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Exercise 3.1: Boosting

Suppose that we perform 2m independent runs of a randomized algorithm designed to
solve a decision problem (e.g. is a given convex optimization problem feasible?). Because
of the randomness, the algorithm is only correct with probability 1

2+δ for some δ ∈ (0, 1).
To make a decision, we choose the output returned by the majority of runs.

a) Let yi be a Bernoulli random variable such that yi = 1 if the ith run returns the
wrong output, and yi = 0 otherwise. Compute E [yi].

b) Express the probability of making the right conclusion from the output of the 2m
instances.

c) Let p ∈ [0, 1). Using Hoeffding’s inequality, show that the probability of making
the right conclusion is at least 1− p when

m ≥ 1

4δ2
ln

(
1

p

)
.

∗Last updated December 20, 2023.
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Exercise 3.2: Chernoff inequalities

In this exercise, we study another type of concentration inequalities than that seen in
class called Chernoff bounds or Chernoff inequalities. In the general form, this inequality
states that for any random variable Y and any t ∈ R, we have

P (Y ≥ t) ≤ min
λ≥0

E [exp(λ(Y − t))] . (1)

a) Proving (1) amounts to proving

ln (P (Y ≥ t)) ≤ min
λ≥0

ln (E [exp(λ(Y − t))]) . (2)

Justify that right-hand side of (2) is the solution to a convex optimization problem.
To this end, you may use a generalization of the Hölder inequality from Exercise
1.8, that states that for any random variables w, z, we have

Ew,z [w z] ≤ Ew [|w|p]1/p Ez [|z|q]1/q

any pair (p, q) such that p > 1, q > 1 and 1
p + 1

q = 1.

b) Suppose that y ∼ N (0, 1). In that case, one can show that ln (E [exp(λy)]) = λ2

2 .
Use this property to deduce from (1) that

P (Y ≥ t) ≤ exp

(
− t2

2

)
.
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Exercise 3.3: Chernoff inequalities for vectors

In this exercise, we seek a Chernoff-type bound in a vector setting. More precisely, we
consider a Gaussian vector y ∼ N (0Rn , In) and a nonempty polyhedral set defined by
C = {x ∈ Rn|Ax ≤ b} with A ∈ Rℓ×n and b ∈ Rℓ. Our goal is to provide a bound of
the form

P (y ∈ C) ≤ E
[
exp

(
λTy + µ

)]
(3)

where λ ∈ Rn and µ ∈ R. As in the previous exercise, we would like to obtain the
tightest bound possible.

a) Using that P (y ∈ C) = E [1C(y)], justify that any pair (λ, µ) ∈ Rn × R satisfying
exp

(
λTy + µ

)
≥ 1C(y) for every y ∈ Rn also satisfies (3) with −λTy ≤ µ ∀y ∈ C.

b) By considering logarithms, show that

ln (P (y ∈ C)) ≤ min
λ∈Rn

{
SC(−λ) + lnE

[
eλ

Tz
]}

, (4)

with SC : y 7→ maxx∈C y
Tx.

c) Since y is Gaussian, we have that ln(E
[
exp

(
λTy

)]
) = λTλ

2 for any λ. In addition,
we can show that

SC(y) = min
u∈Rℓ

{
bTu

∣∣ATu = y,u ≥ 0
}

for any y ∈ Rn. Show then that the right-hand side of (4) corresponds to the
optimal value of the quadratic problem

minimizeλ∈Rn,v∈Rℓ bTv + ∥λ∥2
2

s.t. v ≥ 0,

ATv + λ = 0.

