
Exercises on Chapter 3: Statistics and concentration
inequalities
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November-December 2024∗

Exercise 3.1: With and without concentration inequalities

Suppose that we toss a fair coin (i.e. that has probability 1
2 of landing on heads or tails) N times in

an independent fashion. Let hN be the number of times we obtain heads.

a) Shown that E [hN ] = N
2 and Var [hN ] = N

4 .
Hint: Use the fact that if x and y are two independent random variables, then
E [x+ y] = E [x] + E [y] and Var [x+ y] = Var [x] + Var [y].

b) Apply Chebyshev’s inequality to bound the probability of getting at least 3N
4 heads.

c) For this particular problem, one can derive the following Hoeffding-type inequality1:

P (hN ≥ t) ≤ exp

[
−(2t−N)2

2N

]
.

Using this inequality, provide another bound on the probability of getting at least 3N
4 heads.

Compare this inequality with that of question b).

∗Version 4, last updated December 10, 2024.
1To be described in class.



2 Tuto 03 MDS - 2024/2025

Exercise 3.2: Chernoff inequalities

In this exercise, we study another type of concentration inequalities than that seen in class called
Chernoff bounds or Chernoff inequalities. In the general form, this inequality states that for any
random variable y and any t ∈ R, we have

P (y ≥ t) ≤ min
λ≥0

E [exp(λ(y − t))] . (1)

a) Proving (1) amounts to proving

ln (P (y ≥ t)) ≤ min
λ≥0

ln (E [exp(λ(y − t))]) . (2)

Justify that right-hand side of (2) is the solution to a convex optimization problem. To this end,
you may use a generalization of the Hölder inequality from Exercise 1.8, that states that for any
random variables w, z, we have

Ew,z [w z] ≤ Ew [|w|p]1/p Ez [|z|q]1/q

any pair (p, q) such that p > 1, q > 1 and 1
p + 1

q = 1.

b) Suppose that y ∼ N (0, 1). In that case, one can show that ln (E [exp(λy)]) = λ2

2 . Use this
property to deduce from (1) that

P (y ≥ t) ≤ exp

(
− t2

2

)
for any t > 0. What inequality do you obtain for t ≤ 0?

Exercise 3.3: Boosting

Suppose that we perform 2m independent runs of a randomized algorithm designed to solve a decision
problem (e.g. is a given convex optimization problem feasible?). Because of the randomness, the
algorithm is only correct with probability 1

2 + δ for some δ ∈ (0, 1). To make a decision, we choose
the output returned by the majority of runs.

a) Let yi be a Bernoulli random variable such that yi = 1 if the ith run returns the wrong output,
and yi = 0 otherwise. Compute E [yi].

b) Express the probability of making the right conclusion from the output of the 2m instances.

c) Let p ∈ [0, 1). Using Hoeffding’s inequality, show that the probability of making the right
conclusion is at least 1− p when

m ≥ 1

4δ2
ln

(
1

p

)
.
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Exercise 3.4: Chernoff inequalities for vectors

In this exercise, we seek a Chernoff-type bound in a vector setting. More precisely, we consider a
Gaussian vector y ∼ N (0Rn , In) and a nonempty polyhedral set defined by C = {x ∈ Rn|Ax ≤ b}
with A ∈ Rℓ×n and b ∈ Rℓ. Our goal is to provide a bound of the form

P (y ∈ C) ≤ E
[
exp

(
λTy + µ

)]
(3)

where λ ∈ Rn and µ ∈ R. As in the previous exercise, we would like to obtain the tightest bound
possible.

a) Using that P (y ∈ C) = E [1C(y)], justify that any pair (λ, µ) ∈ Rn×R satisfying exp
(
λTy + µ

)
≥

1C(y) for every y ∈ Rn also satisfies (3) with −λTy ≤ µ ∀y ∈ C.

b) By considering logarithms, show that

ln (P (y ∈ C)) ≤ min
λ∈Rn

{
SC(−λ) + lnE

[
eλ

Tz
]}

, (4)

with SC : y 7→ maxx∈C y
Tx.

c) Since y is Gaussian, we have that ln(E
[
exp

(
λTy

)]
) = λTλ

2 for any λ. In addition, we can show
that

SC(y) = min
u∈Rℓ

{
bTu

∣∣ATu = y,u ≥ 0
}

for any y ∈ Rn. Show then that the right-hand side of (4) corresponds to the optimal value of
the quadratic problem

minimizeλ∈Rn,v∈Rℓ bTv + ∥λ∥2
2

s.t. v ≥ 0,

ATv + λ = 0.

