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Chapter 1

Introduction

This course is concerned with optimization problems arising in data-related applications. Such formu-
lations have gained tremendous interest in recent years, due to the increase in computational power
that enable significant advances in fields such as image processing. One of the most fundamental
tools behind data science is optimization,that combines mathematical formulations and algorithmic
procedures. We describe below the motivation behind studying optimization techniques tailored to
data-related applications, as well as the characteristics of the associated problems.

1.1 Motivation

The words machine learning are widely used as a way to characterize any task that involves manipu-
lating data : nevertheless, their precise meaning can be difficult to formalize, as other keywords such
as data mining, data analysis, artificial intelligence or Big Data also denote fields that involve data
and/or a learning process. In these notes, we focus on the link between data-related tasks and opti-
mization; although we will denote our applications of interest as pertaining to machine learning, we
point out that a more general, possibly better suited categorization would be that of data science.
For the purpose of these lectures, we will indeed consider machine learning through two main goals:

1) Extract patterns from data, possibly in terms of statistical properties;

2) Use this information to infer or make predictions about yet unseen data.

A number of such machine learning tasks involve an optimization component, as shown Figure 1.1.
As a result, for the purpose of these notes, we will view machine learning as a field making use
of statistics and optimization, with the latter being our area of interest. Nevertheless, we point
out that computer science features such as data management and parallel computing have also
been instrumental to the success of machine learning, and thus should eventually be integrated with
optimization to form efficient algorithms.

1.2 Notations

1.2.1 Generic notations

• Scalars (i.e. reals) are denoted by lowercase letters: a, b, c, α, β, γ.

4
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Figure 1.1: A diagram for choosing a machine learning technique appropriate to a given problem;
about half of the leaves (Linear SVM, Logistic regression, etc) are directly connected to optimiza-
tion. Source: https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-
algorithm-use/

• Vectors are denoted by bold lowercase letters: a, b, c,α,β,γ.

• Matrices are denoted by bold uppercase letters: A,B,C.

• Sets are denoted by bold uppercase cursive letters : A,B, C.

• A new operator or quantity is defined using :=.

• The following quantifiers are used throughout the notes: ∀ (for every), ∃ (it exists), ∃! (it
exists a unique), ∈ (belongs to), ⊆ (subset of), ⊂ (proper subset).

• The Σ operator is used for sums. To lighten the notation, and in the absence of ambiguity,
we may omit the first and last indices, or use one sum over multiple indices. As a result, the
notations

∑m
i=1

∑n
j=1,

∑
i

∑
j and

∑
i,j may be used interchangeably.

• The notation i = 1, . . . ,m indicates that the variable i takes all integer values between 1 and
m.

1.2.2 Scalar and vector notations

• The set of natural numbers (nonnegative integers) is denoted by N; the set of integers is
denoted by Z.

• The set of real numbers is denoted by R. Our notations for the subset of nonnegative real
numbers and the set of positive real numbers are R+ and R++, respectively. We also define
the extended real line R := R ∪ {−∞,∞}.

• The notation Rd is used for the set of vectors with d ∈ N real components; although we do
not explicitly indicate it in the rest of these notes, we always assume that d ≥ 1.
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• A vector w ∈ Rd is thought as a column vector, with wi ∈ R denoting its i-th coordinate in

the canonical basis of Rd. We thus write w =

 w1
...
wd

, or, in a compact form, w = [wi]1≤ı≤d.

• Given a column vector w ∈ Rd, the corresponding row vector is denoted by wT, so that
wT = [w1 · · · wd] and [wT]T = w.

• For any integer d ≥ 1, the vectors 0d and 1d correspond to the vectors of Rd for which all
elements are 0 or 1, respectively.

1.2.3 Matrix notations

• We use Rm×n to denote the set of real rectangular matrices with m rows and n columns,
where m et n will always be assumed to be at least 1. If m = n, Rn×n refers to the set of
square matrices of size n.

• We identify a matrix in Rm×1 with its corresponding column vector in Rm.

• Given a matrix A ∈ Rm×n, Aij refers to the coefficient from the i-th row and the j-th
column of A: the diagonal of A is given by the coefficients Aii. Provided this notation is not
ambiguous, we use the notations A, [Aij ]1≤i≤m

1≤j≤n
and [Aij ] interchangeably.

• Depending on the context, we may use aT
i to denote the i-th row of A or aj to denote the

j-th column of A, leading to A =

 aT
1
...

aT
m

 or A = [a1 · · · an] , respectively.

• Given A = [Aij ] ∈ Rm×n, the transpose of matrix A, denoted by AT (read “A transpose”),
is defined as the matrix in Rn×m (or “n-by-m matrix”) such that

∀i = 1 . . .m, ∀j = 1 . . . n, AT
ji = Aij .

Note that this generalizes the notation used for row vectors.

• For every n ≥ 1, In refers to the identity matrix in Rn×n (with 1s on the diagonal and 0s
elsewhere).

1.3 The optimization problem

We now introduce the mathematical foundations behind optimization.

Definition 1.3.1 Optimization is the field of applied mathematics study concerned with making the
best decision out of a set of alternatives.

Mathematically, we write an optimization problem using three components:

• An objective function, i.e. a criterion that measures how good a given decision is, that we
want to minimize or maximize depending on the context;
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• Decision variables, that represent the knobs we can turn to change the decision;

• Constraints, i.e. conditions that the decision variables must satisfy in order for the decision
to be acceptable.

