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1. Méthodes de gradient

Exercice 1.1: Réseaux linéaires a une couche

(Adapté d’'un exercice d'examen 2021-2022.)

Dans cet exercice, on considére un jeu de données a labels scalaires, a savoir {(z;, i)},
ot &; € R% et y; € R pour tout s = 1,...,n. On construit une architecture neuronale
trés basique avec une seule couche linéaire homogeéne et pas d'activation, afin de prédire
la valeur y; a partir du vecteur x; : le modele obtenu est ainsi

R (sw): R% — R
x — Wi,

(1)

avec W € R'% _ En posant d = d, et w = W;F € R?, on formule le probleme de
déterminer le meilleur modéle comme suit :

. 1 &
SO lin T 2
minimiser w) = — w T, — ;) . 2
nimiser £ (w) := o ;1( i~ Vi) (2)
a) La formulation (2) correspond a un probleme bien connu en apprentissage. Quel
est ce probleme ?

b) La fonction objectif f“" est Ci’l (son gradient est L-lipschitzien). Lorsque la valeur
de L est connue, comment celle-ci peut-elle étre employée dans un algorithme tel
que la descente de gradient ?

c) Le probleme (2) est convexe avec une fonction objectif de classe C!.

i) Que peut-on dire d'un point w tel que V f“"(w) = Oga ?

i) On peut obtenir une vitesse de convergence pour la descente de gradient sur
ce probléme. De quoi s'agit-il, et a quelle(s) quantité(s) s'applique la vitesse
de convergence dans le contexte de cette question ?

d) On suppose dans cette question que les données sont telles que f'" soit u-fortement
convexe, en plus des propriétés mentionées plus haut.

i) Soient w,v € R? deux vecteurs tels que V f!"(w) = V£ (v) = Oga. Que
peut-on dire de v et w?

i) La vitesse de convergence de la descente de gradient dans ce cas est-elle
meilleure que celle de la question c)ii) ?
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Exercice 1.2: Random reshuffling

On considére un probleme de minimisation du risque empirique de la forme
1 n
minimiser,,cra f(w) = . Z;fi(w), (3)
1=

ol chaque f; est de classe C' et dépend uniquement du ieme point d'un jeu de données 3 n
éléments. On suppose aussi que la fonction objectif f est convexe, et C11. On supposera enfin que
le probleme (3) possede une solution, et on notera f* = min,,cpa f(w).

On supposera que n est trop large pour que le jeu de données puisse étre utilisé en entier lors
d'une itération d'un algorithme, et on considere donc I'algorithme du gradient stochastique

W1 = wg — oV fi, (wy), (4)
avec oy > 0 et ix € {1,...,n}. Le but de |'exercice est d'étudier les variantes basées sur le principe
de random reshuffling (dont le principe peut étre traduit par rebattre les cartes). Dans ces variantes,
les indices {i)} sont tirés selon une perturbation aléatoire de {1,...,n} qui est modifiée toutes les n
itérations. Ainsi, a I'itération 0, une permutation aléatoire de {1,...,n} définit {ig,...,in—1}, puis
a 'itération n, une autre permutation aléatoire définit {i,,..., 72,1}, et ainsi de suite.

a) Rappeler la définition d'une époque (epoch). Avec la stratégie du random reshuffling, que peut-

on garantir sur les points du jeu de données qui ont été tirés au cours de la premiere époque
-

b) Soit un indice d'itération k correspondant a la premiere itération d'une époque (cad k = ¢n avec
¢ e N).

i) Montrer que
Eiy [V fir (wi)] = V f(wg).
ii) Les indices i, ...,ix+n—1 N'étant pas indépendants, justifier que la propriété de la questions

b)i) n'est pas vérifiée pour les autres itérations de I'époque.

c) Mé&me sans I'hypothése de la question b)i), on peut montrer des résultats de convergence pour
un bon choix de taille de pas. Pour cela, on regarde la suite des itérés moyens {wg } i, avec

K
1

i :75 K e N.

WK K+1k70wk VK €

On peut ainsi montrer qu'aprés nK itérations, on a

E[f(@nzc)]—f*§0<\/i?>7

Comparer ce taux avec celui de la descente de gradient pour le méme probleme.

d) On considére une variantes par fournées du gradient stochastique, pour laquelle les indices sont
tirés suivant une approche par random reshuffling. Si la taille de fournées est de n, quel algorithme
retrouve-t-on ?

e) Comme |'approche par random reshuffling ne tire pas le méme indice au sein d'une méme époque,
on peut vouloir utiliser de I'information des itérations précédentes pour améliorer le pas. Quelle
technique vue lors des séances proposeriez-vous d'utiliser pour cela ?



