# Exercises on Chapter 3: Statistics and concentration inequalities 

Mathematics of Data Science, M1 IDD

November-December 2023*

## Dauphine | PSL

## Exercise 3.1: Boosting

Suppose that we perform $2 m$ independent runs of a randomized algorithm designed to solve a decision problem (e.g. is a given convex optimization problem feasible?). Because of the randomness, the algorithm is only correct with probability $\frac{1}{2}+\delta$ for some $\delta \in(0,1)$. To make a decision, we choose the output returned by the majority of runs.
a) Let $y_{i}$ be a Bernoulli random variable such that $y_{i}=1$ if the $i$ th run returns the wrong output, and $y_{i}=0$ otherwise. Compute $\mathbb{E}\left[y_{i}\right]$.
b) Express the probability of making the right conclusion from the output of the $2 m$ instances.
c) Let $p \in[0,1)$. Using Hoeffding's inequality, show that the probability of making the right conclusion is at least $1-p$ when

$$
m \geq \frac{1}{4 \delta^{2}} \ln \left(\frac{1}{p}\right) .
$$

[^0]
## Exercise 3.2: Chernoff inequalities

In this exercise, we study another type of concentration inequalities than that seen in class called Chernoff bounds or Chernoff inequalities. In the general form, this inequality states that for any random variable $Y$ and any $t \in \mathbb{R}$, we have

$$
\begin{equation*}
\mathbb{P}(Y \geq t) \quad \leq \quad \min _{\lambda \geq 0} \mathbb{E}[\exp (\lambda(Y-t))] \tag{1}
\end{equation*}
$$

a) Proving (1) amounts to proving

$$
\begin{equation*}
\ln (\mathbb{P}(Y \geq t)) \quad \leq \quad \min _{\lambda \geq 0} \ln (\mathbb{E}[\exp (\lambda(Y-t))]) \tag{2}
\end{equation*}
$$

Justify that right-hand side of (2) is the solution to a convex optimization problem. To this end, you may use a generalization of the Hölder inequality from Exercise 1.8, that states that for any random variables $w, z$, we have

$$
\mathbb{E}_{w, z}[w z] \leq \mathbb{E}_{w}\left[|w|^{p}\right]^{1 / p} \mathbb{E}_{z}\left[|z|^{q}\right]^{1 / q}
$$

any pair $(p, q)$ such that $p>1, q>1$ and $\frac{1}{p}+\frac{1}{q}=1$.
b) Suppose that $y \sim \mathcal{N}(0,1)$. In that case, one can show that $\ln (\mathbb{E}[\exp (\lambda y)])=\frac{\lambda^{2}}{2}$. Use this property to deduce from (1) that

$$
\mathbb{P}(Y \geq t) \quad \leq \quad \exp \left(-\frac{t^{2}}{2}\right)
$$

## Exercise 3.3: Chernoff inequalities for vectors

In this exercise, we seek a Chernoff-type bound in a vector setting. More precisely, we consider a Gaussian vector $\boldsymbol{y} \sim \mathcal{N}\left(\mathbf{0}_{\mathbb{R}^{n}}, \boldsymbol{I}_{n}\right)$ and a nonempty polyhedral set defined by $\mathcal{C}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$ with $\boldsymbol{A} \in \mathbb{R}^{\ell \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{\ell}$. Our goal is to provide a bound of the form

$$
\begin{equation*}
\mathbb{P}(\boldsymbol{y} \in \mathcal{C}) \leq \mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}+\mu\right)\right] \tag{3}
\end{equation*}
$$

where $\boldsymbol{\lambda} \in \mathbb{R}^{n}$ and $\mu \in \mathbb{R}$. As in the previous exercise, we would like to obtain the tightest bound possible.
a) Using that $\mathbb{P}(\boldsymbol{y} \in \mathcal{C})=\mathbb{E}\left[1_{\mathcal{C}}(\boldsymbol{y})\right]$, justify that any pair $(\boldsymbol{\lambda}, \mu) \in \mathbb{R}^{n} \times \mathbb{R}$ satisfying $\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}+\mu\right) \geq 1_{\mathcal{C}}(\boldsymbol{y})$ for every $\boldsymbol{y} \in \mathbb{R}^{n}$ also satisfies (3) with $-\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y} \leq \mu \forall \boldsymbol{y} \in \mathcal{C}$.
b) By considering logarithms, show that