The general form of the optimization problems considered in these notes will be the following

minimize
w∈Rd

f(w) subject to w ∈ F . (1.3.1)

In problem (1.3.1), f is the objective function (to be minimized), w is the vector of decision variables
and F is a set encompassing all the constraints on the decision variables. This set is called the feasible
set, and is often characterized using mathematical expressions.

1.3.1 Mathematical background

Optimization draws from several fields of mathematics, mostly pertaining to linear algebra, topology
and differential calculus. We briefly review the key definitions below.

We will always consider Rd and Rn×d as endowed with their canonical vector space structure; in
particular, this means that we will be able to add two vectors (or two matrices), and to multiply a
vector (or a matrix) by a scalar value. We will also use the following norm.

Definition 1.3.2 (Euclidean norm on Rd) The Euclidean norm (or ℓ2 norm) of a vector w ∈ Rd

is given by:

∥w∥ :=

√√√√ d∑
i=1

w2
i .

Definition 1.3.3 (Scalar product on Rd) The scalar product is defined for every w, z ∈ Rd by:

wTz :=
d∑

i=1

wi zi.

One thus has wTz = zTw and wTw = ∥w∥2.

The notation T comes from the concept of transpose in matrix linear algebra.

Definition 1.3.4 (Transpose matrix) Let A = [Aij ] ∈ Rn×d be a matrix with n rows and d
columns.
The transpose matrix of A, denoted by AT, is the matrix with d rows and n columns such that

∀i = 1, . . . , n, ∀j = 1, . . . , d,
[
AT
]
ij
= Aji.

A square matrix A ∈ Rd×d such that AT = A is called a symmetric matrix.

Definition 1.3.5 (Matrix inversion) A matrix A ∈ Rd×d is invertible if it exists B ∈ Rd×d such
that BA = AB = Id, where Id is the identity matrix of Rd×d.

In this case, B is the unique matrix with this property: B is called the inverse matrix of A, and
is denoted by A−1.
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Definition 1.3.6 (Positive (semi-)definiteness) A matrix A ∈ Rd×d is positive semidefinite if

∀x ∈ Rn, xTAx ≥ 0.

It is called positive definite when xTAx > 0 for every nonzero vector x.

Definition 1.3.7 (Eigenvalues and eigenvectors) Let A ∈ Rd×d. A real λ is called an eigenvalue
of A if

∃v ∈ Rd, ∥v∥ ≠ 0, Av = λv.

The vector v is then called an eigenvector of A associated to the eigenvalue λ.

Theorem 1.3.1 Any symmetric matrix in Rd×d possesses d real eigenvalues.

Notation 1.3.1 Given two symmetric matrices (A,B) ∈ Rd×d, we introduce the following nota-
tions:

• λmin(A)/λmax(A): smallest/largest eigenvalue of A;

• A ⪰ B ⇔ λmin(A) ≥ λmax(B);

• A ≻ B ⇔ λmin(A) > λmax(B).

Following these notations, a matrix A is called positive semi-definite (resp. positive definite)
if and only if A ⪰ 0 (resp. A ≻ 0).

Differential calculus We will mostly consider minimization problems involving a smooth objective
function: the term “smooth” can be loosely defined in the optimization or learning literature, but
generally means that the function is as regular as needed for the desired algorithms and analysis
to be applicable. In these notes, we will consider that a smooth function is at least continuously
differentiable, sometimes twice continuously differentiable. Those concepts are recalled below.

Definition 1.3.8 (Continuous function) A function f : Rd → Rm is continuous at w ∈ Rd if for
every ϵ > 0, it exists δ > 0 such that

∀v ∈ Rd, ∥v −w∥ ≤ δ =⇒ ∥f(v)− f(w)∥ ≤ ϵ.

Definition 1.3.9 (Lipschitz continuous function) A function f : Rd → Rm is L-Lipschitz contin-
uous over Rd if

∀(u,v) ∈
(
Rd
)2

, ∥f(u)− f(v)∥ ≤ L ∥u− v∥,

where L > 0 is called a Lipschitz constant.

Lipschitz continuous functions can be sandwiched between two linear functions, which is partic-
ularly useful for optimization purposes. Note that every Lipschitz continuous function is continuous.

Derivatives are ubiquitous in continuous optimization, as they allow to characterize the local
behavior of a function. We assume that the reader is familiar with the concept of derivative of a
function from R → R. A function f : Rd → R is called differentiable at w ∈ Rd if all its partial
derivatives at w exist.
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Definition 1.3.10 (Classes of functions) • A function f : Rd → R is continuously differen-
tiable if its first-order derivative exists and is continuous. The set of continously differentiable
functions is denoted by C1(Rd).

• A function f : Rd → R is twice continuously differentiable if f ∈ C1(Rd), the second-order
derivative of f exists and is continuous. The set of twice continously differentiable functions
is denoted by C2(Rd).

Definition 1.3.11 (First-order derivative) Let f ∈ C1(Rd) be a continuously differentiable func-
tion. For any w ∈ Rd, the gradient of f at w is given by

∇f(w) :=

[
∂f

∂wi
(w)

]
1≤i≤d

∈ Rd.

Definition 1.3.12 (Second-order derivative) Let f ∈ C2(Rd) be a twice continuously differen-
tiable function. For any w ∈ Rd, the Hessian of f at w is given by

∇2f(w) :=

[
∂2f

∂wi∂wj
(w)

]
1≤i,j≤d

∈ Rd×d.

The Hessian matrix is symmetric.

