
Machine learning for optimization (5/5)

Clément W. Royer

M2 MODO - 2025/2026

January 28, 2026 (updated)

C. W. Royer ML Optim. 5/5 M2 MODO 1



Today’s session

One topic left: ML for MILP.
Issue: Find an easy idea to replicate in a lab session.
Many interesting ideas, not enough time/computational capacity!

Fix Go back to a lecture mode (for the first part of the session).

Course project
Finish the three lab sessions (if not done yet).
Study the suggested papers.

C. W. Royer ML Optim. 5/5 M2 MODO 2



Roadmap

1 Branch-and-Bound for MILP

2 Learning tasks for MILP

C. W. Royer ML Optim. 5/5 M2 MODO 3



Roadmap

1 Branch-and-Bound for MILP

2 Learning tasks for MILP

C. W. Royer ML Optim. 5/5 M2 MODO 4



Mixed-integer linear programs

minimizex∈Rn cTx
s.t. Ax ≥ b

xj ∈ Z≥0 ∀j ∈ A
xj ∈ {0, 1} ∀j ∈ B
xj ≥ 0 ∀j ∈ C

A ∈ Qm×n, b ∈ Qm, c ∈ Qn.
A ∪ B = I: Discrete variables (integer+binary).
A, B, C partition of {1, . . . , n}.

LP relaxation
Replace integer constraints by

xj ≥ 0 ∀j ∈ A
xj ∈ [0, 1] ∀j ∈ B.

C. W. Royer ML Optim. 5/5 M2 MODO 5



Mixed-integer linear programs

minimizex∈Rn cTx
s.t. Ax ≥ b

xj ∈ Z≥0 ∀j ∈ A
xj ∈ {0, 1} ∀j ∈ B
xj ≥ 0 ∀j ∈ C

A ∈ Qm×n, b ∈ Qm, c ∈ Qn.
A ∪ B = I: Discrete variables (integer+binary).
A, B, C partition of {1, . . . , n}.

LP relaxation
Replace integer constraints by

xj ≥ 0 ∀j ∈ A
xj ∈ [0, 1] ∀j ∈ B.

C. W. Royer ML Optim. 5/5 M2 MODO 5



Solvers for MILP

Most state-of-the-art solvers use variants of the branch-and-bound
paradigm.

Build a tree of LP relaxations based on adding continuous bounds on
variables one at a time.

At every iteration, use the quantities

z̄: Upper bound on the optimal value (from an integer feasible solution.
z: Lower bound from the best optimal value obtained by LP
relaxations.

Stops when

1 z = z̄, or
2 all nodes from the tree have been explored, or
3 time out.

C. W. Royer ML Optim. 5/5 M2 MODO 6



Solvers for MILP

Most state-of-the-art solvers use variants of the branch-and-bound
paradigm.

Build a tree of LP relaxations based on adding continuous bounds on
variables one at a time.
At every iteration, use the quantities

z̄: Upper bound on the optimal value (from an integer feasible solution.
z: Lower bound from the best optimal value obtained by LP
relaxations.

Stops when

1 z = z̄, or
2 all nodes from the tree have been explored, or
3 time out.

C. W. Royer ML Optim. 5/5 M2 MODO 6



Solvers for MILP

Most state-of-the-art solvers use variants of the branch-and-bound
paradigm.

Build a tree of LP relaxations based on adding continuous bounds on
variables one at a time.
At every iteration, use the quantities

z̄: Upper bound on the optimal value (from an integer feasible solution.

z: Lower bound from the best optimal value obtained by LP
relaxations.

Stops when

1 z = z̄, or
2 all nodes from the tree have been explored, or
3 time out.

C. W. Royer ML Optim. 5/5 M2 MODO 6



Solvers for MILP

Most state-of-the-art solvers use variants of the branch-and-bound
paradigm.

Build a tree of LP relaxations based on adding continuous bounds on
variables one at a time.
At every iteration, use the quantities

z̄: Upper bound on the optimal value (from an integer feasible solution.
z: Lower bound from the best optimal value obtained by LP
relaxations.