$$
\begin{equation*}
\ln (\mathbb{P}(\boldsymbol{y} \in \mathcal{C})) \leq \min _{\boldsymbol{\lambda} \in \mathbb{R}^{n}}\left\{S_{\mathcal{C}}(-\boldsymbol{\lambda})+\ln \mathbb{E}\left[e^{\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{z}}\right]\right\}, \tag{4}
\end{equation*}
$$

with $S_{\mathcal{C}}: \boldsymbol{y} \mapsto \max _{\boldsymbol{x} \in \mathcal{C}} \boldsymbol{y}^{\mathrm{T}} \boldsymbol{x}$.
c) Since $\boldsymbol{y}$ is Gaussian, we have that $\ln \left(\mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}\right)\right]\right)=\frac{\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{\lambda}}{2}$ for any $\boldsymbol{\lambda}$. In addition, we can show that

$$
S_{\mathcal{C}}(\boldsymbol{y})=\min _{\boldsymbol{u} \in \mathbb{R}^{\boldsymbol{e}}}\left\{\boldsymbol{b}^{\mathrm{T}} \boldsymbol{u} \mid \boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}=\boldsymbol{y}, \boldsymbol{u} \geq \mathbf{0}\right\}
$$

for any $\boldsymbol{y} \in \mathbb{R}^{n}$. Show then that the right-hand side of (4) corresponds to the optimal value of the quadratic problem

$$
\begin{array}{ll}
\operatorname{minimize}_{\boldsymbol{\lambda} \in \mathbb{R}^{n}, \boldsymbol{v} \in \mathbb{R}^{\ell}} & \boldsymbol{b}^{\mathrm{T}} \boldsymbol{v}+\frac{\|\boldsymbol{\lambda}\|^{2}}{2} \\
\text { s.t. } & \boldsymbol{v} \geq \mathbf{0}, \\
& \boldsymbol{A}^{\mathrm{T}} \boldsymbol{v}+\boldsymbol{\lambda}=\mathbf{0} . \tag{5}
\end{array}
$$

d) The problem (5) is equivalent to

$$
\begin{equation*}
\underset{\boldsymbol{v} \in \mathbb{R}^{\ell}}{\operatorname{minimize}} \boldsymbol{b}^{\mathrm{T}} \boldsymbol{v}+\frac{\left\|\boldsymbol{A}^{\mathrm{T}} \boldsymbol{v}\right\|^{2}}{2} \quad \text { s.t. } \quad \boldsymbol{v} \geq \mathbf{0}, \tag{6}
\end{equation*}
$$

where we reformulated the problem so as to eliminate the $\boldsymbol{\lambda}$ variables while preserving the same optimal value.
i) Using that same reformulation technique, show that the dual of problem (6) is equivalent to

$$
\begin{array}{ll}
\text { maximize }  \tag{7}\\
\text { s.t. } & -\frac{\|\boldsymbol{x}\|^{2}}{2} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} .
\end{array}
$$

ii) Justify that the optimal value of problem (7) is $-\frac{1}{2} \operatorname{dist}(\mathbf{0}, \mathcal{C})^{2}$, where $\operatorname{dist}(\boldsymbol{a}, \mathcal{C})=$ $\min _{\boldsymbol{y} \in \mathcal{C}}\|\boldsymbol{y}-\boldsymbol{a}\|$.
iii) Strong duality holds for problem (6). Using this property, provide a closed-form expression for (4) and (3).

