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Exercise 3.1: With and without concentration inequalities

Suppose that we toss a fair coin (i.e. that has probability % of landing on heads or tails) N times in
an independent fashion. Let Ay be the number of times we obtain heads.

a) Shown that E [hn] = & and Var [hy] = &
Hint: Use the fact that if x and y are two independent random variables, then
Elx 4+ y] =E[z] + E[y] and Var [z + y] = Var [z] + Var [y].

b) Chebyshev's inequality states that

Var [y]

2 Vvt >0

P(ly—E[y]| >1) <

for any random variable y and any ¢ > 0. Apply Chebyshev’s inequality to bound the probability
of getting at least % heads.

c) For this particular problem, one can derive the following Hoeffding-type inequality:

P(hy >t) < exp [_(2t—N)2] :

2N

Using this inequality, provide another bound on the probability of getting at least % heads.
Compare this inequality with that of question b).

Exercise 3.2: Boosting

Suppose that we perform 2 m independent runs of a randomized algorithm designed to solve a decision
problem (e.g. is a given convex optimization problem feasible?). Because of the randomness, the
algorithm is only correct with probability 3 + & for some § € (0, 5). To make a decision, we choose
the output returned by the majority of runs.

a) Let y; be a Bernoulli random variable such that y; = 1 if the ith run returns the wrong output,
and y; = 0 otherwise. Compute E [y;].
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b) Express the probability of making the right conclusion from the output of the 2m instances.

c) Hoeffding's inequality for bounded random variables states that for any set of variables y, ..., yn
that are bounded in [m, M| and any ¢ > 0, we have

N 2
P (Z (yi —Efyi]) > t) < exp [_]V(]\;t—m)z} .

i=1

Using Hoeffding's inequality, show that the probability expressed in question b) is at least 1 — p

when
1 1

Exercise 3.3: Random projections (Exam 2023-2024)

for every p € (0,1).

In this exercise, we consider projections on random subspaces. Letting r < n, we define a random
J g

projection matrix P € R"*" such that the coefficients of P are i.i.d. and follow a normal distribution

N (0,1). Recall that the probability density function associated with y ~ A (0, 1) is

2
T T'y
= /— L R.
p(y) 5 CXP ( 5 ) Vy €

a) Give a formula for the probability density function of a column of P (e.g. the first one).
b) Show that this density is log-concave.

c) Given any vector a € R"™ and any tolerance ¢ € (0,1], it can be shown (using Johnson-
Lindenstrauss-type arguments) that

P(||[Pa|l < (1 —¢€)|lal) < exp (—cre?), (1)
where ¢ > 0 is a constant independent of r,n and e.
i) Using (1), find a sufficient condition for the bound
B(|Pal| > (1 - ¢)llal)) > 0.99 (2)

to hold.

ii) Use the condition from the previous question to determine 7 such that (2) holds whenever
r>T.

iii) Suppose that we cannot generate matrices using r = 7, but that we can generate matrices
P c RE*™ with r < 7 such that

P([Pal > (1 =¢)lal) = 0.6.

How many such matrices would be necessary to ensure that one of them satisfies
|Pa|l > (1 — ¢€)|la|| with probability at least 0.997
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Exercise 3.4: Erdos-Rényi graphs

Graphs generated using the Erdds-Rényi model G(n,p) are undirected random graphs with n > 2
vertices. For every possible edge (i,7j), the probability that (i,7) is an edge of the graph is p,
independently of the other edges.

a) For any vertex i € {1,...,n}, we let d; denote the degree of this vertex, that is the number of
edges that include that vertex. Express d; as a sum of n — 1 independent Bernoulli variables.

b) Show then that E[d;] = d := (n — 1)p.

c) A version of Chernoff’s inequality states that if z1,...,2y are independent Bernoulli variables
with parameters pq,...,pn, then
N
Vs e (0,1, P>z —p|>ou| < 2exp(—cpd?), (3)
j=1

where p =E {Z;VZI a:j} and ¢ > 0. Use (3) to show that for any i = 1,...,n, we have

P (|d; — d| > 0.1d) < 2exp(—Cd) (4)
where C > 0 is a universal constant.
d) Use the inequality (4) to find a bound on

P(Jie{l,...,n}, |d—d >0.1d).

e) Conclude that there exists a constant ¢ > 0 such that

In(n)

P <max |d; —d| < 0.1J> >0.9 when p>¢

1<i<n n—1

NB: This result shows that when d = O(In(n)), the degrees of all vertices is approximately equal
to d.

Exercise 3.5: Chernoff inequalities

In this exercise, we study another type of concentration inequalities than that seen in class called
Chernoff bounds or Chernoff inequalities. In the general form, this inequality states that for any
random variable y and any t € R, we have

Py=1) < minElexp(My—1)]. ()

a) Proving (5) amounts to proving

m(P(y=t) < minln(E [exp(A(y —1))]) - (6)
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Justify that right-hand side of (6) is the solution to a convex optimization problem. To this end,
you may use a generalization of the Hélder inequality from Exercise 1.8, that states that for any
random variables w, z, we have

Eu.: [w2] < By [[w’]/? Ex (|24
any pair (p,q) such thatp > 1,q > 1 and ;1) + % =1

Suppose that y ~ N(0,1). In that case, one can show that In (E [exp(A\y)]) = )‘72 Use this
property to deduce from (5) that

t2

Ply=t) < exp <—2>

for any ¢ > 0. What inequality do you obtain for ¢ < 07

Exercise 3.6: Chernoff inequalities for vectors

In this exercise, we seek a Chernoff-type bound in a vector setting. More precisely, we consider a
Gaussian vector y ~ N (Ogn, I,,) and a nonempty polyhedral set defined by C = {x € R"| Az < b}

b)

<)

with A € R and b € R, Our goal is to provide a bound of the form

P(y €C) <Elfexp (Ay +p)] (7)
where A € R™ and p € R. As in the previous exercise, we would like to obtain the tightest bound
possible.

a) UsingthatP(y € C) = E [1¢(y)], justify that any pair (A, 1) € R™ xR satisfying exp ()\Ty +p) >

le(y) for every y € R™ also satisfies (7) with —ATy < u Vy € C.

By considering logarithms, show that
: _ ATy
In(P(y €C)) <)I‘I€1ﬁ§r}l {Sc( )\)—l—ln]E[e }}, (8)

with S¢ : y — maxgec y .
Since y is Gaussian, we have that In(E [exp ()\Ty)]) = % for any A. In addition, we can show
that
Sc(y) = min {bTu’ATu =y,u>0}
u€eR?

for any y € R™. Show then that the right-hand side of (8) corresponds to the optimal value of
the quadratic problem

minimizeycgn ,ecpe blv + W

s.t. v >0, (9)

ATv+x=0.
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d) The problem (9) is equivalent to

AT 2
minimize bl v + M

st. v>0, 10
veER! 2 B ( )

where we reformulated the problem so as to eliminate the A variables while preserving the same
optimal value.

i) Using that same reformulation technique, show that the dual of problem (10) is equivalent
to
maximizegern —5- (11)
s.t. Ax <b.

i) Justify that the optimal value of problem (11) is —1dist(0,C)?, where dist(a,C) = minycc [|[y—
all.

iii) Strong duality holds for problem (10). Using this property, provide a closed-form expression
for (8) and (7).



