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Exercise 3.1: With and without concentration inequalities

Suppose that we toss a fair coin (i.e. that has probability 1
2 of landing on heads or tails) N times in

an independent fashion. Let hN be the number of times we obtain heads.

a) Shown that E [hN ] = N
2 and Var [hN ] = N

4 .
Hint: Use the fact that if x and y are two independent random variables, then
E [x+ y] = E [x] + E [y] and Var [x+ y] = Var [x] + Var [y].

b) Chebyshev’s inequality states that

P (|y − E [y]| ≥ t) ≤ Var [y]

t2
∀t > 0

for any random variable y and any t > 0. Apply Chebyshev’s inequality to bound the probability
of getting at least 3N

4 heads.

c) For this particular problem, one can derive the following Hoeffding-type inequality:

P (hN ≥ t) ≤ exp

[
−(2t−N)2

2N

]
.

Using this inequality, provide another bound on the probability of getting at least 3N
4 heads.

Compare this inequality with that of question b).

Exercise 3.2: Boosting

Suppose that we perform 2m independent runs of a randomized algorithm designed to solve a decision
problem (e.g. is a given convex optimization problem feasible?). Because of the randomness, the
algorithm is only correct with probability 1

2 + δ for some δ ∈ (0, 12). To make a decision, we choose
the output returned by the majority of runs.

a) Let yi be a Bernoulli random variable such that yi = 1 if the ith run returns the wrong output,
and yi = 0 otherwise. Compute E [yi].
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b) Express the probability of making the right conclusion from the output of the 2m instances.

c) Hoeffding’s inequality for bounded random variables states that for any set of variables y1, . . . , yN
that are bounded in [m,M ] and any t ≥ 0, we have

P

(
N∑
i=1

(yi − E [yi]) ≥ t

)
≤ exp

[
− 2t2

N(M −m)2

]
.

Using Hoeffding’s inequality, show that the probability expressed in question b) is at least 1− p
when

m ≥ 1

4δ2
ln

(
1

p

)
.

for every p ∈ (0, 1).

Exercise 3.3: Random projections (Exam 2023-2024)

In this exercise, we consider projections on random subspaces. Letting r ≤ n, we define a random
projection matrix P ∈ Rr×n such that the coefficients of P are i.i.d. and follow a normal distribution
N
(
0, 1r
)
. Recall that the probability density function associated with y ∼ N

(
0, 1r
)
is

p(y) =

√
r

2π
exp

(
−r y2

2

)
∀y ∈ R.

a) Give a formula for the probability density function of a column of P (e.g. the first one).

b) Show that this density is log-concave.

c) Given any vector a ∈ Rn and any tolerance ϵ ∈ (0, 1], it can be shown (using Johnson-
Lindenstrauss-type arguments) that

P (∥Pa∥ ≤ (1− ϵ)∥a∥) ≤ exp
(
−c rϵ2

)
, (1)

where c > 0 is a constant independent of r,n and ϵ.

i) Using (1), find a sufficient condition for the bound

P (∥Pa∥ > (1− ϵ)∥a∥) ≥ 0.99 (2)

to hold.

ii) Use the condition from the previous question to determine r̄ such that (2) holds whenever
r ≥ r̄.

iii) Suppose that we cannot generate matrices using r = r̄, but that we can generate matrices
P ∈ Rr×n with r < r̄ such that

P (∥Pa∥ > (1− ϵ)∥a∥) ≥ 0.6.

How many such matrices would be necessary to ensure that one of them satisfies
∥Pa∥ > (1− ϵ)∥a∥ with probability at least 0.99?
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Exercise 3.4: Erdös-Rényi graphs

Graphs generated using the Erdös-Rényi model G(n, p) are undirected random graphs with n ≥ 2
vertices. For every possible edge (i, j), the probability that (i, j) is an edge of the graph is p,
independently of the other edges.

a) For any vertex i ∈ {1, . . . , n}, we let di denote the degree of this vertex, that is the number of
edges that include that vertex. Express di as a sum of n− 1 independent Bernoulli variables.

b) Show then that E [di] = d̄ := (n− 1)p.

c) A version of Chernoff’s inequality states that if x1, . . . , xN are independent Bernoulli variables
with parameters p1, . . . , pN , then