Finally, we define an important class of problems involving a Lipschitz continuity assumption.

Definition 1.3.13 (Smooth functions with Lipschitz derivatives) • Given L > 0, the set
C1,1L (Rd) represents the set of all functions f : Rd → R that belong to C1(Rd) such that ∇f
is L-Lipschitz continuous.

• Given L > 0, the set C2,2L (Rd) represents the set of all functions f : Rd → R that belong to
C2(Rd) such that ∇2f is L-Lipschitz continuous.

An important property of such functions is that one can derive upper approximations on their
values, as shown by the following theorem.

Theorem 1.3.2 (First-order Taylor expansion) Let f ∈ C1,1
L (Rd) with L > 0. For any vectors

w, z ∈ Rd, one has:

f(z) ≤ f(w) +∇f(w)T(z −w) +
L

2
∥z −w∥2. (1.3.2)

This expansion is crucial in analyzing the performance of first-order algorithms, as we will do in
Chapter 2.

1.3.2 Solution and optimality conditions

In the rest of this section, we will focus on unconstrained optimization formulations of the form

minimize
w∈Rd

f(w) subject to w ∈ F , (1.3.3)
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and characterize properties of solutions of such problems. Since there can be more than one solution,
we denote the set of solutions of (1.3.3) by

argmin
w∈Rd

{f(w) | w ∈ F} ⊆ Rd. (1.3.4)

The minimal value of problem (1.3.6) will be denoted by

min
w∈Rd

{f(w) | w ∈ F} ∈ R ∪ {−∞,∞}. (1.3.5)

If the problem is unbounded (i.e. there always exist a better w), we set the minimum value to be
−∞, whereas if the feasible set F is empty, we set the minimum to be +∞.

We now provide two definitions of solutions of (1.3.3), or approximations thereof.

Definition 1.3.14 (Local minimum) Given a function f : Rd → R, a point w∗ ∈ Rd is called a
local minimum of the problem (1.3.3) if it possesses the lowest value of f in a neighborhood of
feasible points, i.e. if w∗ ∈ F and there exists δ > 0 such that

∀w ∈ Bδ(w∗) ∩ F , f(w∗) ≤ f(w).

Local minima are local approximations of solutions: a stronger notion, much harder to guarantee
in practice, is that of global minima.

Definition 1.3.15 (Global minimum) Given a function f : Rd → R, a point w∗ ∈ Rd is called a
global minimum of f over F if w∗ ∈ F

∀w ∈ F , f(w∗) ≤ f(w).

Optimality conditions In general, finding global or even local minima is a hard problem. For this
reason, researchers in optimization have developed optimality conditions: these are mathematical
expressions that can be checked at a given point (unlike the conditions above) and help assessing
whether a given point is a local minimum or not.

In this introductory chapter, we will present these conditions in the context of an unconstrained
optimization problem

minimize
w∈Rd

f(w). (1.3.6)

Theorem 1.3.3 (First-order necessary condition) Suppose that the objective function f in prob-
lem (1.3.6) belongs to C1(Rd). Then,

[w∗ is a local minimum of f ] =⇒ ∥∇f(w∗)∥ = 0. (1.3.7)

Note that this condition is only necessary: there may exist points with zero gradient that are not
local minima. Indeed, the set of points with zero gradient, called first-order stationary points, also
includes local maxima and saddle points1.

Provided we strengthen our smoothness requirements on f , we can establish stronger optimality
conditions for problem (2.1.1).

1A vector is a saddle point of a function if it is a local minimum with respect to certain directions and a local
maximum with respect to other directions of the space.
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Theorem 1.3.4 (Second-order necessary condition) Suppose that the objective function f in
problem (1.3.6) belongs to C2(Rd). Then,

[w∗ is a local minimum of f ] =⇒
[
∥∇f(w∗)∥ = 0 and ∇2f(w∗) ⪰ 0

]
. (1.3.8)

From Theorem 1.3.3, first-order stationary points that violate the condition ∇2f(w∗) ⪰ 0 cannot
be local minima: conversely, a stronger version of this property guarantees that we are in presence
of a local minimum.

Theorem 1.3.5 (Second-order sufficient condition) Suppose that the objective function f in
problem (1.3.6) belongs to C2(Rd). Then,[

∥∇f(w∗)∥ = 0 and ∇2f(w∗) ≻ 0
]
=⇒ [w∗ is a local minimum of f ] (1.3.9)

By exploiting the second-order derivative, it is thus possible to certify whether a point is a local
minima (note that there could be local or even global minima such that ∇2f(w∗) ⪰ 0). With further
assumptions on the structure of the problem, these optimality conditions can be more informative
about minima. This is the case when the objective function is convex: we detail this property in the
next section.

1.3.3 Convexity

Convexity is at its core a geometric notion: before defining what a convex function is, we describe
the corresponding property for a set.

Definition 1.3.16 (Convex set) A set C ∈ Rd is called convex if

∀(u,v) ∈ C2, ∀t ∈ [0, 1], tu+ (1− t)v ∈ C.

Example 1.3.1 (Examples of convex sets) The following sets are convex:

• The entire space Rd;

• Every line segment of the form {tw|t ∈ R} for some w ∈ Rd;

• Every (Euclidean) ball of the form
{
w ∈ Rd

∣∣∣ ∥w∥2 =∑d
i=1[w]2i ≤ 1

}
.

We now provide the basic definition of a convex function.