Stops when

1 z = z̄, or
2 all nodes from the tree have been explored, or
3 time out.

C. W. Royer ML Optim. 5/5 M2 MODO 6



Solvers for MILP

Most state-of-the-art solvers use variants of the branch-and-bound
paradigm.

Build a tree of LP relaxations based on adding continuous bounds on
variables one at a time.
At every iteration, use the quantities

z̄: Upper bound on the optimal value (from an integer feasible solution.
z: Lower bound from the best optimal value obtained by LP
relaxations.

Stops when

1 z = z̄, or
2 all nodes from the tree have been explored, or
3 time out.

C. W. Royer ML Optim. 5/5 M2 MODO 6



Solvers for MILP

Most state-of-the-art solvers use variants of the branch-and-bound
paradigm.

Build a tree of LP relaxations based on adding continuous bounds on
variables one at a time.
At every iteration, use the quantities

z̄: Upper bound on the optimal value (from an integer feasible solution.
z: Lower bound from the best optimal value obtained by LP
relaxations.

Stops when
1 z = z̄, or

2 all nodes from the tree have been explored, or
3 time out.

C. W. Royer ML Optim. 5/5 M2 MODO 6



Solvers for MILP

Most state-of-the-art solvers use variants of the branch-and-bound
paradigm.

Build a tree of LP relaxations based on adding continuous bounds on
variables one at a time.
At every iteration, use the quantities

z̄: Upper bound on the optimal value (from an integer feasible solution.
z: Lower bound from the best optimal value obtained by LP
relaxations.

Stops when
1 z = z̄, or
2 all nodes from the tree have been explored, or

3 time out.

C. W. Royer ML Optim. 5/5 M2 MODO 6



Solvers for MILP

Most state-of-the-art solvers use variants of the branch-and-bound
paradigm.

Build a tree of LP relaxations based on adding continuous bounds on
variables one at a time.
At every iteration, use the quantities

z̄: Upper bound on the optimal value (from an integer feasible solution.
z: Lower bound from the best optimal value obtained by LP
relaxations.

Stops when
1 z = z̄, or
2 all nodes from the tree have been explored, or
3 time out.

C. W. Royer ML Optim. 5/5 M2 MODO 6



Example (can do subproblems with Python!)

minimizex∈R2 −(3x1 + x2)
s.t. −x1 + x2 ≤ 2

8x1 + x2 ≤ 19
x1, x2 ≥ 0
x1, x2 ∈ Z.

C. W. Royer ML Optim. 5/5 M2 MODO 7



Inside an MILP solver

Preprocessing Reduce the number of constraints and/or variables.
→ Fundamental in practice, empirical in nature.

Branching selection Given an LP relaxation solution xLP and several
variables xLPj ∈ Q \ Z, decide which one to branch on→ No generic
rule.
Node selection Given several LP relaxations/tree nodes, which one to
solve first?
Cutting planes Strengthen LP relaxations by adding inequality
constraints (cuts)
→ Cuts at root node or at every node (Branch-and-cut).
→ Solvers have a cut management strategy (too many cuts slow down
a solve).
Primal heuristics Used to find integer feasible solutions quickly.

SCIP has ≥ 2000 parameters for configuration!

C. W. Royer ML Optim. 5/5 M2 MODO 8



Inside an MILP solver

Preprocessing Reduce the number of constraints and/or variables.
→ Fundamental in practice, empirical in nature.
Branching selection Given an LP relaxation solution xLP and several
variables xLPj ∈ Q \ Z, decide which one to branch on→ No generic
rule.

Node selection Given several LP relaxations/tree nodes, which one to
solve first?
Cutting planes Strengthen LP relaxations by adding inequality
constraints (cuts)
→ Cuts at root node or at every node (Branch-and-cut).
→ Solvers have a cut management strategy (too many cuts slow down
a solve).
Primal heuristics Used to find integer feasible solutions quickly.

SCIP has ≥ 2000 parameters for configuration!