∀δ ∈ (0, 1], P

∣∣∣∣∣∣
N∑
j=1

xj − µ

∣∣∣∣∣∣ ≥ δµ

 ≤ 2 exp(−cµδ2), (3)

where µ = E
[∑N

j=1 xj

]
and c > 0. Use (3) to show that for any i = 1, . . . , n, we have

P
(
|di − d̄| ≥ 0.1d̄

)
≤ 2 exp(−Cd̄) (4)

where C > 0 is a universal constant.

d) Use the inequality (4) to find a bound on

P
(
∃i ∈ {1, . . . , n}, |di − d̄| ≥ 0.1d̄

)
.

e) Conclude that there exists a constant ĉ > 0 such that

P
(
max
1≤i≤n

|di − d̄| < 0.1d̄

)
≥ 0.9 when p ≥ ĉ

ln(n)

n− 1
.

NB: This result shows that when d̄ = O(ln(n)), the degrees of all vertices is approximately equal
to d̄.

Exercise 3.5: Chernoff inequalities

In this exercise, we study another type of concentration inequalities than that seen in class called
Chernoff bounds or Chernoff inequalities. In the general form, this inequality states that for any
random variable y and any t ∈ R, we have

P (y ≥ t) ≤ min
λ≥0

E [exp(λ(y − t))] . (5)

a) Proving (5) amounts to proving

ln (P (y ≥ t)) ≤ min
λ≥0

ln (E [exp(λ(y − t))]) . (6)
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Justify that right-hand side of (6) is the solution to a convex optimization problem. To this end,
you may use a generalization of the Hölder inequality from Exercise 1.8, that states that for any
random variables w, z, we have

Ew,z [w z] ≤ Ew [|w|p]1/p Ez [|z|q]1/q

any pair (p, q) such that p > 1, q > 1 and 1
p + 1

q = 1.

b) Suppose that y ∼ N (0, 1). In that case, one can show that ln (E [exp(λy)]) = λ2

2 . Use this
property to deduce from (5) that

P (y ≥ t) ≤ exp

(
− t2

2

)
for any t > 0. What inequality do you obtain for t ≤ 0?

Exercise 3.6: Chernoff inequalities for vectors

In this exercise, we seek a Chernoff-type bound in a vector setting. More precisely, we consider a
Gaussian vector y ∼ N (0Rn , In) and a nonempty polyhedral set defined by C = {x ∈ Rn|Ax ≤ b}
with A ∈ Rℓ×n and b ∈ Rℓ. Our goal is to provide a bound of the form

P (y ∈ C) ≤ E
[
exp

(
λTy + µ

)]
(7)

where λ ∈ Rn and µ ∈ R. As in the previous exercise, we would like to obtain the tightest bound
possible.

a) Using that P (y ∈ C) = E [1C(y)], justify that any pair (λ, µ) ∈ Rn×R satisfying exp
(
λTy + µ

)
≥

1C(y) for every y ∈ Rn also satisfies (7) with −λTy ≤ µ ∀y ∈ C.

b) By considering logarithms, show that

ln (P (y ∈ C)) ≤ min
λ∈Rn

{
SC(−λ) + lnE

[
eλ

Ty
]}

, (8)

with SC : y 7→ maxx∈C y
Tx.

c) Since y is Gaussian, we have that ln(E
[
exp

(
λTy

)]
) = λTλ

2 for any λ. In addition, we can show
that

SC(y) = min
u∈Rℓ

{
bTu

∣∣ATu = y,u ≥ 0
}

for any y ∈ Rn. Show then that the right-hand side of (8) corresponds to the optimal value of
the quadratic problem

minimizeλ∈Rn,v∈Rℓ bTv + ∥λ∥2
2

s.t. v ≥ 0,

ATv + λ = 0.

(9)
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d) The problem (9) is equivalent to

minimize
v∈Rℓ

bTv +
∥ATv∥2

2
s.t. v ≥ 0, (10)

where we reformulated the problem so as to eliminate the λ variables while preserving the same
optimal value.

i) Using that same reformulation technique, show that the dual of problem (10) is equivalent
to

maximizex∈Rn −∥x∥2
2

s.t. Ax ≤ b.
(11)

ii) Justify that the optimal value of problem (11) is−1
2dist(0, C)

2, where dist(a, C) = miny∈C ∥y−
a∥.

iii) Strong duality holds for problem (10). Using this property, provide a closed-form expression
for (8) and (7).