(5)

d) The problem (5) is equivalent to

minimize
v∈Rℓ

bTv +
∥ATv∥2

2
s.t. v ≥ 0, (6)

where we reformulated the problem so as to eliminate the λ variables while preserving the same
optimal value.

i) Using that same reformulation technique, show that the dual of problem (6) is equivalent to

maximizex∈Rm −∥x∥2
2

s.t. Ax ≤ b.
(7)

ii) Justify that the optimal value of problem (7) is−1
2dist(0, C)

2, where dist(a, C) = miny∈C ∥y−
a∥.

iii) Strong duality holds for problem (6). Using this property, provide a closed-form expression
for (4) and (3).
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Exercise 3.5: Random projections (Exam 2023-2024)

In this exercise, we consider projections on random subspaces. Letting r ≤ n, we define a random
projection matrix P ∈ Rr×n such that the coefficients of P are i.i.d. and follow a normal distribution
N
(
0, 1r
)
. Recall that the probability density function associated with y ∼ N

(
0, 1r
)
is

p(y) =

√
r

2π
exp

(
−r y2

2

)
∀y ∈ R.

a) Give a formula for the probability density function of a column of P (e.g. the first one).

b) Show that this density is log-concave.

c) Given any vector a ∈ Rn and any tolerance ϵ ∈ (0, 1], it can be shown (using Johnson-
Lindenstrauss-type arguments) that

P (∥Pa∥ ≤ (1− ϵ)∥a∥) ≤ exp
(
−c rϵ2

)
, (8)

where c > 0 is a constant independent of r,n and ϵ.

i) Using (8), find a sufficient condition for the bound

P (∥Pa∥ > (1− ϵ)∥a∥) ≥ 0.99 (9)

to hold.

ii) Use the condition from the previous question to determine r̄ such that (9) holds whenever
r ≥ r̄.

iii) Suppose that we cannot generate matrices using r = r̄, but that we can generate matrices
P ∈ Rr×n with r < r̄ such that

P (∥Pa∥ > (1− ϵ)∥a∥) ≥ 0.6.

How many such matrices would be necessary to ensure that one of them satisfies
∥Pa∥ > (1− ϵ)∥a∥ with probability at least 0.99?

Exercise 3.6: Erdös-Rényi graphs

Graphs generated using the Erdös-Rényi model G(n, p) are undirected random graphs with n vertices.
For every possible edge (i, j), the probability that (i, j) is an edge of the graph is p, independently
of the other edges.

a) For any vertex i ∈ {1, . . . , n}, we let di denote the degree of this vertex, that is the number of
edges that include that vertex. Express di as a sum of n− 1 independent Bernoulli variables.

b) Show then that E [di] = d̄ := (n− 1)p.
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c) A version of Chernoff’s inequality states that if x1, . . . , xN are independent Bernoulli variables
with parameters p1, . . . , pN , then

∀δ ∈ (0, 1], P

∣∣∣∣∣∣
N∑
j=1

xj − µ

∣∣∣∣∣∣ ≥ δµ

 ≤ 2 exp(−cµδ2), (10)

where µ = E
[∑N

j=1 xj

]
and c > 0. Use (10) to show that for any i = 1, . . . , n, we have

P
(
|di − d̄| ≥ 0.1d

)
≤ 2 exp(−Cd̄) (11)

where C > 0 is a universal constant.

d) Use the inequality (11) to find a bound on

P
(
∃i ∈ {1, . . . , n}, |di − d̄| ≥ 0.1d̄

)
.

e) Conclude that there exists a constant ĉ > 0 such that

P
(
max
1≤i≤n

|di − d̄| < 0.1d

)
≥ 0.9 when p ≥ ĉ

ln(n)

n− 1
.

NB: This result shows that when d̄ = O(ln(n)), the degrees of all vertices is approximately equal
to d̄.
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Solutions

Solution for Exercise 3.1: Without concentration inequalities

a) Let xn be a random variable equal to 1 if we got heads on the nth throw and 0 otherwise. Then
hN =

∑N
i=1 xn, and by independence, we have:

E [hN ] =
N∑

n=1

E [xn]

=
N∑

n=1

(P (xn = 1)× 1 + P (xn = 0)× 0)

=
N∑

n=1

P (xn = 1) =
N

2
.