C. W. Royer ML Optim. 5/5 M2 MODO 8



Inside an MILP solver

Preprocessing Reduce the number of constraints and/or variables.
→ Fundamental in practice, empirical in nature.
Branching selection Given an LP relaxation solution xLP and several
variables xLPj ∈ Q \ Z, decide which one to branch on→ No generic
rule.
Node selection Given several LP relaxations/tree nodes, which one to
solve first?

Cutting planes Strengthen LP relaxations by adding inequality
constraints (cuts)
→ Cuts at root node or at every node (Branch-and-cut).
→ Solvers have a cut management strategy (too many cuts slow down
a solve).
Primal heuristics Used to find integer feasible solutions quickly.

SCIP has ≥ 2000 parameters for configuration!

C. W. Royer ML Optim. 5/5 M2 MODO 8



Inside an MILP solver

Preprocessing Reduce the number of constraints and/or variables.
→ Fundamental in practice, empirical in nature.
Branching selection Given an LP relaxation solution xLP and several
variables xLPj ∈ Q \ Z, decide which one to branch on→ No generic
rule.
Node selection Given several LP relaxations/tree nodes, which one to
solve first?
Cutting planes Strengthen LP relaxations by adding inequality
constraints (cuts)
→ Cuts at root node or at every node (Branch-and-cut).
→ Solvers have a cut management strategy (too many cuts slow down
a solve).

Primal heuristics Used to find integer feasible solutions quickly.

SCIP has ≥ 2000 parameters for configuration!

C. W. Royer ML Optim. 5/5 M2 MODO 8



Inside an MILP solver

Preprocessing Reduce the number of constraints and/or variables.
→ Fundamental in practice, empirical in nature.
Branching selection Given an LP relaxation solution xLP and several
variables xLPj ∈ Q \ Z, decide which one to branch on→ No generic
rule.
Node selection Given several LP relaxations/tree nodes, which one to
solve first?
Cutting planes Strengthen LP relaxations by adding inequality
constraints (cuts)
→ Cuts at root node or at every node (Branch-and-cut).
→ Solvers have a cut management strategy (too many cuts slow down
a solve).
Primal heuristics Used to find integer feasible solutions quickly.

SCIP has ≥ 2000 parameters for configuration!

C. W. Royer ML Optim. 5/5 M2 MODO 8



Inside an MILP solver

Preprocessing Reduce the number of constraints and/or variables.
→ Fundamental in practice, empirical in nature.
Branching selection Given an LP relaxation solution xLP and several
variables xLPj ∈ Q \ Z, decide which one to branch on→ No generic
rule.
Node selection Given several LP relaxations/tree nodes, which one to
solve first?
Cutting planes Strengthen LP relaxations by adding inequality
constraints (cuts)
→ Cuts at root node or at every node (Branch-and-cut).
→ Solvers have a cut management strategy (too many cuts slow down
a solve).
Primal heuristics Used to find integer feasible solutions quickly.

SCIP has ≥ 2000 parameters for configuration!

C. W. Royer ML Optim. 5/5 M2 MODO 8



ML for MILP

General goal: Learn one parameter/heuristic at a time!

Many possibilities≡Many research papers!
Most notable publications: Surveys!

Applying ML to learn an MILP solver component
Requires a learning task.
Requires data.
Requires to design a model to learn from data.

C. W. Royer ML Optim. 5/5 M2 MODO 9



ML for MILP

General goal: Learn one parameter/heuristic at a time!
Many possibilities≡Many research papers!

Most notable publications: Surveys!

Applying ML to learn an MILP solver component
Requires a learning task.
Requires data.
Requires to design a model to learn from data.

C. W. Royer ML Optim. 5/5 M2 MODO 9



ML for MILP

General goal: Learn one parameter/heuristic at a time!
Many possibilities≡Many research papers!
Most notable publications: Surveys!

Applying ML to learn an MILP solver component
Requires a learning task.
Requires data.
Requires to design a model to learn from data.