Definition 1.3.17 (Convex function) A function f : Rd → R is convex if

∀(u,v) ∈ (Rd)2, ∀t ∈ [0, 1], f(tu+ (1− t)v) ≤ t f(u) + (1− t) f(v).

Example 1.3.2 The following functions are convex :

• Linear functions of the form w 7→ aTw + b, with a ∈ Rd and b ∈ R;

• Squared Euclidean norm: w 7→ ∥w∥2 = wTw.

If we consider differentiable functions, it is possible to characterize convexity using the derivatives
of the function.
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Theorem 1.3.6 Let f : Rd → R be an element of C1(Rd). Then, the function f is convex if and
only if

∀u,v ∈ Rd, f(v) ≥ f(u) +∇f(u)T(v − u). (1.3.10)

The inequality (1.3.10) is fundamental in analyzing convex optimization algorithms, as it provides
an underestimator for the variation of a (convex) objective function.

Convexity can also be characterized using the Hessian matrix (provided the function is sufficiently
regular).

Theorem 1.3.7 Let f : Rd → R be an element of C2(Rd). Then, the function f is convex if and
only if

∀w ∈ Rd, ∇2f(w) ⪰ 0. (1.3.11)

Convex functions are particularly suitable for minimization problems as they satisfy the following
property.

Theorem 1.3.8 If f is a convex function, then every local minimum of f is a global minimum.

If the function is differentiable, the optimality conditions as well as the characterization of con-
vexity lead us to the following result.

Corollary 1.3.1 If f is continuously differentiable, every point w∗ such that ∥∇f(w∗)∥ = 0 is a
global minimum of f .

Strong convexity The results above can be further improved by assuming that a convex function
is strongly convex, as defined below.

Definition 1.3.18 (Strongly convex function) A function f : Rd → R in C1 is µ-strongly convex
(or strongly convex of modulus µ > 0) if for all (u,v) ∈ (Rd)2 and t ∈ [0, 1],

f(tu+ (1− t)v) ≤ t f(u) + (1− t)f(v)−µ

2
t(1− t)∥v − u∥2.

Strong convexity leads to an even more desirable property in terms of optimization landscape.

Theorem 1.3.9 Any strongly convex function has a unique global minimizer.

Similarly to convex functions, it is possible to characterize strong convexity using first- and
second-order derivatives.

Theorem 1.3.10 Let f : Rd → R be an element of C1(Rd). Then, the function f is µ-strongly
convex if and only if

∀u,v ∈ Rd, f(v) ≥ f(u) +∇f(u)T(v − u)+
µ

2
∥v − u∥2. (1.3.12)

Theorem 1.3.11 Let f : Rd → R be an element of C2(Rd). Then, the function f is µ-strongly
convex if and only if

∀w ∈ Rd, ∇2f(w) ⪰ µI. (1.3.13)
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We end this section by giving two examples of strongly convex optimization problems.

Example 1.3.3 (Convex quadratic problems) Consider

minimize
w∈Rd

f(w) :=
1

2
wTAw + bTw, A ⪰ 0.

The function f belongs to C2(Rd), with ∇2f(w) = A for every w ∈ Rd. As a result, this function
is convex. Moreover, if we assume that A ≻ 0, then the function is λmin(A)-strongly convex.

Example 1.3.4 (Projection onto a closed, convex set) Let X ⊆ Rd be a convex, closed2 set,
and a ∈ Rd. The problem of computing the projection of a onto X is formulated as

minimize
w∈X

1

2
∥w − a∥2.

The objective function of this problem is 1-strongly convex, which implies that the problem has a
unique solution (i. e. the projection is unique).

1.4 Examples of optimization problems in ML

1.4.1 Linear regression

Linear least squares is arguably the most classical problem in data analysis. We consider a dataset
{(xi, yi)}ni=1 with xi ∈ Rd and yi ∈ R. Our goal is to compute a linear model that best fits (or
explains) the data. We define this model as a function h : Rd → R, and we parameterize it through
a vector w ∈ Rd, so that for any x ∈ Rd, we have h(x) = xTw. For every example (xi, yi) in the
dataset, we evaluate how we fit the data based on the squared error (xT

i w−yi)
2. We then compute

a model by solving the following optimization problem

minimize
w∈Rd

1

2n
∥Xw − y∥2 + λ

2
∥w∥2. = 1

n

n∑
i=1

1
2

[
(xT

i w − yi)
2 + λ∥w∥2

]
, (1.4.1)

where λ > 0 is a regularization parameter. From an optimizer’s point of view, problem (1.4.1) is
well understood: this is a strongly convex, quadratic problem, and its solution can be computed in
close form.

In a typical linear regression setting, one assumes that there exists an underlying truth but that
the measurements are noisy, i.e.

y = Xw∗ + ϵ,

where ϵ ∈ N (0, I) is a vector with i.i.d. entries following a standard normal distribution: this is
illustrated in Figure 1.2.

In this setting, we wish to compute the most likely value for w∗, while being robust to variance
in the data. To this end, we suppose that y follows a Gaussian distribution of mean Xw and of
covariance matrix I. We also assume a prior Gaussian distribution on the entries of w, in order to

2A set X ⊆ Rd is closed if for every converging subsequence of {xn}n, the limit of this sequence belongs to X .
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Figure 1.2: Noisy data generated from a linear model with Gaussian noise.

reduce the variance with respect to the data. As a result, an estimate of w∗, called the maximum a
posteriori estimator, can be computed by solving

maximize
w∈Rd

L(y1, . . . , yn;w) :=

[
1√
2π

]m
exp

(
−1

2

m∑
i=1

(xT
i w − yi)

2 − λ

2
∥w∥2

)
. (1.4.2)

The solutions of this maximization problem are the same than the solutions of the linear least-squares
problem (1.4.1). The resulting solution can be shown to possess very favorable statistical properties:
in particular, for λ close to 0, its expected value is close to w∗.

