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Today's session

@ One topic left: ML for MILP.
@ Issue: Find an easy idea to replicate in a lab session.
@ Many interesting ideas, not enough time/computational capacity!

Fix Go back to a lecture mode (for the first part of the session).

Course project
@ Finish the three lab sessions (if not done yet).

@ Study the suggested papers.
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© Branch-and-Bound for MILP

© Learning tasks for MILP

C. W. Royer ML Optim. 5/5 M2 MODO 3



© Branch-and-Bound for MILP
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Mixed-integer linear programs

minimizeg,crn ctx

s.t. Ax > b
ijZzo Vie A
z;€{0,1} VjeB
.’E]ZO Vjel

e AcQm™ be Q™ ceQ".
e AU B =1Z: Discrete variables (integer+binary).
e A, B, C partition of {1,...,n}.
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Mixed-integer linear programs

minimizegere ¢l

s.t. Ax > b
ijZzo Vie A
z;€{0,1} VjeB
.’E]ZO Vjel

e AcQm™ be Q™ ceQ".
e AU B =1Z: Discrete variables (integer+binary).
e A, B, C partition of {1,...,n}.

LP relaxation

Replace integer constraints by

:L'jZO VjieA
z; €10,1] VjeB.
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Solvers for MILP

Most state-of-the-art solvers use variants of the branch-and-bound
paradigm. ‘

@ Build a tree of LP relaxations based on adding continuous bounds on
variables one at a time.
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Solvers for MILP
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Solvers for MILP

Most state-of-the-art solvers use variants of the branch-and-bound
paradigm.

@ Build a tree of LP relaxations based on adding continuous bounds on
variables one at a time.
@ At every iteration, use the quantities
e z: Upper bound on the optimal value (from an integer feasible solution.
e z: Lower bound from the best optimal value obtained by LP
relaxations.
@ Stops when
Q=% or
@ all nodes from the tree have been explored, or
© time out.
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Example (can do subproblems with Python!)

minimizegcrz  — (371 + x2)

s.t. —x1 + T2 < 2
8x1 + 2 < 19
I1,x2 2 0
X1, T2 e 7.
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Inside an MILP solver

e Preprocessing Reduce the number of constraints and/or variables.
— Fundamental in practice, empirical in nature.
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Inside an MILP solver

Preprocessing Reduce the number of constraints and/or variables.
— Fundamental in practice, empirical in nature.

Branching selection Given an LP relaxation solution 2" and several

variables LL‘]LP € Q\ Z, decide which one to branch on— No generic
rule.

Node selection Given several LP relaxations/tree nodes, which one to
solve first?

Cutting planes Strengthen LP relaxations by adding inequality
constraints (cuts)

— Cuts at root node or at every node (Branch-and-cut).

— Solvers have a cut management strategy (too many cuts slow down
a solve).

Primal heuristics Used to find integer feasible solutions quickly.

SCIP has > 2000 parameters for configuration! )
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ML for MILP

@ General goal: Learn one parameter/heuristic at a time!
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ML for MILP

@ General goal: Learn one parameter/heuristic at a time!
@ Many possibilities=Many research papers!

@ Most notable publications: Surveys!

Applying ML to learn an MILP solver component

@ Requires a learning task.
@ Requires data.

@ Requires to design a model to learn from data.
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© Learning tasks for MILP
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Learning paradigms

Supervised learning Given data {(X;,Y;)}i=1,...», learn a model f(-;0)
by solving

m|n|m|ze—Z€ (X:;0),Y;)

where /¢ is a loss function.
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@ At each time ¢, given state s;, an agent performs action a; and
receives reward R;.
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Learning paradigms

Supervised learning Given data {(X;,Y;)}i=1,...», learn a model f(-;0)
by solving

m|n|m|ze—Z€ (X:;0),Y;)

where /¢ is a loss function.

Reinforcement learning Sequential decision making

@ At each time ¢, given state s;, an agent performs action a; and
receives reward R;.

@ Goal: Learn a policy 7 for the agent that maps states to actions by
maximizing reward:

T
Z ’)/tilRt(ﬂ')

t=1

maximize E
™

where v € [0, 1].
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Learning paradigms ('ed)

Imitation learning

@ Reinforcement learning where the best action for a state is provided by
an expert.

@ Quite popular in the literature on ML for MILP.
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Learning paradigms ('ed)

Imitation learning

@ Reinforcement learning where the best action for a state is provided by
an expert.

@ Quite popular in the literature on ML for MILP.

Online/offline learning

@ Offline Learn once and for all by training, then run the solver with
what you learned (inference).

@ Online Do training as the solver proceeds
More adaptive, but expensive to run and implement.
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Examples of learning tasks

Primal heuristics

@ Given a family of heuristics, learn how to schedule them for a specific
instance (offline).
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Examples of learning tasks
Primal heuristics

@ Given a family of heuristics, learn how to schedule them for a specific
instance (offline).