Similarly, noting that E [xn] =
1
2 , we

Var [hN ] =

N∑
n=1

Var [xn]

=

N∑
n=1

(E
[
x2n
]
− E [xn]

2)

=
N∑

n=1

(
P (xn = 1)− 1

4

)

=
N∑

n=1

1

4
=

N

4
.

b) Chebyshev’s inequality applied to a random variable x states that

P (|x− E [x] | ≥ t) ≤ Var [x]

t2

for any t > 0. When applied to hN , this inequality becomes

P
(
|hN − N

2
| ≥ t

)
≤ N

4t2
.

Our probability of interest is P
(
hN ≥ 3N

4

)
, that satisfies

P
(
hN ≥ 3N

4

)
= P

(
hN − N

2
≥ N

4

)
≤ P

(
|hN − N

2
| ≥ N

4

)
.

Using Chebyshev’s inequality with t = N
4 , we arrive at

P
(
hN ≥ 3N

4

)
≤ 4

N
.
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c) Using t = 3N
4 immediately gives

P
(
hN ≥ 3N

4

)
≤ exp

[
−N

8

]
.

As a result, the bound obtained through Hoeffding’s inequality goes significantly faster to 0 than
the bound obtained through Chebyshev’s inequality (exponentially fast rather than linearly fast).

Solution for Exercise 3.2: Chernoff inequality

Foreword to question a) The equivalence between (1) and (2) can be justified as follows. Suppose
that λ ≥ 0 satisfies P (y ≥ t) ≤ E [exp (λ(y − t))] for all t ∈ R. Then, by taking logarithms on both
sides of the inequality (allowing ln(0) = −∞ and −∞ ≤ −∞), we obtain

ln (P (y ≥ t)) ≤ ln (E [exp (λ(y − t))]) .

It remains to show that minimizing the right-hand side of the latter inequality over λ gives the same
bound that that obtained by (1). For any µ ≥ 0, using that the exponential function is monotonically
increasing gives

exp

[
min
λ≥0

ln (E [exp (λ(y − t))])

]
≤ exp [ln (E [exp (µ(y − t))])] = E [exp (µ(y − t))] .

Hence

exp [minλ≥0 ln (E [exp (λ(y − t))])] ≤ minµ≥0 E [exp (µ(y − t))]

⇒ minλ≥0 ln (E [exp (λ(y − t))]) ≤ ln [minµ≥0 E [exp (µ(y − t))]] .

Conversely, using that ln(·) is monotonically increasing gives

ln [minµ≥0 E [exp (µ(y − t))]] ≤ ln [E [exp (λ(y − t))]]

⇒ ln [minµ≥0 E [exp (µ(y − t))]] ≤ minλ≥0 ln [E [exp (λ(y − t))]]

Overall, we have shown that

ln

[
min
λ≥0

E [exp (µ(y − t))]

]
= min

λ≥0
ln [E [exp (λ(y − t))]] ,

and therefore the two equalities are equivalent.

Question a) Observe that

min
λ≥0

ln (E [exp (λ(y − t))]) = min
λ≥0

ln (E [exp(λy)])− λt.

Since t 7→ −λt is a linear function of λ, it is convex, and thus it suffices to show that λ 7→
ln (E [exp(λy)]) is convex on R+ to arrive at the desired result.
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To this end, we consider two values λ1 ≥ 0 and λ2 ≥ 0, as well as α ∈ [0, 1]. Our goal is to
prove

ln (E [exp((αλ1 + (1− α)λ2)y)]) ≤ α ln (E [exp(λ1y)]) + (1− α) ln (E [exp(λ2y)]) .

If α ∈ {0, 1}, the result trivially holds. Otherwise, we apply Minkowski’s inequality to E [exp((αλ1 + (1− α)λ2)y)] =
E [exp(αλ1y)× exp((1− α)λ2y)]. Using Y = αλ1y, Z = (1 − α)λ2y, p = 1

α and q = 1
1−α . We

obtain

E [exp((αλ1 + (1− α)λ2)y)] ≤ E
[
exp(αλ1y)

1/α
]α

E [exp((1− α)λ2y)
α]1−α

= E [exp(λ1y)]
α E [exp(λ2y)]

1−α ,

Taking logarithms then leads to

ln (E [exp((αλ1 + (1− α)λ2)y)]) ≤ α ln (E [exp(λ1y)]) + (1− α) ln (E [exp(λ2y)]) ,

showing that the function is indeed convex.