Linear regression (with or without regularization) has been extensively studied in optimization
and statistics; however, when the number of samples is extremely large, it still poses a number of
challenges in practice, as the solution of the problem cannot be computed exactly.

1.4.2 Logistic regression

As in Section 1.4.1, we consider a dataset {(xi, yi)}ni=1 where xi ∈ Rd are feature vectors, and the yis
represent binary labels. We wish to build a linear classifier x 7→ wTx to perform this classification,
i. e. identify the correct label from the feature. We first suppose that yi ∈ {−1,+1}. To model
these discrete-valued labels, we introduce an odds-like function

p(x;w) = (1 + ex
Tw)−1 ∈ (0, 1).

Given this function, our goal is to choose the model w such that{
p(xi;w) ≈ 1 if yi = +1;
p(xi;w) ≈ 0 if yi = −1.

Given this goal, we want to build an objective function that measures the error between our model
and the labels according to the property above. Therefore, we penalize situations in which yi = +1
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and p(xi;w) is close to 0, or yi = −1 and p(xi;w) is close to 1. This results in the so-called logistic
loss, which is a function from Rd to R defined by

∀w ∈ Rd, f(w) =
1

n

 ∑
yi=−1

ln
(
1 + e−xT

i w
)
+
∑

yi=+1

ln
(
1 + ex

T
i w
) . (1.4.3)

The motivation behind introducing the logarithm of the function p is twofold. On the one hand,
it provides a statistical interpretation of the loss as a joint distribution; on the other hand, the
derivatives of this function have a more favorable structure.

Given this objective function, the logistic regression problem is given by

minimize
w∈Rd

1

n

 ∑
yi=−1

ln
(
1 + e−xT

i w
)
+
∑

yi=+1

ln
(
1 + ex

T
i w
) (1.4.4)

This is a convex, smooth problem (though not a strongly convex one), that can be made strongly
convex by adding a regularizing term (see Chapter 3).

1.4.3 Neural networks

Neural networks have enabled the most impressive, recent advances in perceptual tasks such as
image recognition and classification. Thanks to the increase in computational capabilities over the
past decade, it is now possible to train extremely deep and wide neural networks, so that they can
learn efficient representations of the data.

Given an input vector xi ∈ Rd0 , a neural network represents a prediction function h : Rd0 → RdJ ,

which applies a series of transformations in layers xi = x
(0)
i 7→ x

(1)
i 7→ · · · 7→ x

(J−1)
i 7→ x

(J)
i . The

j-th layer typically performs the following transformation:

x
(j)
i = σ

(
W jx

(j−1)
i + bj

)
∈ Rdj , (1.4.5)

where W j ∈ Rdj×dj−1 , bj ∈ Rdj and σ : Rdj → Rdj is a componentwise nonlinear function,

e.g. σ(y) =
[

1
1+exp(−yi)

]
i
(sigmoid function) or σ(y) = [max(0, yi)]i. As a result, we have

x
(J)
i = h(xi;w), where w ∈ Rd gathers all the parameters {(W 1, b1), . . . , (W J , bJ)} of the layers.

The optimization problem corresponding to training this neural network architecture involves a
training set {(xi, yi)}ni=1 and the choice of a loss function ℓ. It usually results in the following
formulation

minimize
w∈Rd

1

n

n∑
i=1

ℓ (h(xi;w), yi) . (1.4.6)

This optimization problem is highly nonlinear and nonconvex in nature, which makes it particularly
difficult to solve using algorithms such as gradient descent. Moreover, it typically involves costly
algebraic operations, as the number of layers and/or parameters is tremendously large in modern
deep neural network architectures. Therefore, problem (1.4.6) also possesses characteristics that are
not accounted for in its formulation. The optimization algorithms that efficiently tackle this problem
are those that can both guarantee convergence and perform well in practice.



16 Optimization for ML - 2023/2024

1.5 Optimization algorithms

The field of optimization can be broadly divided into three categories:

• Mathematical optimization is concerned with the theoretical study of complex optimization
formulations, and the proof of well-posedness of such problems (for instance, prove that their
exist solutions);

• Computational optimization deals with the development of software that can solve a family of
optimization problems, through careful implementation of efficient methods;

• Algorithmic optimization lies in-between the previous two categories, and aims at proposing
new algorithms that address a particular issue, with theoretical guarantees and/or validation
of their practical interest.

These notes cover material from the third category of optimization activities. The design of opti-
mization algorithms (also called methods, or schemes) is a particularly subtle process, as an algorithm
must exploit the theoretical properties of the problem while being amenable to implementation on a
computer.

1.5.1 The algorithmic process

Most numerical optimization algorithms do not attempt to find a solution of a problem in a direct
way, and rather proceed in an iterative fashion. Given a current point, that represents the current
approximation to the solution, an optimization procedure attempts to move towards a (potentially)
better point: to this end, the method generally requires a certain amount of calculation.

Suppose we apply such a process to the problem minimizew∈Rd f(w), resulting in a sequence of
iterates {wk}k. Ideally, these iterates obey one of the scenarios below:

1. The iterates get increasingly close to a solution, i. e.

∥wk −w∗∥ → 0 when k →∞.