4 Optim. App. Autom. - 2025/2026

Exercice 1.3 : Perte de Huber

On considere un jeu de données {(z;,y;)}";, ot n > 1, z; € R% avec d > 1 et y; € R. On cherche
un modele linéaire qui prédise au mieux chaque y; a partir du x; correspondant. On définit donc une
famille de modeles paramétrée par w € R% comme suit :

hy: RY — R
z = 2Tw=3] [a)iw]

Pour un modele h,,, on considérera que ce modele prédit parfaitement y; a partir de x; si on a
C (haw(®i) — yi) = € (xfw —y;) =0, 00 £ : R — R est la fonction de perte de Huber définie par :

1,2 ;
5t if [t <1
_ ) 2
() = { t| — 1 otherwise. (5)

Cette fonction se comporte comme ¢ — % pour [t| < 1 et comme t — |t| lorsque |¢| est tres grand.
Contrairement 3 ce que son expression peut suggérer, £ est continiiment dérivable (ou de classe C*)

L'expression £ (hy(x;) — yi) représente I'erreur du modeéle en (x;,y;), et on cherche un modele
(c’est-a-dire un vecteur w € R?) tel que la somme de ces erreurs soit minimale. On considere donc :

weRd

min, f(w) =~ > aTw — ). (6)
=1

a) Justifier que 0 est un minorant de (6). Est-ce sa valeur minimale ?

b) Le gradient de f en w € R? est donné par

1 n
= — El T — Yi)Li, 7
Vi) = Y el e ”)
avec
1 si t>1
Ity=4t si |t <1
-1 si t<-—1.

Ecrire (en pseudo-code) I'itération de descente de gradient avec une taille de pas constante « et
en utilisant la formule (7). Que devient cette itération si le point courant est un minimum local ?

c) Une constante de Lipschitz pour Vf est L = 2 5™ | ||z;||>. Comment utiliser cette constante
pour définir la longueur de pas ? Lorsque L est inconnue, donner deux choix possibles pour la
taille de pas.

d) La fonction f s'écrit f = %Z?zl fi, ot fi(w) = l(xfw — y;). Le gradient f; en w est

Vfi(w) = E’(:B;Fw — Yi) ;.

Ecrire (en pseudo-code) I'itération du gradient stochastique pour ce probléme sans choix partic-
ulier de taille de pas.

e) On considére ici que notre unité de colit est un accés a un x;. Quel est le colit d'une itération
de descente de gradient, et celui d'une itération de gradient stochastique ?
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f) Quand on applique le gradient stochastique avec une longueur de pas fixe, on peut parfois observer
que la méthode génere des itérés de norme de plus en plus grande, ce qui conduit a un dépassement
de mémoire pour I'algorithme. Fournir une justification a ce phénomeéne.

g) On considére une variante par fournées (batch) du gradient stochastique, dans laquelle on choisit
un sous-ensemble de n; composantes dans la somme finie de (6).

i) Ecrire I'itération correspondante (en pseudo-code).

ii) Siny correspond au nombre de processeurs disponibles pour les calculs, quel peut étre I'intérét
de choisir n, comme taille de fournée ?

iii) Donner un autre intérét plus général des méthodes par fournées en comparaison avec |'algorithme
du gradient stochastique basique.

iv) Supposons que I'on utilise plusieurs tailles de fournées et que I'on observe une amélioration
n 1

en termes de convergence quand n;, augmente pour 1 < n, < 5. Supposons que l'on

observe aussi qu'augmenter n;, au-dela de n/10 conduise a une dégradation de la performance.

Comment expliquer ces observations ?
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2. Dérivées et différentiation

Exercice 2.1: Une fonction de base

Soit la fonction f : R — R en une dimension donnée par
f(w) = /sin(w) + sin(w).

a) Représenter le calcul de f(w) au moyen d'un digraphe acyclique.

(8)

b) Ecrire les instructions pour calculer f’(w) en mode forward et utiliser ces instructions pour évaluer

F'(3).

c) Ecrire les instructions pour calculer f’(w) en mode backward et utiliser ces instructions pour

évaluer f'(%).

Exercice 2.2: Une fonction type GRU

Soit la fonction f : RP*dz x Rdvxh » Rz » R¥ — R définie par

1
f(WhWQaw?y) = 5 HWQO.(Wlw) - y”% )

ot o(v) = [tanh(v;)]i=1,. . La dérivée de tanh est atgfh (t) = 1+ tanh(t)%.

) T
a) Donner une formule pour le gradient Vo f = g% .

b) Donner une formule pour la dérivée 38—“’;1. Quelles sont les dimensions de cet objet 7

(9)