C. W. Royer ML Optim. 5/5 M2 MODO 9



ML for MILP

General goal: Learn one parameter/heuristic at a time!
Many possibilities≡Many research papers!
Most notable publications: Surveys!

Applying ML to learn an MILP solver component
Requires a learning task.
Requires data.
Requires to design a model to learn from data.

C. W. Royer ML Optim. 5/5 M2 MODO 9



Roadmap

1 Branch-and-Bound for MILP

2 Learning tasks for MILP

C. W. Royer ML Optim. 5/5 M2 MODO 10



Learning paradigms

Supervised learning Given data {(Xi, Yi)}i=1,...,n, learn a model f(·;θ)
by solving

minimize
θ

1

n

n∑
i=1

ℓ (f(Xi;θ), Yi)

where ℓ is a loss function.

Reinforcement learning Sequential decision making

At each time t, given state st, an agent performs action at and
receives reward Rt.
Goal: Learn a policy π for the agent that maps states to actions by
maximizing reward:

maximize
π

E

[
T∑
t=1

γt−1Rt(π)

]
,

where γ ∈ [0, 1].

C. W. Royer ML Optim. 5/5 M2 MODO 11



Learning paradigms

Supervised learning Given data {(Xi, Yi)}i=1,...,n, learn a model f(·;θ)
by solving

minimize
θ

1

n

n∑
i=1

ℓ (f(Xi;θ), Yi)

where ℓ is a loss function.

Reinforcement learning Sequential decision making
At each time t, given state st, an agent performs action at and
receives reward Rt.

Goal: Learn a policy π for the agent that maps states to actions by
maximizing reward:

maximize
π

E

[
T∑
t=1

γt−1Rt(π)

]
,

where γ ∈ [0, 1].

C. W. Royer ML Optim. 5/5 M2 MODO 11



Learning paradigms

Supervised learning Given data {(Xi, Yi)}i=1,...,n, learn a model f(·;θ)
by solving

minimize
θ

1

n

n∑
i=1

ℓ (f(Xi;θ), Yi)

where ℓ is a loss function.

Reinforcement learning Sequential decision making
At each time t, given state st, an agent performs action at and
receives reward Rt.
Goal: Learn a policy π for the agent that maps states to actions by
maximizing reward:

maximize
π

E

[
T∑
t=1

γt−1Rt(π)

]
,

where γ ∈ [0, 1].
C. W. Royer ML Optim. 5/5 M2 MODO 11



Learning paradigms (’ed)

Imitation learning
Reinforcement learning where the best action for a state is provided by
an expert.
Quite popular in the literature on ML for MILP.

Online/offline learning
Offline Learn once and for all by training, then run the solver with
what you learned (inference).
Online Do training as the solver proceeds
More adaptive, but expensive to run and implement.

C. W. Royer ML Optim. 5/5 M2 MODO 12



Learning paradigms (’ed)

Imitation learning
Reinforcement learning where the best action for a state is provided by
an expert.
Quite popular in the literature on ML for MILP.

Online/offline learning
Offline Learn once and for all by training, then run the solver with
what you learned (inference).
Online Do training as the solver proceeds
More adaptive, but expensive to run and implement.

C. W. Royer ML Optim. 5/5 M2 MODO 12



Examples of learning tasks

Primal heuristics
Given a family of heuristics, learn how to schedule them for a specific
instance (offline).

Predict a partial assignment of integer variable by

supervised learning on known feasible sets.
supervised learning on known optimal values.

Cutting planes
Practice: Given an LP relaxation, generate various cuts, select some of
them to remove fractional solutions.
Idea: Learn cut selection from imitation/reinforcement learning.

Node selection
Classical approach: Use best known lower bound (best first search), no
recent advances.
Idea: Learn offline by supervised learning.

C. W. Royer ML Optim. 5/5 M2 MODO 13



Examples of learning tasks

Primal heuristics
Given a family of heuristics, learn how to schedule them for a specific
instance (offline).
Predict a partial assignment of integer variable by

supervised learning on known feasible sets.
supervised learning on known optimal values.