Although w∗ is generally not known in practice, such results can be guaranteed by the theory,
for instance on strongly convex problems.

2. The function values associated with the iterates get increasingly close to the optimum, i. e.

f(wk)→ f∗ when k →∞,

As for the case above, f∗ may not be known, but it can still be possible to prove convergence
for certain algorithms and function classes (typically strongly convex, smooth functions).

3. The first-order optimality condition gets close to being satisfied, that is, f ∈ C1(Rd) and

∥∇f(wk)∥ → 0 when k →∞.

Out of the three conditions, the last one is the easiest to track as the algorithm unfolds: it is,
however, only a necessary condition, and does not guarantee convergence to a local minimum for
generic, nonconvex functions. On the other hand, the first two conditions can only be measured
approximately (by looking at the behavior of the iterates and enforcing decrease in the function
values), but lead to stronger guarantees.
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1.5.2 Convergence and convergence rates

The typical theoretical results that optimizers aim at proving for algorithms are asymptotic, as shown
above: they only provide a guarantee in the limit. In practice, one may want to obtain more precise
guarantees, that relate to a certain accuracy target that the practitioner would like to achieve. This
led to the development of global convergence rates.

Example 1.5.1 (Global convergence rate for the gradient norm) Given an algorithm applied to
minimizew∈Rd f(w) that produces a sequence of iterates {wk}, we say that the method is O(1/k)
for the gradient norm, or ∥∇f(wk)∥ = O

(
1
k

)
if

∃C > 0, ∥∇f(wk)∥ ≤
C

k
∀k.

Such rates allow to quantify how much effort (in terms of iterations) is needed to reach a certain
target accuracy ϵ > 0. This leads to the companion notion of worst-case complexity bound.

Example 1.5.2 (Worst-case complexity for the gradient norm) Given an algorithm applied to
minimizew∈Rd f(w) that produces a sequence of iterates {wk}, we say that the method has a
worst-case complexity of O

(
ϵ−1
)
for the gradient norm if

∃C > 0, ∥∇f(wk)∥ ≤ ϵ when k ≥ C

ϵ
.

Such results are quite common in theoretical computer science or statistics, which partly explain
their popularity in machine learning. In optimization, they have been developed for a number of
years in the context of convex optimization but have only gained momentum in general optimization
over the last decade.

Remark 1.5.1 (The computational side of optimization) The most popular programming lan-
guages for optimization are C/C++/Fortran for high performance implementations, with Python and
Julia raising increasing interest. The use of MATLAB is also widespread throughout the optimization
community.

In addition to programming languages, optimizers have developed modeling languages that help
bringing the code and the mathematical formulation of a problem closer. The broad-spectrum lan-
guages GAMS/AMPL/CVX are reknown examples; other languages, that are more domain-oriented,
include MATPOWER and PyTorch.

Finally, there are many commercial solvers available (with CPLEX and Gurobi being arguably
some of the most efficient for certain classes of problems), along with open-source codes (the COIN-
OR platform provides a good interface to all of these methods).
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1.6 Summary

Optimization is a key component of modern science, with many tasks in machine learning and related
fields involving an optimization problem of some form. The specifics of dealing with massive amounts
of data, yet possibly not enough to perfectly model the task at hand, poses a challenge to optimizers.
Still, optimization algorithms can prove quite useful to help practitioners in data science (and beyond)
in making better decisions.

Optimization begins by a modeling phase, in which a given problem must be stated in terms
of objective, variable and constraints. This allows to characterize the properties of the problem,
and most importantly its solutions. Properties such as differentiability or convexity lead to specific
conditions that one can exploit to identify solutions of this problem.

In general, it is not possible to directly compute a solution of an optimization problem from its
formulation; one must thus design a method that will try to compute an approximate solution of
the problem. By analyzing this method, it is often possible to identify how fast a method can be at
getting close to a solution.



Chapter 2

Smooth optimization methods

In this chapter, we review the main methods for solving smooth unconstrained optimization problems.
Our starting point will be the Gradient Descent (GD) algorithm, which we study from a theoretical
and computational viewpoint in Section 2.1. We will then focus on convex problems and investigate
accelerated techniques in Section 2.2.

2.1 Gradient descent

In this section, we investigate more general, nonlinear unconstrained problems of the form

minimize
w∈Rd

f(w). (2.1.1)

We will assume that f ∈ C1(Rd), therefore the gradient mapping for f exists, is continuous: we
will also assume that it can be used in an algorithm. We will develop an algorithm that primarily
relies on the use of gradient information, termed gradient descent. For such a method, we will derive
theoretical guarantees with and without the assumption of convexity: in the latter case, we will see
that better results are obtained compared to the general, nonconvex setting.

2.1.1 Algorithm

Because we consider a problem with a continuously differentiable function, we know from the op-
timality conditions that for any local minimum w∗, we necessarily have ∇f(w∗) = 0. As a result,
given any point w ∈ Rd, only one of the two properties below holds:

1. Either ∇f(w) = 0, and w can be a local minimum;

2. Or ∇f(w) ̸= 0 and the function f decreases locally from w in the direction of -∇f(w).

We will formally establish the second property in the next section, thanks to the Taylor expansions
we derived in Section 1.3.1. Using this result, we can design the update rule

w ← w − α∇f(w), (2.1.2)

where α > 0 is a stepsize parameter. If ∇f(w) = 0, the vector w does not change: this is consistent
with the notion of first-order stationarity (we cannot get more information by using the gradient).

