10}$$

where we reformulated the problem so as to eliminate the λ variables while preserving the same optimal value.

i) Using that same reformulation technique, show that the dual of problem (10) is equivalent to

$$\begin{array}{ll}
\text{maximize}_{\boldsymbol{x} \in \mathbb{R}^n} & -\frac{\|\boldsymbol{x}\|^2}{2} \\
\text{s.t.} & \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b}.
\end{array} \tag{11}$$

- ii) Justify that the optimal value of problem (11) is $-\frac{1}{2}\mathrm{dist}(\mathbf{0},\mathcal{C})^2$, where $\mathrm{dist}(\boldsymbol{a},\mathcal{C})=\min_{\boldsymbol{y}\in\mathcal{C}}\|\boldsymbol{y}-\boldsymbol{a}\|$.
- iii) Strong duality holds for problem (10). Using this property, provide a closed-form expression for (8) and (7).