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1. Méthodes de gradient

Exercice 1.1: Réseaux linéaires à une couche

(Adapté d’un exercice d’examen 2021-2022.)

Dans cet exercice, on considère un jeu de données à labels scalaires, à savoir {(xi, yi)}ni=1

où xi ∈ Rdx et yi ∈ R pour tout i = 1, . . . , n. On construit une architecture neuronale
très basique avec une seule couche linéaire homogène et pas d’activation, afin de prédire
la valeur yi à partir du vecteur xi : le modèle obtenu est ainsi

hlin(·;w) : Rdx −→ Rdy

x 7−→ W 1x,
(1)

avec W 1 ∈ R1×dx . En posant d = dx et w = WT
1 ∈ Rd, on formule le problème de

déterminer le meilleur modèle comme suit :

minimiser
w∈Rd

f lin(w) :=
1

2n

n∑
i=1

(wTxi − yi)
2. (2)

a) La formulation (2) correspond à un problème bien connu en apprentissage. Quel
est ce problème ?

b) La fonction objectif f lin est C1,1
L (son gradient est L-lipschitzien). Lorsque la valeur

de L est connue, comment celle-ci peut-elle être employée dans un algorithme tel
que la descente de gradient ?

c) Le problème (2) est convexe avec une fonction objectif de classe C1.

i) Que peut-on dire d’un point w̄ tel que ∇f lin(w̄) = 0Rd ?

ii) On peut obtenir une vitesse de convergence pour la descente de gradient sur
ce problème. De quoi s’agit-il, et à quelle(s) quantité(s) s’applique la vitesse
de convergence dans le contexte de cette question ?

d) On suppose dans cette question que les données sont telles que f lin soit µ-fortement
convexe, en plus des propriétés mentionées plus haut.

i) Soient w,v ∈ Rd deux vecteurs tels que ∇f lin(w) = ∇f lin(v) = 0Rd . Que
peut-on dire de v et w?

ii) La vitesse de convergence de la descente de gradient dans ce cas est-elle
meilleure que celle de la question c)ii) ?
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Exercice 1.2: Random reshuffling

On considère un problème de minimisation du risque empirique de la forme

minimiserw∈Rd f(w) =
1

n

n∑
i=1

fi(w), (3)

où chaque fi est de classe C1 et dépend uniquement du ième point d’un jeu de données à n
éléments. On suppose aussi que la fonction objectif f est convexe, et C1,1. On supposera enfin que
le problème (3) possède une solution, et on notera f∗ = minw∈Rd f(w).

On supposera que n est trop large pour que le jeu de données puisse être utilisé en entier lors
d’une itération d’un algorithme, et on considère donc l’algorithme du gradient stochastique

wk+1 = wk − αk∇fik(wk), (4)

avec αk > 0 et ik ∈ {1, . . . , n}. Le but de l’exercice est d’étudier les variantes basées sur le principe
de random reshuffling (dont le principe peut être traduit par rebattre les cartes). Dans ces variantes,
les indices {ik} sont tirés selon une perturbation aléatoire de {1, . . . , n} qui est modifiée toutes les n
itérations. Ainsi, à l’itération 0, une permutation aléatoire de {1, . . . , n} définit {i0, . . . , in−1}, puis
à l’itération n, une autre permutation aléatoire définit {in, . . . , i2n−1}, et ainsi de suite.

a) Rappeler la définition d’une époque (epoch). Avec la stratégie du random reshuffling, que peut-
on garantir sur les points du jeu de données qui ont été tirés au cours de la première époque
?

b) Soit un indice d’itération k correspondant à la première itération d’une époque (càd k = ℓn avec
ℓ ∈ N).

i) Montrer que
Eik [∇fik(wk)] = ∇f(wk).

ii) Les indices ik, . . . , ik+n−1 n’étant pas indépendants, justifier que la propriété de la questions
b)i) n’est pas vérifiée pour les autres itérations de l’époque.

c) Même sans l’hypothèse de la question b)i), on peut montrer des résultats de convergence pour
un bon choix de taille de pas. Pour cela, on regarde la suite des itérés moyens {w̄K}K , avec

w̄K =
1

K + 1

K∑
k=0

wk ∀K ∈ N.

On peut ainsi montrer qu’après nK itérations, on a

E [f (w̄nK)]− f∗ ≤ O
(

1√
nK

)
,

Comparer ce taux avec celui de la descente de gradient pour le même problème.

d) On considère une variantes par fournées du gradient stochastique, pour laquelle les indices sont
tirés suivant une approche par random reshuffling. Si la taille de fournées est de n, quel algorithme
retrouve-t-on ?

e) Comme l’approche par random reshuffling ne tire pas le même indice au sein d’une même époque,
on peut vouloir utiliser de l’information des itérations précédentes pour améliorer le pas. Quelle
technique vue lors des séances proposeriez-vous d’utiliser pour cela ?
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Exercice 1.3 : Perte de Huber

On considère un jeu de données {(xi, yi)}ni=1, où n ≥ 1, xi ∈ Rd avec d ≥ 1 et yi ∈ R. On cherche
un modèle linéaire qui prédise au mieux chaque yi à partir du xi correspondant. On définit donc une
famille de modèles paramétrée par w ∈ Rd comme suit :

hw : Rd → R
x 7→ xTw =

∑d
i=1[x]i[w]i.