@ Predict a partial assignment of integer variable by

o supervised learning on known feasible sets.
e supervised learning on known optimal values.

Cutting planes

@ Practice: Given an LP relaxation, generate various cuts, select some of
them to remove fractional solutions.

o |dea: Learn cut selection from imitation/reinforcement learning.
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Examples of learning tasks
Primal heuristics

@ Given a family of heuristics, learn how to schedule them for a specific
instance (offline).
@ Predict a partial assignment of integer variable by

o supervised learning on known feasible sets.
e supervised learning on known optimal values.

Cutting planes

@ Practice: Given an LP relaxation, generate various cuts, select some of
them to remove fractional solutions.

o |dea: Learn cut selection from imitation/reinforcement learning.

v

Node selection

@ Classical approach: Use best known lower bound (best first search), no
recent advances.

@ |dea: Learn offline by supervised learning. )
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Learning branching rules

Strong branching (classical)

@ At node i: zIFi is the optimal LP relaxation value, and
2Pkt [ 2 LPik= those obtained by branching on variable .
Score of z;: Computed from zLPkt — 2 LP gnd ZLPok— _ LB

@ Deciding with strong branching can reduce the size of the branch and
bound tree.

@ Downside: Must solve extra LPs.
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Learning branching rules
Strong branching (classical)

@ At node i: zIFi is the optimal LP relaxation value, and
2Pkt [ 2 LPik= those obtained by branching on variable .
Score of z;: Computed from zLPkt — 2 LP gnd ZLPok— _ LB

@ Deciding with strong branching can reduce the size of the branch and
bound tree.

@ Downside: Must solve extra LPs.

Learning branching strategies (examples)

@ Learn to predict strong branching scores offline or online.

@ Learn variable rankings according to their scores.

@ Learn branching rules from scratch.
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Branching and Graph Neural Networks

From Gasse et al '19 Learn strong branching rules from an expert
(imitation).
@ State (of solver): Current node and LP relaxation, upper/lower
bounds z/z.

Key aspects

@ One benchmark: 10000 random instances for training, solved with
SCIP to get best action.

@ Re-implementation of strong branching from SCIP.

@ Training takes >3 hours.

ML Optim. 5/5 M2 MODO



Branching and Graph Neural Networks

From Gasse et al '19 Learn strong branching rules from an expert
(imitation).
@ State (of solver): Current node and LP relaxation, upper/lower
bounds z/z.

@ Actions: Strong branching.

Key aspects

@ One benchmark: 10000 random instances for training, solved with
SCIP to get best action.

@ Re-implementation of strong branching from SCIP.

@ Training takes >3 hours.

ML Optim. 5/5 M2 MODO



Branching and Graph Neural Networks

From Gasse et al '19 Learn strong branching rules from an expert
(imitation).
@ State (of solver): Current node and LP relaxation, upper/lower
bounds z/z.
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Branching and Graph Neural Networks

From Gasse et al '19 Learn strong branching rules from an expert
(imitation).
@ State (of solver): Current node and LP relaxation, upper/lower
bounds z/z.
@ Actions: Strong branching.
@ Policy: Probability vector of branching on variable k.

@ GNN model: 3 layers, convolutions+fully connected+ReLU (not so
different from our lab session).

Key aspects

@ One benchmark: 10000 random instances for training, solved with
SCIP to get best action.

@ Re-implementation of strong branching from SCIP.
@ Training takes >3 hours.
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Additional tasks (non-exhaustive list)

e MIP 2023 challenge: Learn efficient solver configurations from past
instances.

e CPLEX: Predict whether an MIQP should be linearized before solving
with CPLEX or not (2018).

@ Predicting Lagrange multipliers for Lagrangian relaxation of MILPs
(2024).
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Data for learning and MILP

Challenges

@ Highly task-dependent
Ex) To learn branching rules, need instances for which optimality is
hard to certify.

@ Instance distributions/generators needed (not standard).

— Surveys are valuable but not all datasets are easy to find.
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Data for learning and MILP

Challenges

@ Highly task-dependent
Ex) To learn branching rules, need instances for which optimality is
hard to certify.

@ Instance distributions/generators needed (not standard).

— Surveys are valuable but not all datasets are easy to find.

Recent developments: Platforms/packages
@ Ecole (for reinforcement learning+SCIP, especially).
e MIPlearn (+ CPLEX/Gurobi/XPRESS), currently version 0.4.
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Typical venues for such research

@ Machine Learning conferences:

e NeurlPS, ICML, ICLR.
o AAAI, AISTATS,...
o Optimization journals:
e Mathematical Programming, European Journal on Operational
Research.
e INFORMS Journal on Computing, Open Journal on Mathematical
Optimization, ...
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Back to the course (project)

Our to-do list

@ Make sure you understand how branch-and-bound works.
Pick two papers (look at them all, possibly).
Digest their methodology.

Compare these approaches as part of the project.
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