Cutting planes
Practice: Given an LP relaxation, generate various cuts, select some of
them to remove fractional solutions.
Idea: Learn cut selection from imitation/reinforcement learning.

Node selection
Classical approach: Use best known lower bound (best first search), no
recent advances.
Idea: Learn offline by supervised learning.

C. W. Royer ML Optim. 5/5 M2 MODO 13



Examples of learning tasks

Primal heuristics
Given a family of heuristics, learn how to schedule them for a specific
instance (offline).
Predict a partial assignment of integer variable by

supervised learning on known feasible sets.
supervised learning on known optimal values.

Cutting planes
Practice: Given an LP relaxation, generate various cuts, select some of
them to remove fractional solutions.
Idea: Learn cut selection from imitation/reinforcement learning.

Node selection
Classical approach: Use best known lower bound (best first search), no
recent advances.
Idea: Learn offline by supervised learning.

C. W. Royer ML Optim. 5/5 M2 MODO 13



Examples of learning tasks

Primal heuristics
Given a family of heuristics, learn how to schedule them for a specific
instance (offline).
Predict a partial assignment of integer variable by

supervised learning on known feasible sets.
supervised learning on known optimal values.

Cutting planes
Practice: Given an LP relaxation, generate various cuts, select some of
them to remove fractional solutions.
Idea: Learn cut selection from imitation/reinforcement learning.

Node selection
Classical approach: Use best known lower bound (best first search), no
recent advances.
Idea: Learn offline by supervised learning.

C. W. Royer ML Optim. 5/5 M2 MODO 13



Learning branching rules

Strong branching (classical)

At node i: zLPi is the optimal LP relaxation value, and
zLPi,k+/zLPi,k− those obtained by branching on variable xk.
Score of xk: Computed from zLPi,k+ − zLPi and zLPi,k− − zLPi.
Deciding with strong branching can reduce the size of the branch and
bound tree.
Downside: Must solve extra LPs.

Learning branching strategies (examples)

Learn to predict strong branching scores offline or online.
Learn variable rankings according to their scores.
Learn branching rules from scratch.

C. W. Royer ML Optim. 5/5 M2 MODO 14



Learning branching rules

Strong branching (classical)

At node i: zLPi is the optimal LP relaxation value, and
zLPi,k+/zLPi,k− those obtained by branching on variable xk.
Score of xk: Computed from zLPi,k+ − zLPi and zLPi,k− − zLPi.
Deciding with strong branching can reduce the size of the branch and
bound tree.
Downside: Must solve extra LPs.

Learning branching strategies (examples)

Learn to predict strong branching scores offline or online.
Learn variable rankings according to their scores.
Learn branching rules from scratch.

C. W. Royer ML Optim. 5/5 M2 MODO 14



Branching and Graph Neural Networks

From Gasse et al ’19 Learn strong branching rules from an expert
(imitation).

State (of solver): Current node and LP relaxation, upper/lower
bounds z̄/z.

Actions: Strong branching.
Policy: Probability vector of branching on variable k.
GNN model: 3 layers, convolutions+fully connected+ReLU (not so
different from our lab session).

Key aspects
One benchmark: 10000 random instances for training, solved with
SCIP to get best action.
Re-implementation of strong branching from SCIP.
Training takes >3 hours.

C. W. Royer ML Optim. 5/5 M2 MODO 15



Branching and Graph Neural Networks

From Gasse et al ’19 Learn strong branching rules from an expert
(imitation).

State (of solver): Current node and LP relaxation, upper/lower
bounds z̄/z.
Actions: Strong branching.

Policy: Probability vector of branching on variable k.
GNN model: 3 layers, convolutions+fully connected+ReLU (not so
different from our lab session).

Key aspects
One benchmark: 10000 random instances for training, solved with
SCIP to get best action.
Re-implementation of strong branching from SCIP.
Training takes >3 hours.

C. W. Royer ML Optim. 5/5 M2 MODO 15



Branching and Graph Neural Networks

From Gasse et al ’19 Learn strong branching rules from an expert
(imitation).