Question b) By applying lnE [exp(λy)] = λ2

2 in the inequality derived in question a), we obtain
that

ln [P (y ≥ t)] ≤ min
λ≥0

{
−λt+

λ2

2

}
The objective function of the right-hand side optimization problem is a convex quadratic in λ, and
its minimum is attained at λ∗ = max{t, 0}. Indeed, if t ≥ 0, then the minimum is λ∗ = t ≥ 0, while

if t < 0, we have −λt+ λ2

2 ≥ 0, hence λ∗ ≥ 0 is a minimum2. When t ≥ 0, the inequality gives

ln [P (y ≥ t)]] ≤ − t2

2
,

and thus P (Y ≥ t) ≤ exp(−t2/2).

When t < 0, the inequality gives

ln [P (y ≥ t)]] ≤ 0,

hence the result becomes P (y ≥ t) ≤ 1, which is a correct bound (yet of little use since a probability
is always bounded above by 1).

Solution for Exercise 3.3: Boosting

Question a) A straightforward calculation gives

E [Yi] = 1× P (Yi = 1) + 0× P (Yi = 0) = 1−
(
1

2
+ δ

)
=

1

2
− δ.

2One can also establish this using the optimality conditions from Chapter 2.
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Question b) Since the decision is made on 2m runs of the algorithm by majority voting, we know
that the correct output is accepted if

∑2m
i=1 yi < m, since this is only possible when more than half

of the voters returned 0. As a result, the probability of making the right decision is

P

(
2m∑
i=1

yi < m

)
.

Question c) We use the variant of Hoeffding’s inequality tailored to bounded random variables. 3

For any t ≥ 0, we have

P

(
2m∑
i=1

(yi − E [yi]) ≥ t

)
≤ exp

[
− 2t2

2m

]
= exp

[
− t2

m

]
,

where the 2m factor on the right-hand side corresponds to the squared norm of the vector of all
ones. Using the formula for the expected value, we obtain

P

(
2m∑
i=1

yi ≥ t+m− 2mδ

)
≤ exp

[
− t2

m

]
.

Setting t = 2mδ > 0 gives

P

(
2m∑
i=1

yi ≥ m

)
≤ exp

[
−4m2δ3

m

]
= exp

[
−4mδ2

]
Our goal is to guarantee that P

(∑2m
i=1 yi < m

)
≥ 1−p, which is equivalent to P

(∑2m
i=1 yi ≥ m

)
<

p. Choosing m > 1
2δ2

ln
(
1
p

)
, we see that

exp
[
−2mδ2

]
< exp

[
− ln

(
1
p

)]
= p,

and the desired conclusion follows.

Solution for Exercise 3.4: Chernoff inequalities for vectors

Question a) Consider the function

f : Rn → R
y 7→ exp(λTy + µ).

3In its general form, this inequality states that for any set of variables y1, . . . , yN that are bounded in [m,M ] and
any t ≥ 0, we have

P

(
N∑
i=1

(yi − E [yi]) ≥ t

)
≤ exp

[
− 2t2

N(M −m)2

]
.
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such that f(y) ≥ 1C(y) for every y ∈ Rn. By definition of the indicator function, it implies that

f(y) ≥ 1C(y) ∀y ∈ Rn ⇔
{

f(y) ≥ 1 ∀y ∈ C
f(y) ≥ 0 ∀y /∈ C

⇔
{

exp(λTy + µ) ≥ 1 ∀y ∈ C
exp(λTy + µ)) ≥ 0 ∀y /∈ C

⇔ −λTy ≤ µ ∀y ∈ C,
where the latter equivalence comes from the fact that an exponential is always positive, hence the
inequalities for y /∈ C always hold.

Question b) Taking logarithms on both sides of (3) gives

ln (P (z ∈ C)) ≤ ln
(
E
[
exp

(
λTy + µ

)])
.

We want to compute the pair (λ, µ) that yields the tightest bound. From question a), we know that
such a pair must satisfy −λTy ≤ µ ∀y ∈ C. As a result, the best lower bound is given as an optimal
value of an optimization problem over λ and µ, namely

min
λ,µ

{
ln
(
E
[
exp

(
λTy + µ

)])∣∣−λTy ≤ µ ∀y ∈ C
}
.