## Solutions

## Solution for Exercise 3.1: Boosting

Question a) A straightforward calculation gives

$$
\mathbb{E}\left[Y_{i}\right]=1 \times \mathbb{P}\left(Y_{i}=1\right)+0 \times \mathbb{P}\left(Y_{i}=0\right)=1-\left(\frac{1}{2}+\delta\right)=\frac{1}{2}-\delta .
$$

Question b) Since the decision is made on $2 m$ runs of the algorithm by majority voting, we know that the correct output is accepted if $\sum_{i=1}^{2 m} y_{i}<m$, since this is only possible when more than half of the voters returned 0 . As a result, the probability of making the right decision is

$$
\mathbb{P}\left(\sum_{i=1}^{2 m} y_{i}<m\right)
$$

Question c) We use the variant of Hoeffding's inequality tailored to bounded random variables. ${ }^{1}$ For any $t \geq 0$, we have

$$
\mathbb{P}\left(\sum_{i=1}^{2 m}\left(y_{i}-\mathbb{E}\left[y_{i}\right]\right) \geq t\right) \leq \exp \left[-\frac{2 t^{2}}{2 m}\right]=\exp \left[-\frac{t^{2}}{m}\right]
$$

where the $2 m$ factor on the right-hand side corresponds to the squared norm of the vector af all ones. Using the formula for the expected value, we obtain

$$
\mathbb{P}\left(\sum_{i=1}^{2 m} y_{i} \geq t+m-2 m \delta\right) \leq \exp \left[-\frac{t^{2}}{m}\right]
$$

Setting $t=2 m \delta>0$ gives

$$
\mathbb{P}\left(\sum_{i=1}^{2 m} y_{i} \geq m\right) \leq \exp \left[-\frac{4 m^{2} \delta^{3}}{m}\right]=\exp \left[-4 m \delta^{2}\right]
$$

Our goal is to guarantee that $\mathbb{P}\left(\sum_{i=1}^{2 m} y_{i}<m\right) \geq 1-p$, which is equivalent to $\mathbb{P}\left(\sum_{i=1}^{2 m} y_{i} \geq m\right)<$ p. Choosing $m>\frac{1}{2 \delta^{2}} \ln \left(\frac{1}{p}\right)$, we see that

$$
\exp \left[-2 m \delta^{2}\right]<\exp \left[-\ln \left(\frac{1}{p}\right)\right]=p,
$$

and the desired conclusion follows.

[^1]
## Solution for Exercise 3.2: Chernoff inequality

Foreword to question a) The equivalence between (1) and (2) can be justified as follows. Suppose that $\lambda \geq 0$ satisfies $\mathbb{P}(y \geq t) \leq \mathbb{E}[\exp (\lambda(y-t))]$ for all $t \in \mathbb{R}$. Then, by taking logarithms on both sides of the inequality (allowing $\ln (0)=-\infty$ and $-\infty \leq-\infty$ ), we obtain

$$
\ln (\mathbb{P}(y \geq t)) \leq \ln (\mathbb{E}[\exp (\lambda(y-t))])
$$

It remains to show that minimizing the right-hand side of the latter inequality over $\lambda$ gives the same bound that that obtained by (1). For any $\mu \geq 0$, using that the exponential function is monotonically increasing gives

$$
\exp \left[\min _{\lambda \geq 0} \ln (\mathbb{E}[\exp (\lambda(y-t))])\right] \leq \exp [\ln (\mathbb{E}[\exp (\mu(y-t))])]=\mathbb{E}[\exp (\mu(y-t))]
$$

Hence

$$
\begin{aligned}
\exp \left[\min _{\lambda \geq 0} \ln (\mathbb{E}[\exp (\lambda(y-t))])\right] & \leq \min _{\mu \geq 0} \mathbb{E}[\exp (\mu(y-t))] \\
\Rightarrow \quad \min _{\lambda \geq 0} \ln (\mathbb{E}[\exp (\lambda(y-t))]) & \leq \ln \left[\min _{\mu \geq 0} \mathbb{E}[\exp (\mu(y-t))]\right] .
\end{aligned}
$$

Conversely, using that $\ln (\cdot)$ is monotonically increasing gives

$$
\begin{aligned}
\ln \left[\min _{\mu \geq 0} \mathbb{E}[\exp (\mu(y-t))]\right] & \leq \ln [\mathbb{E}[\exp (\lambda(y-t))]] \\
\Rightarrow \ln \left[\min _{\mu \geq 0} \mathbb{E}[\exp (\mu(y-t))]\right] & \leq \min _{\lambda \geq 0} \ln [\mathbb{E}[\exp (\lambda(y-t))]]
\end{aligned}
$$

Overall, we have shown that

$$
\ln \left[\min _{\lambda \geq 0} \mathbb{E}[\exp (\mu(y-t))]\right]=\min _{\lambda \geq 0} \ln [\mathbb{E}[\exp (\lambda(y-t))]]
$$

and therefore the two equalities are equivalent.