State (of solver): Current node and LP relaxation, upper/lower
bounds z̄/z.
Actions: Strong branching.
Policy: Probability vector of branching on variable k.

GNN model: 3 layers, convolutions+fully connected+ReLU (not so
different from our lab session).

Key aspects
One benchmark: 10000 random instances for training, solved with
SCIP to get best action.
Re-implementation of strong branching from SCIP.
Training takes >3 hours.

C. W. Royer ML Optim. 5/5 M2 MODO 15



Branching and Graph Neural Networks

From Gasse et al ’19 Learn strong branching rules from an expert
(imitation).

State (of solver): Current node and LP relaxation, upper/lower
bounds z̄/z.
Actions: Strong branching.
Policy: Probability vector of branching on variable k.
GNN model: 3 layers, convolutions+fully connected+ReLU (not so
different from our lab session).

Key aspects
One benchmark: 10000 random instances for training, solved with
SCIP to get best action.
Re-implementation of strong branching from SCIP.
Training takes >3 hours.

C. W. Royer ML Optim. 5/5 M2 MODO 15



Additional tasks (non-exhaustive list)

MIP 2023 challenge: Learn efficient solver configurations from past
instances.
CPLEX: Predict whether an MIQP should be linearized before solving
with CPLEX or not (2018).
Predicting Lagrange multipliers for Lagrangian relaxation of MILPs
(2024).

C. W. Royer ML Optim. 5/5 M2 MODO 16



Data for learning and MILP

Challenges
Highly task-dependent
Ex) To learn branching rules, need instances for which optimality is
hard to certify.
Instance distributions/generators needed (not standard).

→ Surveys are valuable but not all datasets are easy to find.

Recent developments: Platforms/packages
Ecole (for reinforcement learning+SCIP, especially).
MIPlearn (+ CPLEX/Gurobi/XPRESS), currently version 0.4.
...

C. W. Royer ML Optim. 5/5 M2 MODO 17



Data for learning and MILP

Challenges
Highly task-dependent
Ex) To learn branching rules, need instances for which optimality is
hard to certify.
Instance distributions/generators needed (not standard).

→ Surveys are valuable but not all datasets are easy to find.

Recent developments: Platforms/packages
Ecole (for reinforcement learning+SCIP, especially).
MIPlearn (+ CPLEX/Gurobi/XPRESS), currently version 0.4.
...

C. W. Royer ML Optim. 5/5 M2 MODO 17



References

Y. Bengio, A. Lodi, A. Prouvost, Machine learning for combinatorial
optimization: A methodological tour d’horizon, European Journal on
Operational Research, 2021.
P. Bonami, A. Lodi, G. Zarpellon, Learning a classification of
mixed-integer quadratic programming problems, CPAIOR 2018.
F. Demelas, J. Le Roux, M. Lacroix, A. Parmentier, Predicting
Lagrangian Multipliers for Mixed Integer Linear Programs, ICML 2024.
M. Gasse, D. Chétélat, N. Ferroni, L. Charlin, A. Lodi, Exact
combinatorial optimization with graph convolutional neural networks,
NeurIPS 2019.
L. Scavuzzo, K. Aardal, A. Lodi, N. Yorke-Smith, Machine learning
augmented branch-and-bound for mixed integer linear programming,
Mathematical Programming, 2024.

C. W. Royer ML Optim. 5/5 M2 MODO 18



Typical venues for such research

Machine Learning conferences:
NeurIPS, ICML, ICLR.
AAAI, AISTATS,...

Optimization journals:
Mathematical Programming, European Journal on Operational
Research.
INFORMS Journal on Computing, Open Journal on Mathematical
Optimization, ...

C. W. Royer ML Optim. 5/5 M2 MODO 19



Back to the course (project)

Our to-do list
Make sure you understand how branch-and-bound works.
Pick two papers (look at them all, possibly).
Digest their methodology.
Compare these approaches as part of the project.

C. W. Royer ML Optim. 5/5 M2 MODO 20


	Introduction
	Branch-and-Bound for MILP
	Learning tasks for MILP