(5)

d) The problem (5) is equivalent to

minimize
v∈Rℓ

bTv +
∥ATv∥2

2
s.t. v ≥ 0, (6)

where we reformulated the problem so as to eliminate the λ variables while pre-
serving the same optimal value.

i) Using that same reformulation technique, show that the dual of problem (6) is
equivalent to

maximizex∈Rm −∥x∥2
2

s.t. Ax ≤ b.
(7)

ii) Justify that the optimal value of problem (7) is−1
2dist(0, C)

2, where dist(a, C) =
miny∈C ∥y − a∥.

iii) Strong duality holds for problem (6). Using this property, provide a closed-form
expression for (4) and (3).
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Solutions

Solution for Exercise 3.1: Boosting

Question a) A straightforward calculation gives

E [Yi] = 1× P (Yi = 1) + 0× P (Yi = 0) = 1−
(
1

2
+ δ

)
=

1

2
− δ.

Question b) Since the decision is made on 2m runs of the algorithm by majority voting, we know
that the correct output is accepted if

∑2m
i=1 yi < m, since this is only possible when more than half

of the voters returned 0. As a result, the probability of making the right decision is

P

(
2m∑
i=1

yi < m

)
.

Question c) We use the variant of Hoeffding’s inequality tailored to bounded random variables. 1

For any t ≥ 0, we have

P

(
2m∑
i=1

(yi − E [yi]) ≥ t

)
≤ exp

[
− 2t2

2m

]
= exp

[
− t2

m

]
,

where the 2m factor on the right-hand side corresponds to the squared norm of the vector of all
ones. Using the formula for the expected value, we obtain

P

(
2m∑
i=1

yi ≥ t+m− 2mδ

)
≤ exp

[
− t2

m

]
.

Setting t = 2mδ > 0 gives

P

(
2m∑
i=1

yi ≥ m

)
≤ exp

[
−4m2δ3

m

]
= exp

[
−4mδ2

]
Our goal is to guarantee that P

(∑2m
i=1 yi < m

)
≥ 1−p, which is equivalent to P

(∑2m
i=1 yi ≥ m

)
<

p. Choosing m > 1
2δ2

ln
(
1
p

)
, we see that

exp
[
−2mδ2

]
< exp

[
− ln

(
1
p

)]
= p,

and the desired conclusion follows.

1In its general form, this inequality states that for any set of variables y1, . . . , yN that are bounded in [m,M ] and
any t ≥ 0, we have

P

(
N∑
i=1

(yi − E [yi]) ≥ t

)
≤ exp

[
− 2t2

N(M −m)2

]
.
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Solution for Exercise 3.2: Chernoff inequality

Foreword to question a) The equivalence between (1) and (2) can be justified as follows. Suppose
that λ ≥ 0 satisfies P (y ≥ t) ≤ E [exp (λ(y − t))] for all t ∈ R. Then, by taking logarithms on both
sides of the inequality (allowing ln(0) = −∞ and −∞ ≤ −∞), we obtain

ln (P (y ≥ t)) ≤ ln (E [exp (λ(y − t))]) .

It remains to show that minimizing the right-hand side of the latter inequality over λ gives the same
bound that that obtained by (1). For any µ ≥ 0, using that the exponential function is monotonically
increasing gives

exp

[
min
λ≥0

ln (E [exp (λ(y − t))])

]
≤ exp [ln (E [exp (µ(y − t))])] = E [exp (µ(y − t))] .

Hence

exp [minλ≥0 ln (E [exp (λ(y − t))])] ≤ minµ≥0 E [exp (µ(y − t))]

⇒ minλ≥0 ln (E [exp (λ(y − t))]) ≤ ln [minµ≥0 E [exp (µ(y − t))]] .

Conversely, using that ln(·) is monotonically increasing gives

ln [minµ≥0 E [exp (µ(y − t))]] ≤ ln [E [exp (λ(y − t))]]

⇒ ln [minµ≥0 E [exp (µ(y − t))]] ≤ minλ≥0 ln [E [exp (λ(y − t))]]

Overall, we have shown that

ln

[
min
λ≥0

E [exp (µ(y − t))]

]
= min

λ≥0
ln [E [exp (λ(y − t))]] ,

and therefore the two equalities are equivalent.