Using ln
(
E
[
exp

(
λTy + µ

)])
= ln

(
E
[
exp

(
λTy

)])
+ µ, the problem can be rewritten as

min
λ,µ

{
µ+ ln

(
E
[
exp

(
λTy

)])∣∣−λTy ≤ µ ∀y ∈ C
}
.

Now, since the objective function minimizes µ and µ ≥ −λTy ∀y ∈ C, the optimal µ for a given λ
is maxy∈C −λTy. As a result, we can reformulate the problem as a problem involving only λ:

min
λ,µ

{
µ+ ln

(
E
[
exp

(
λTy

)])∣∣−λTy ≤ µ ∀y ∈ C
}

= min
λ

min
µ

{
µ+ ln

(
E
[
exp

(
λTy

)])∣∣−λTy ≤ µ ∀y ∈ C
}

= min
λ

{
max
x∈C

[−λTx] + ln(E
[
exp

(
λTy

)]
)

}
= min

λ

{
SC(−λ) + ln(E

[
exp

(
λTy

)]
)
}
.

As a result, we must have

ln (P (y ∈ C)) ≤ min
λ

{
SC(−λ) + ln(E

[
exp

(
λTy

)]
)
}
.

Question c) Using the property of the Gaussian vector y, we have

ln (P (y ∈ C)) ≤ min
λ

{
SC(−λ) +

λTλ

2

}
.

Combining this with the result of question b) gives

min
λ∈Rm

{
SC(−λ) + λTλ

2

}
= min

λ∈Rm

{
min
u∈Rℓ

{
bTu

∣∣ ATu+ λ = 0,u ≥ 0
}
+ λTλ

2

}
= min

λ∈Rm

µ∈Rℓ

{
bTu+ λTλ

2

∣∣∣ ATu+ λ = 0,u ≥ 0
}
,

which is the desired result.
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d)i) The problem (6) is convex and its feasible set has a nonempty interior. Slater’s condition
holds, implying that strong duality holds between problem (6) and its dual. To obtain the latter, we
write the dual function

d(ν) =

{
minu∈Rℓ bTu+ ∥ATu∥2

2 − νTu if ν ≥ 0
−∞ otherwise.

For ν ≥ 0, the optimal solution of the minimization in u satisfies

b− ν +AATu∗ = 0 ⇒ d(ν) = −1

2
∥ATu∗∥2.

Letting x = −ATu∗ ∈ Rm, we get 4

d(ν) = −∥x∥2

2
, −Ax+ b = ν.

The dual problem maximizeν≥0 d(ν) can be written as

maximizeν≥0 −∥x∥2
2

s.t. −Ax+ b = ν,

that can be rewritten as a problem over x and ν

maximizex∈Rm,ν∈Rℓ −∥x∥2
2

s.t. −Ax+ b = ν
ν ≥ 0.

Eliminating further the variable ν, we finally arrive at

maximizex∈Rm −∥x∥2
2

s.t. Ax ≤ b.

d)ii) The dual problem (7) can be reformulated as

minimize
x∈Rm

1

2
∥x∥2 s.t. x ∈ C.

Consider the equivalent reformulation

minimize
x∈Rm

∥x∥ s.t. x ∈ C.

The optimal value of this problem corresponds to the definition of the distance between the zero
vector and the set C, i.e.

min
x∈Rm

{∥x∥ | x ∈ C} = dist(0, C).

As a result,

min
x∈Rm

1

2
∥x∥2 s.t. x ∈ C =

1

2
dist(0, C)2.

and the optimal value of problem (7) is given by −1
2dist(0, C)

2.

4Recall that ∥x∥ = ∥ − x∥ for any vector x.
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d)iii) Since strong duality holds, the optimal value of problem (6) is −1
2dist(0, C)

2, as is that of
problem (4). Plugging this result into inequalities (4) and (3), we obtain

ln (P (y ∈ C)) ≤ −1

2
dist(0, C)2

and

P (y ∈ C) ≤ exp

[
−1

2
dist(0, C)2

]
,

respectively.
NB: This is yet another concentration inequality.

Solution for Exercise 3.5: Random projections

a) For any column pj of P , the distribution of pj is given by the joint distribution of its elements.
Since those are i.i.d., the joint distribution is given by the product of the marginal distributions.