19
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On the contrary, when ∇f(w) ̸= 0, we expect that there exists a range of values for α > 0 for which
such an update leads to a point with a lower objective value.

Using the updating rule (2.1.2), we can design an algorithm for the minimization of the function
f : this method is called gradient descent1 and described in Algorithm 1.

Algorithm 1: Gradient descent algorithm.

Initialization: w0 ∈ Rd.
for k = 0, 1, ... do

1. Compute the gradient ∇f(wk).

2. Compute a steplength αk > 0.

3. Set wk+1 = wk − αk∇f(wk).

end

As written, Algorithm 1 does not have any stopping criterion, and a number of variants can be
derived depending on the choice of this stopping criterion, that of the initial point and that of the
sequence {αk}k. We comment on these aspects below.

Stopping criterion In general numerical algorithms operate under a certain budget (of floating-
point operations, time, number of iterations), thus any reasonable numerical algorithm will have
an embedded stopping criterion, that forces the method to terminate if this budget is reached. In
Algorithm 1, for instance, we could have stopped the method after kmax iterations.

In addition to these practical concerns, algorithms are run in the hope of reaching a prescribed
level of accuracy, corresponding to the metrics we described in Section 1.3. For instance, a typical
stopping criterion (also called convergence criterion) for gradient descent is

∥∇f(wk)∥ < ϵ, (2.1.3)

where ϵ > 0 is a prescribed tolerance, convergence being supposedly harder to achieve as ϵ gets
smaller.

Finally, additional safety checks can be added to the algorithm. For instance, if the difference
between two successive points falls below machine precision, it may not be worth running the method
for more iterations.

Choosing the initial point Good initialization can lead to significant gains in performance, that
must however be put in perspective with the cost of this initialization. For general problems, there
could be no incentive to choose one point over another: in this case, random multistart (i.e. running
multiple versions of the method with randomly generated starting points) can be used with a small
budget to determine a suitable initial point. However, in many applications, the practitioner might
already have a reference point, or take an educated guess at what values the decision variables could
take: using this as a starting point can be quite valuable, as it will represent a reference value the
method is trying to improve upon.

1Although “gradient descent” is the most common terminology in data science, the historical name used in opti-
mization is “steepest descent”, because the gradient is the direction of steepest change at a given point.
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2.1.2 Choosing the stepsize

There are numerous techniques used to select the stepsize2. We review the most general below, but
point out that those are generally combined with knowledge about the problem in practice.

Constant stepsize One possible strategy is to maintain a constant step size throughout the entire
algorithmic run, i. e. set αk = α > 0. If the budget allows for it, several values of α can be tested for
comparison. Under regularity assumptions on f , one can guarantee that there exists a value below
which a constant stepsize will lead to complexity guarantees (see Section 2.1.3). For instance, when
f ∈ C1,1L (Rd), the choice

αk = α = 1
L (2.1.4)

leads to such guarantees. Because of its dependence in L, this choice is tailored to the problem at
hand. Note that the rule (2.1.4) requires knowledge of the Lipschitz constant, but this information
may not be available in practice.

Decreasing stepsize Another popular choice consist in choosing the entire sequence {αk} in
advance so as to guarantee that αk → 0 as k →∞. This also enables the derivation of theoretical
results, under some conditions that can help designing the formula for the αks. However, this process
forces the steps to get increasingly smaller, which may prevent fast progress towards the end of the
algorithm.

Adaptive choice with line search Line-search techniques have been widely used in continuous
optimization: at every iteration, they aim at computing the value of αk that leads to the largest
decrease in the function value in the direction −∇f(wk). In general, such exact line searches are
not practical, and thus an inexact process is preferred. The most popular method is backtracking,
that proceeds by testing a set of decreasing values: a simple version of a backtracking line search is
described in Algorithm 2.

Algorithm 2: Basic backtracking line search in direction d.

Inputs: w ∈ Rd, d ∈ Rd, α0 ∈ Rd.
Initialization: Set α = α0 and j = 0.
while f(w + αjd) > f(w) do

Set αj =
αj

2 and j = j + 1.
end
Output: αj .

We can thus incorporate this line-search technique in step 2 of Algorithm 1 by calling the method
with w = wk, d = −∇f(wk) and (for instance) α0 = 1. Many variants can be build upon this
simple framework. One drawback of line-search methods is that they require to evaluate the objective
function, which can be deemed too expensive in certain applications.

2Or learning rate in machine learning.
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2.1.3 Convergence rate analysis of gradient descent

In this section, we present several convergence rates for gradient descent, in the case of a smooth
objective function. We will see that the nonconvex, convex and strongly convex cases exhibit different
behavior.

Proposition 2.1.1 Consider the k-th iteration of Algorithm 1 applied to f ∈ C1,1L (Rd), and suppose
that ∇f(wk) ̸= 0. Then, if 0 < αk < 2

L , we have

f(wk − αk∇f(wk)) < f(wk).

In particular, choosing αk = 1
L leads to

f(wk −
1

L
∇f(wk)) < f(wk)−

1

2L
∥∇f(wk)∥2. (2.1.5)

Proof. We use the inequality (1.3.2) with the vectors (wk,wk − αk∇f(wk)) :

f(wk − αl∇f(wk)) ≤ f(wk) +∇f(wk)
T [−αk∇f(wk)] +

L

2
∥ − αk∇f(wk)∥2

= f(wk)− αk∇f(wk)
T∇f(wk) +

L

2
α2
k∥∇f(wk)∥2

= f(wk) +

(
−αk +

L

2
α2
k

)
∥∇f(wk)∥2.