Question a) Observe that

min
λ≥0

ln (E [exp (λ(y − t))]) = min
λ≥0

ln (E [exp(λy)])− λt.

Since t 7→ −λt is a linear function of λ, it is convex, and thus it suffices to show that λ 7→
ln (E [exp(λy)]) is convex on R+ to arrive at the desired result.

To this end, we consider two values λ1 ≥ 0 and λ2 ≥ 0, as well as α ∈ [0, 1]. Our goal is to
prove

ln (E [exp((αλ1 + (1− α)λ2)y)]) ≤ α ln (E [exp(λ1y)]) + (1− α) ln (E [exp(λ2y)]) .

If α ∈ {0, 1}, the result trivially holds. Otherwise, we apply Minkowski’s inequality to E [exp((αλ1 + (1− α)λ2)y)] =
E [exp(αλ1y)× exp((1− α)λ2y)]. Using Y = αλ1y, Z = (1 − α)λ2y, p = 1

α and q = 1
1−α . We

obtain

E [exp((αλ1 + (1− α)λ2)y)] ≤ E
[
exp(αλ1y)

1/α
]α

E [exp((1− α)λ2y)
α]1−α

= E [exp(λ1y)]
α E [exp(λ2y)]

1−α ,

Taking logarithms then leads to

ln (E [exp((αλ1 + (1− α)λ2)y)]) ≤ α ln (E [exp(λ1y)]) + (1− α) ln (E [exp(λ2y)]) ,

showing that the function is indeed convex.
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Question b) By applying lnE [exp(λY )] = λ2

2 in the inequality derived in question a), we obtain
that

ln [P (Y ≥ t)] ≤ min
λ≥0

{
−λt+

λ2

2

}
The objective function of the right-hand side optimization problem is a convex quadratic in λ, and
its minimum is attained at λ∗ = max{t, 0}. Indeed, if t ≥ 0, then the minimum is λ∗ = t ≥ 0, while

if t < 0, we have −λt+ λ2

2 ≥ 0, hence λ∗ ≥ 0 is a minimum2. When t ≥ 0, the inequality gives

ln [P (Y ≥ t)]] ≤ − t2

2
,

and thus P (Y ≥ t) ≤ exp(−t2/2). Since a probability is always bounded above by 1 and exp(−t2/2) >
exp(0) = 1 for any t < 0, the inequality remains valid when t < 0, proving the desired result.

Solution for Exercise 3.3: Chernoff inequalities for vectors

Question a) Consider the function

f : Rn → R
y 7→ exp(λTy + µ).

such that f(y) ≥ 1C(y) for every y ∈ Rn. By definition of the indicator function, it implies that

f(y) ≥ 1C(y) ∀y ∈ Rn ⇔
{

f(y) ≥ 1 ∀y ∈ C
f(y) ≥ 0 ∀y /∈ C

⇔
{

exp(λTy + µ) ≥ 1 ∀y ∈ C
exp(λTy + µ)) ≥ 0 ∀y /∈ C

⇔ −λTy ≤ µ ∀y ∈ C,

where the latter equivalence comes from the fact that an exponential is always positive, hence the
inequalities for y /∈ C always hold.

Question b) Taking logarithms on both sides of (3) gives

ln (P (z ∈ C)) ≤ ln
(
E
[
exp

(
λTy + µ

)])
.

We want to compute the pair (λ, µ) that yields the tightest bound. From question a), we know that
such a pair must satisfy −λTy ≤ µ ∀y ∈ C. As a result, the best lower bound is given as an optimal
value of an optimization problem over λ and µ, namely

min
λ,µ

{
ln
(
E
[
exp

(
λTy + µ

)])∣∣−λTy ≤ µ ∀y ∈ C
}
.

Using ln
(
E
[
exp

(
λTy + µ

)])
= ln

(
E
[
exp

(
λTy

)])
+ µ, the problem can be rewritten as

min
λ,µ

{
µ+ ln

(
E
[
exp

(
λTy

)])∣∣−λTy ≤ µ ∀y ∈ C
}
.