Question a) Observe that

$$
\min _{\lambda \geq 0} \ln (\mathbb{E}[\exp (\lambda(y-t))])=\min _{\lambda \geq 0} \ln (\mathbb{E}[\exp (\lambda y)])-\lambda t
$$

Since $t \mapsto-\lambda t$ is a linear function of $\lambda$, it is convex, and thus it suffices to show that $\lambda \mapsto$ $\ln (\mathbb{E}[\exp (\lambda y)])$ is convex on $\mathbb{R}_{+}$to arrive at the desired result.

To this end, we consider two values $\lambda_{1} \geq 0$ and $\lambda_{2} \geq 0$, as well as $\alpha \in[0,1]$. Our goal is to prove

$$
\ln \left(\mathbb{E}\left[\exp \left(\left(\alpha \lambda_{1}+(1-\alpha) \lambda_{2}\right) y\right)\right]\right) \leq \alpha \ln \left(\mathbb{E}\left[\exp \left(\lambda_{1} y\right)\right]\right)+(1-\alpha) \ln \left(\mathbb{E}\left[\exp \left(\lambda_{2} y\right)\right]\right)
$$

If $\alpha \in\{0,1\}$, the result trivially holds. Otherwise, we apply Minkowski's inequality to $\mathbb{E}\left[\exp \left(\left(\alpha \lambda_{1}+(1-\alpha) \lambda_{2}\right) y\right)\right]=$ $\mathbb{E}\left[\exp \left(\alpha \lambda_{1} y\right) \times \exp \left((1-\alpha) \lambda_{2} y\right)\right]$. Using $Y=\alpha \lambda_{1} y, Z=(1-\alpha) \lambda_{2} y, p=\frac{1}{\alpha}$ and $q=\frac{1}{1-\alpha}$. We obtain

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\left(\alpha \lambda_{1}+(1-\alpha) \lambda_{2}\right) y\right)\right] & \leq \mathbb{E}\left[\exp \left(\alpha \lambda_{1} y\right)^{1 / \alpha}\right]^{\alpha} \mathbb{E}\left[\exp \left((1-\alpha) \lambda_{2} y\right)^{\alpha}\right]^{1-\alpha} \\
& =\mathbb{E}\left[\exp \left(\lambda_{1} y\right)\right]^{\alpha} \mathbb{E}\left[\exp \left(\lambda_{2} y\right)\right]^{1-\alpha},
\end{aligned}
$$

Taking logarithms then leads to

$$
\ln \left(\mathbb{E}\left[\exp \left(\left(\alpha \lambda_{1}+(1-\alpha) \lambda_{2}\right) y\right)\right]\right) \leq \alpha \ln \left(\mathbb{E}\left[\exp \left(\lambda_{1} y\right)\right]\right)+(1-\alpha) \ln \left(\mathbb{E}\left[\exp \left(\lambda_{2} y\right)\right]\right)
$$

showing that the function is indeed convex.