Pour un modèle hw, on considèrera que ce modèle prédit parfaitement yi à partir de xi si on a
ℓ (hw(xi)− yi) = ℓ

(
xT
i w − yi

)
= 0, où ℓ : R → R est la fonction de perte de Huber définie par :

ℓ(t) =

{
1
2 t

2 if |t| < 1
|t| − 1

2 otherwise.
(5)

Cette fonction se comporte comme t 7→ t2

2 pour |t| < 1 et comme t 7→ |t| lorsque |t| est très grand.
Contrairement à ce que son expression peut suggérer, ℓ est continûment dérivable (ou de classe C1)

L’expression ℓ (hw(xi)− yi) représente l’erreur du modèle en (xi, yi), et on cherche un modèle
(c’est-à-dire un vecteur w ∈ Rd) tel que la somme de ces erreurs soit minimale. On considère donc :

min
w∈Rd

f(w) :=
1

n

n∑
i=1

ℓ(xT
i w − yi). (6)

a) Justifier que 0 est un minorant de (6). Est-ce sa valeur minimale ?

b) Le gradient de f en w ∈ Rd est donné par

∇f(w) =
1

n

n∑
i=1

ℓ′(xT
i w − yi)xi, (7)

avec

ℓ′(t) =


1 si t > 1
t si |t| ≤ 1
−1 si t < −1.

Écrire (en pseudo-code) l’itération de descente de gradient avec une taille de pas constante α et
en utilisant la formule (7). Que devient cette itération si le point courant est un minimum local ?

c) Une constante de Lipschitz pour ∇f est L = 1
n

∑n
i=1 ∥xi∥2. Comment utiliser cette constante

pour définir la longueur de pas ? Lorsque L est inconnue, donner deux choix possibles pour la
taille de pas.

d) La fonction f s’écrit f = 1
n

∑n
i=1 fi, où fi(w) = ℓ(xT

i w − yi). Le gradient fi en w est

∇fi(w) = ℓ′(xT
i w − yi)xi.

Écrire (en pseudo-code) l’itération du gradient stochastique pour ce problème sans choix partic-
ulier de taille de pas.

e) On considère ici que notre unité de coût est un accès à un xi. Quel est le coût d’une itération
de descente de gradient, et celui d’une itération de gradient stochastique ?
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f) Quand on applique le gradient stochastique avec une longueur de pas fixe, on peut parfois observer
que la méthode génère des itérés de norme de plus en plus grande, ce qui conduit à un dépassement
de mémoire pour l’algorithme. Fournir une justification à ce phénomène.

g) On considère une variante par fournées (batch) du gradient stochastique, dans laquelle on choisit
un sous-ensemble de nb composantes dans la somme finie de (6).

i) Écrire l’itération correspondante (en pseudo-code).

ii) Si nb correspond au nombre de processeurs disponibles pour les calculs, quel peut être l’intérêt
de choisir nb comme taille de fournée ?

iii) Donner un autre intérêt plus général des méthodes par fournées en comparaison avec l’algorithme
du gradient stochastique basique.

iv) Supposons que l’on utilise plusieurs tailles de fournées et que l’on observe une amélioration
en termes de convergence quand nb augmente pour 1 ≤ nb ≤ n

10 . Supposons que l’on
observe aussi qu’augmenter nb au-delà de n/10 conduise à une dégradation de la performance.
Comment expliquer ces observations ?
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2. Dérivées et différentiation

Exercice 2.1: Une fonction de base

Soit la fonction f : R → R en une dimension donnée par

f(w) =
√
sin(w) + sin(w). (8)

a) Représenter le calcul de f(w) au moyen d’un digraphe acyclique.

b) Écrire les instructions pour calculer f ′(w) en mode forward et utiliser ces instructions pour évaluer
f ′(π2 ).

c) Écrire les instructions pour calculer f ′(w) en mode backward et utiliser ces instructions pour
évaluer f ′(π2 ).

Exercice 2.2: Une fonction type GRU

Soit la fonction f : Rh×dx × Rdy×h × Rdx × Rdy → R définie par

f(W 1,W 2,x,y) =
1

2
∥W 2σ(W 1x)− y∥22 , (9)

où σ(v) = [tanh(vi)]i=1,...,h. La dérivée de tanh est ∂ tanh
∂t (t) = 1 + tanh(t)2.

a) Donner une formule pour le gradient ∇xf = ∂f
∂x

T
.

b) Donner une formule pour la dérivée ∂f
∂W 1

. Quelles sont les dimensions de cet objet ?