2One can also establish this using the optimality conditions from Chapter 2.
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Now, since the objective function minimizes µ and µ ≥ −λTy ∀y ∈ C, the optimal µ for a given λ
is maxy∈C −λTy. As a result, we can reformulate the problem as a problem involving only λ:

min
λ,µ

{
µ+ ln

(
E
[
exp

(
λTy

)])∣∣−λTy ≤ µ ∀y ∈ C
}

= min
λ

min
µ

{
µ+ ln

(
E
[
exp

(
λTy

)])∣∣−λTy ≤ µ ∀y ∈ C
}

= min
λ

{
max
x∈C

[−λTx] + ln(E
[
exp

(
λTy

)]
)

}
= min

λ

{
SC(−λ) + ln(E

[
exp

(
λTy

)]
)
}
.

As a result, we must have

ln (P (y ∈ C)) ≤ min
λ

{
SC(−λ) + ln(E

[
exp

(
λTy

)]
)
}
.

Question c) Using the property of the Gaussian vector y, we have

ln (P (y ∈ C)) ≤ min
λ

{
SC(−λ) +

λTλ

2

}
.

Combining this with the result of question b) gives

min
λ∈Rm

{
SC(−λ) + λTλ

2

}
= min

λ∈Rm

{
min
u∈Rℓ

{
bTu

∣∣ ATu+ λ = 0,u ≥ 0
}
+ λTλ

2

}
= min

λ∈Rm

µ∈Rℓ

{
bTu+ λTλ

2

∣∣∣ ATu+ λ = 0,u ≥ 0
}
,

which is the desired result.

d)i) The problem (6) is convex and its feasible set has a nonempty interior. Slater’s condition
holds, implying that strong duality holds between problem (6) and its dual. To obtain the latter, we
write the dual function

d(ν) =

{
minu∈Rℓ bTu+ ∥ATu∥2

2 − νTu if ν ≥ 0
−∞ otherwise.

For ν ≥ 0, the optimal solution of the minimization in u satisfies

b− ν +AATu∗ = 0 ⇒ d(ν) = −1

2
∥ATu∗∥2.

Letting x = −ATu∗ ∈ Rm, we get 3

d(ν) = −∥x∥2

2
, −Ax+ b = ν.

3Recall that ∥x∥ = ∥ − x∥ for any vector x.
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The dual problem maximizeν≥0 d(ν) can be written as

maximizeν≥0 −∥x∥2
2

s.t. −Ax+ b = ν,

that can be rewritten as a problem over x and ν

maximizex∈Rm,ν∈Rℓ −∥x∥2
2

s.t. −Ax+ b = ν
ν ≥ 0.

Eliminating further the variable ν, we finally arrive at

maximizex∈Rm −∥x∥2
2

s.t. Ax ≤ b.

d)ii) The dual problem (7) can be reformulated as

minimize
x∈Rm

1

2
∥x∥2 s.t. x ∈ C.

Consider the equivalent reformulation

minimize
x∈Rm

∥x∥ s.t. x ∈ C.

The optimal value of this problem corresponds to the definition of the distance between the zero
vector and the set C, i.e.

min
x∈Rm

{∥x∥ | x ∈ C} = dist(0, C).

As a result,

min
x∈Rm

1

2
∥x∥2 s.t. x ∈ C =

1

2
dist(0, C)2.

and the optimal value of problem (7) is given by −1
2dist(0, C)

2.

d)iii) Since strong duality holds, the optimal value of problem (6) is −1
2dist(0, C)

2, as is that of
problem (4). Plugging this result into inequalities (4) and (3), we obtain

ln (P (y ∈ C)) ≤ −1

2
dist(0, C)2

and

P (y ∈ C) ≤ exp

[
−1

2
dist(0, C)2

]
,

respectively.
NB: This is yet another concentration inequality.