Question b) By applying $\ln \mathbb{E}[\exp (\lambda Y)]=\frac{\lambda^{2}}{2}$ in the inequality derived in question a), we obtain that

$$
\ln [\mathbb{P}(Y \geq t)] \leq \min _{\lambda \geq 0}\left\{-\lambda t+\frac{\lambda^{2}}{2}\right\}
$$

The objective function of the right-hand side optimization problem is a convex quadratic in $\lambda$, and its minimum is attained at $\lambda^{*}=\max \{t, 0\}$. Indeed, if $t \geq 0$, then the minimum is $\lambda^{*}=t \geq 0$, while if $t<0$, we have $-\lambda t+\frac{\lambda^{2}}{2} \geq 0$, hence $\lambda^{*} \geq 0$ is a minimum ${ }^{2}$. When $t \geq 0$, the inequality gives

$$
\ln [\mathbb{P}(Y \geq t)]] \leq-\frac{t^{2}}{2}
$$

and thus $\mathbb{P}(Y \geq t) \leq \exp \left(-t^{2} / 2\right)$. Since a probability is always bounded above by 1 and $\exp \left(-t^{2} / 2\right)>$ $\exp (0)=1$ for any $t<0$, the inequality remains valid when $t<0$, proving the desired result.

## Solution for Exercise 3.3: Chernoff inequalities for vectors

Question a) Consider the function

$$
\begin{aligned}
& f: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
& \boldsymbol{y} \mapsto \exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}+\mu\right) .
\end{aligned}
$$

such that $f(\boldsymbol{y}) \geq 1_{\mathcal{C}}(\boldsymbol{y})$ for every $\boldsymbol{y} \in \mathbb{R}^{n}$. By definition of the indicator function, it implies that

$$
\begin{aligned}
f(\boldsymbol{y}) \geq 1_{\mathcal{C}}(\boldsymbol{y}) \forall \boldsymbol{y} \in \mathbb{R}^{n} & \Leftrightarrow\left\{\begin{array}{l}
f(\boldsymbol{y}) \geq 1 \quad \forall \boldsymbol{y} \in \mathcal{C} \\
f(\boldsymbol{y}) \geq 0 \quad \forall \boldsymbol{y} \notin \mathcal{C}
\end{array}\right. \\
& \Leftrightarrow \begin{cases}\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}+\mu\right) \geq 1 & \forall \boldsymbol{y} \in \mathcal{C} \\
\left.\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}+\mu\right)\right) \geq 0\end{cases} \\
& \Leftrightarrow \boldsymbol{y} \notin \mathcal{C}
\end{aligned}
$$

where the latter equivalence comes from the fact that an exponential is always positive, hence the inequalities for $\boldsymbol{y} \notin \mathcal{C}$ always hold.

Question b) Taking logarithms on both sides of (3) gives

$$
\ln (\mathbb{P}(\boldsymbol{z} \in \mathcal{C})) \leq \ln \left(\mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}+\mu\right)\right]\right)
$$

We want to compute the pair $(\boldsymbol{\lambda}, \mu)$ that yields the tightest bound. From question a), we know that such a pair must satisfy $-\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y} \leq \mu \forall \boldsymbol{y} \in \mathcal{C}$. As a result, the best lower bound is given as an optimal value of an optimization problem over $\boldsymbol{\lambda}$ and $\mu$, namely

$$
\min _{\boldsymbol{\lambda}, \mu}\left\{\ln \left(\mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}+\mu\right)\right]\right) \mid-\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y} \leq \mu \forall \boldsymbol{y} \in \mathcal{C}\right\}
$$

Using $\ln \left(\mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}+\mu\right)\right]\right)=\ln \left(\mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}\right)\right]\right)+\mu$, the problem can be rewritten as

$$
\min _{\boldsymbol{\lambda}, \mu}\left\{\mu+\ln \left(\mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}\right)\right]\right) \mid-\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y} \leq \mu \forall \boldsymbol{y} \in \mathcal{C}\right\}
$$

[^2]Now, since the objective function minimizes $\mu$ and $\mu \geq-\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y} \forall \boldsymbol{y} \in \mathcal{C}$, the optimal $\mu$ for a given $\boldsymbol{\lambda}$ is $\max _{\boldsymbol{y} \in \mathcal{C}}-\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}$. As a result, we can reformulate the problem as a problem involving only $\boldsymbol{\lambda}$ :