∀p ∈ Rn, p(p) =
( r

2π

)n/2
exp

(
−r

2

n∑
i=1

[p]2i

)

b) It suffices to note that for all p ∈ Rn, we have

− ln(p(p)) = − ln

(( r

2π

)n/2
exp

(
−r

2

n∑
i=1

[p]2i

))

=
n

2
ln

(
2π

r

)
+

r

2

n∑
i=1

[p]2i

=
n

2
ln

(
2π

r

)
+

r

2
∥p∥2.

Since the latter function is a convex (quadratic) function of p, it follows that p is a log-concave
function.

c) i) Using
P (∥Pa∥ > (1− ϵ)∥a∥) = 1− P (∥Pa∥ ≤ (1− ϵ)∥a∥) ,

(9) can be equivalently formulated as

1− P (∥Pa∥ ≤ (1− ϵ)∥a∥) ≥ 0.99 ⇔ P (∥Pa∥ ≤ (1− ϵ)∥a∥) ≤ 0.01.

Per (8), it suffices to guarantee that exp
(
−c rϵ2

)
≤ 0.01 in order to establish (9).

ii) We have

exp
(
−c rϵ2

)
≤ 0.01

−c r ϵ2 ≤ ln(0.01)

c r ϵ2 ≥ − ln(0.01)

r ≥ − ln(0.01)

cϵ2
=

ln(100)

cϵ2
.

Letting r̄ = ln(100)
cϵ2

, it follows that (9) holds for r ≥ r̄.
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iii) Suppose that we generate random matrices P 1, . . . ,Pm of size r × n independently. By
assumption, it follows that

P (∥P ia∥ ≥ (1− ϵ)∥a∥) ≥ 0.6 ∀i = 1, . . . ,m.

Then,

P (∃i = 1, . . . ,m, ∥P ia∥ ≥ (1− ϵ)∥a∥) = 1− P (∀i = 1, . . . ,m, ∥P ia∥ < (1− ϵ)∥a∥)

= 1−
m∏
i=1

P (∥P ia∥ < (1− ϵ)∥a∥)

= 1−
m∏
i=1

(1− P (∥P ia∥ ≥ (1− ϵ)∥a∥))

≥ 1−
m∏
i=1

(1− 0.6) = 1− 0.4m.

In order to guarantee that the probability is greater than 0.99, it suffices to have

1− 0.4m ≥ 0.99 ⇔ m ≥ ln(0.01)

ln(0.4)
≈ 5.02.

By drawing 6 independent matrices, one is thus guaranteed that one of them satisfies the
desired accuracy.

Solution for Exercise 3.6: Erdös-Rényi graphs

a) For any j ∈ {1, . . . , n}, j ̸= i, let eij be the random variable representing whether the edge (i, j)
is included in the graph. Then eij is a Bernoulli variable of parameter p, and di =

∑
1≤j≤n
i ̸=j

eij ,

with all eijs being independent by assumption.

b) A straightforward calculation gives

E [di] = E

∑
j ̸=i

eij

 =
∑
j ̸=i

E [eij ] =
∑
j ̸=i

p = (n− 1)p = d̄.

c) Applying (10) with N = n− 1, {xj} = {eij}, pj = p, µ = d̄ and δ = 0.1 gives

P
(
|di − d̄| ≥ 0.1d

)
≤ 2 exp(−cd̄0.12),

hence (11) holds with C = 0.01c.

d) By a union bound argument, Use this inequality to find a bound on

P
(
∃i ∈ {1, . . . , n}, |di − d̄| ≥ 0.1d̄

)
≤

n∑
i=1

P
(
|di − d̄| ≥ 0.1d̄

)
≤

n∑
i=1

2 exp(−Cd̄) = 2n exp(−Cd̄),

where the last inequality follows from (11).
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e) It suffices to note that

P
(
max
1≤i≤n

|di − d̄| < 0.1d

)
≥ 0.9 ⇔ 1− P

(
∃i ∈ {1, . . . , n}, |di − d̄| ≥ 0.1d̄

)
≥ 0.9

⇔ P
(
∃i ∈ {1, . . . , n}, |di − d̄| ≥ 0.1d̄

)
≤ 0.1.

According to the previous question, the latter result holds provided

2n exp(−Cd̄) ≤ 0.1 ⇔ d̄ ≥ ln(20n)

C
⇔ p ≥ ln(20) + ln(n)

C(n− 1)
.

Thus, assuming (for instance) p ≥ 1+ln(20)
C

ln(n)
n−1 gives the desired conclusion with ĉ = 1+ln(20)

C .