$$
\begin{aligned}
& \min _{\boldsymbol{\lambda}, \mu}\left\{\mu+\ln \left(\mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}\right)\right]\right) \mid-\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y} \leq \mu \forall \boldsymbol{y} \in \mathcal{C}\right\} \\
= & \min _{\boldsymbol{\lambda}} \min _{\mu}\left\{\mu+\ln \left(\mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}\right)\right]\right) \mid-\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y} \leq \mu \forall \boldsymbol{y} \in \mathcal{C}\right\} \\
= & \min _{\boldsymbol{\lambda}}\left\{\max _{\boldsymbol{x} \in \mathcal{C}}\left[-\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{x}\right]+\ln \left(\mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}\right)\right]\right)\right\} \\
= & \min _{\boldsymbol{\lambda}}\left\{S_{\mathcal{C}}(-\boldsymbol{\lambda})+\ln \left(\mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}\right)\right]\right)\right\} .
\end{aligned}
$$

As a result, we must have

$$
\ln (\mathbb{P}(\boldsymbol{y} \in \mathcal{C})) \leq \min _{\boldsymbol{\lambda}}\left\{S_{\mathcal{C}}(-\boldsymbol{\lambda})+\ln \left(\mathbb{E}\left[\exp \left(\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{y}\right)\right]\right)\right\}
$$

Question c) Using the property of the Gaussian vector $\boldsymbol{y}$, we have

$$
\ln (\mathbb{P}(\boldsymbol{y} \in \mathcal{C})) \leq \min _{\boldsymbol{\lambda}}\left\{S_{\mathcal{C}}(-\boldsymbol{\lambda})+\frac{\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{\lambda}}{2}\right\}
$$

Combining this with the result of question b) gives

$$
\begin{aligned}
\min _{\boldsymbol{\lambda} \in \mathbb{R}^{m}}\left\{S_{\mathcal{C}}(-\boldsymbol{\lambda})+\frac{\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{\lambda}}{2}\right\} & =\min _{\boldsymbol{\lambda} \in \mathbb{R}^{m}}\left\{\min _{\boldsymbol{u} \in \mathbb{R}^{\ell}}\left\{\boldsymbol{b}^{\mathrm{T}} \boldsymbol{u} \mid \boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}+\boldsymbol{\lambda}=\mathbf{0}, \boldsymbol{u} \geq \mathbf{0}\right\}+\frac{\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{\lambda}}{2}\right\} \\
& =\min _{\substack{\boldsymbol{\lambda} \in \mathbb{R}^{m} \\
\mu \in \mathbb{R}^{\ell}}}\left\{\left.\boldsymbol{b}^{\mathrm{T}} \boldsymbol{u}+\frac{\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{\lambda}}{2} \right\rvert\, \boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}+\boldsymbol{\lambda}=\mathbf{0}, \boldsymbol{u} \geq \mathbf{0}\right\}
\end{aligned}
$$

which is the desired result.
d)i) The problem (6) is convex and its feasible set has a nonempty interior. Slater's condition holds, implying that strong duality holds between problem (6) and its dual. To obtain the latter, we write the dual function

$$
d(\boldsymbol{\nu})= \begin{cases}\min _{\boldsymbol{u} \in \mathbb{R}^{\ell}} \boldsymbol{b}^{\mathrm{T}} \boldsymbol{u}+\frac{\left\|\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}\right\|^{2}}{2}-\boldsymbol{\nu}^{\mathrm{T}} \boldsymbol{u} & \text { if } \boldsymbol{\nu} \geq \mathbf{0} \\ -\infty & \text { otherwise }\end{cases}
$$

For $\boldsymbol{\nu} \geq \mathbf{0}$, the optimal solution of the minimization in $\boldsymbol{u}$ satisfies

$$
\boldsymbol{b}-\boldsymbol{\nu}+\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}^{*}=\mathbf{0} \quad \Rightarrow \quad d(\boldsymbol{\nu})=-\frac{1}{2}\left\|\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}^{*}\right\|^{2}
$$

Letting $\boldsymbol{x}=-\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}^{*} \in \mathbb{R}^{m}$, we get ${ }^{3}$

$$
d(\boldsymbol{\nu})=-\frac{\|\boldsymbol{x}\|^{2}}{2}, \quad-\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}=\boldsymbol{\nu}
$$

${ }^{3}$ Recall that $\|x\|=\|-x\|$ for any vector $\boldsymbol{x}$.

The dual problem maximize $\boldsymbol{\nu}_{\boldsymbol{\nu} \geq \mathbf{0}} d(\boldsymbol{\nu})$ can be written as

$$
\begin{array}{ll}
\operatorname{maximize} & -\frac{\|\boldsymbol{x}\|^{2}}{2} \\
\text { s.t. } & -\boldsymbol{A x}+\boldsymbol{b}=\boldsymbol{\nu},
\end{array}
$$

that can be rewritten as a problem over $\boldsymbol{x}$ and $\boldsymbol{\nu}$

$$
\begin{array}{ll}
\operatorname{maximize}_{\boldsymbol{x} \in \mathbb{R}^{m}, \boldsymbol{\nu} \in \mathbb{R}^{\ell}} & -\frac{\|\boldsymbol{x}\|^{2}}{2} \\
\text { s.t. } & -\boldsymbol{A x}+\boldsymbol{b}=\boldsymbol{\nu} \\
& \boldsymbol{\nu} \geq \mathbf{0} .
\end{array}
$$

Eliminating further the variable $\boldsymbol{\nu}$, we finally arrive at

$$
\begin{array}{ll}
\operatorname{maximize} & -\frac{\|\boldsymbol{x}\|^{2}}{2} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}^{2} \leq \boldsymbol{b} .
\end{array}
$$

d)ii) The dual problem (7) can be reformulated as

$$
\underset{x \in \mathbb{R}^{m}}{\operatorname{minimize}} \frac{1}{2}\|\boldsymbol{x}\|^{2} \quad \text { s.t. } \quad \boldsymbol{x} \in \mathcal{C} .
$$

Consider the equivalent reformulation

$$
\underset{x \in \mathbb{R}^{m}}{\operatorname{minimize}}\|x\| \quad \text { s.t. } \quad x \in \mathcal{C} .
$$

The optimal value of this problem corresponds to the definition of the distance between the zero vector and the set $\mathcal{C}$, i.e.

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{m}}\{\|\boldsymbol{x}\| \mid \boldsymbol{x} \in \mathcal{C}\}=\operatorname{dist}(\mathbf{0}, \mathcal{C})
$$

As a result,

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{m}} \frac{1}{2}\|\boldsymbol{x}\|^{2} \quad \text { s.t. } \quad \boldsymbol{x} \in \mathcal{C}=\frac{1}{2} \operatorname{dist}(\mathbf{0}, \mathcal{C})^{2} .
$$

and the optimal value of problem (7) is given by $-\frac{1}{2} \operatorname{dist}(\mathbf{0}, \mathcal{C})^{2}$.
d)iii) Since strong duality holds, the optimal value of problem (6) is $-\frac{1}{2} \operatorname{dist}(\mathbf{0}, \mathcal{C})^{2}$, as is that of problem (4). Plugging this result into inequalities (4) and (3), we obtain

$$
\ln (\mathbb{P}(\boldsymbol{y} \in \mathcal{C})) \leq-\frac{1}{2} \operatorname{dist}(\mathbf{0}, \mathcal{C})^{2}
$$

and

$$
\mathbb{P}(\boldsymbol{y} \in \mathcal{C}) \leq \exp \left[-\frac{1}{2} \operatorname{dist}(\mathbf{0}, \mathcal{C})^{2}\right]
$$

respectively.
NB: This is yet another concentration inequality.


[^0]:    *Last updated December 20, 2023.

[^1]:    ${ }^{1}$ In its general form, this inequality states that for any set of variables $y_{1}, \ldots, y_{N}$ that are bounded in $[m, M]$ and any $t \geq 0$, we have

    $$
    \mathbb{P}\left(\sum_{i=1}^{N}\left(y_{i}-\mathbb{E}\left[y_{i}\right]\right) \geq t\right) \leq \exp \left[-\frac{2 t^{2}}{N(M-m)^{2}}\right]
    $$

[^2]:    ${ }^{2}$ One can also establish this using the optimality conditions from Chapter 2.