If −αk + L
2α

2
k < 0, the second term on the right-hand side will be negative, thus we will have

f(wk − αl∇f(wk)) < f(wk). Since −αk + L
2α

2
k < 0 ⇔ αk < 2

L and αk > 0 by definition, this
proves the first part of the result.

To obtain (2.1.5), one simply needs to use αk = 1
L in the series of equations above. □

The result of Proposition 2.1.1 will be instrumental to obtain complexity guarantees on Al-
gorithm 1 in three different settings (nonconvex, convex, strongly convex): this analysis will be
performed under the following assumption.

Assumption 2.1.1 The objective function f belongs to C1,1L (Rd) for L > 0 and there exists flow ∈ R
such that for every w ∈ Rd, f(w) ≥ flow (i. e. f is bounded below on Rd).

Nonconvex case In the nonconvex case, we aim at bounding the number of iterations required to
drive the gradient norm below some threshold ϵ > 0: this means that we should be able to show
that the gradient norm actually goes below this threshold, which is a guarantee of convergence.

Theorem 2.1.1 (Complexity of gradient descent for nonconvex functions) Let f be a noncon-
vex function satisfying Assumption 2.1.1. Suppose that Algorithm 1 is applied with αk = 1

L . Then,
for any K ≥ 1, we have

min
0≤k≤K−1

∥∇f(wk)∥ ≤ O
(

1√
K

)
. (2.1.6)

Proof. LetK be an iteration index such that for every k = 0, . . . ,K−1, we have ∥∇f(wk)∥ > ϵ.
From Proposition 2.1.1, we have that

∀k = 0, . . . ,K − 1, f(wk+1) ≤ f(wk)−
1

2L
∥∇f(wk)∥2 ≤ f(wk)−

1

2L

(
min

0≤k≤K−1
∥∇f(wk)∥

)2

.
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By summing across all such iterations, we obtain :

K−1∑
k=0

f(wk+1) ≤
K−1∑
k=0

f(wk)−
K

2L

(
min

0≤k≤K−1
∥∇f(wk)∥

)2

.

Removing identical terms on both sides yields

f(wK) ≤ f(w0)−
K

2L

(
min

0≤k≤K−1
∥∇f(wk)∥

)2

.

Using f(wK) ≥ flow (which holds by Assumption 2.1.1) and re-arranging the terms leads to

min
0≤k≤K−1

∥∇f(wk)∥ ≤
[
2L(f(w0)− flow)

K

]1/2
= O

(
1√
K

)
.

□
Equivalently, we say that the worst-case complexity of gradient descent isO

(
ϵ−2
)
, because for any

ϵ > 0, a reasoning similar to the proof of Theorem 2.1.1 guarantees that min0≤k≤K−1 ∥∇f(wk)∥ ≤ ϵ
after at most ⌈

2L(f(w0)− flow)ϵ
−2
⌉
= O(ϵ−2)

iterations.

Convex/Strongly convex case In addition to Assumption 2.1.1, if we further assume that the
objective is convex or strongly convex, we can show that stronger guarantees than that of the
nonconvex case can be obtained at a lower cost. This improvement illustrates the interest of convex
functions in optimization.

In this paragraph, we let f∗ = minw∈Rd f(w) denote the minimal value of f (note that f∗ ≥ flow)
and we assume that there existsw∗ ∈ Rd such that f(w∗) = f∗ (i.e. the set of minima is not empty).
Given an accuracy threshold ϵ > 0, we are interested in bounding the number of iterations necessary
to reach an iterate wk such that f(wk)− f∗ ≤ ϵ.

Theorem 2.1.2 Convergence of gradient descent for convex functions Let f be a convex function
satisfying Assumption 2.1.1. Suppose that Algorithm 1 is applied with αk = 1

L . Then, for any
K ≥ 1, the iterate wK satisfies

f(wk)− f∗ ≤ O
(

1

K

)
. (2.1.7)

method runs for at most O(ϵ−1) iterations before computing wk such that f(wk)− f∗ ≤ ϵ.

Proof. Let K be an index such that for every k = 0, . . . ,K − 1, f(wk)− f∗ > ϵ.
For any k = 0, . . . ,K − 1, the characterization of convexity (1.3.10) at wk and w∗ gives

f(w∗) ≥ f(wk) +∇f(wk)
T(w∗ −wk).

Combining this property with (2.1.5), we obtain:

f(wk+1) ≤ f(wk)−
1

2L
∥∇f(wk)∥2

≤ f(w∗) +∇f(wk)
T(wk −w∗)− 1

2L
∥∇f(wk)∥2.
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To proceed onto the next step, one notices that

∇f(wk)
T(wk −w∗)− 1

2L
∥∇f(wk)∥2 =

L

2

(
∥wk −w∗∥2 − ∥wk −w∗ − 1

L
∇f(wk)∥2

)
.

Thus, recalling that wk+1 = wk − 1
L∇f(wk), we arrive at

f(wk+1) ≤ f(w∗) +
L

2

(
∥wk −w∗∥2 − ∥wk −w∗ − 1

L
∇f(wk)∥2

)
= f(w∗) +

L

2

(
∥wk −w∗∥2 − ∥wk+1 −w∗∥2

)
.

Hence,

f(wk+1)− f(w∗) ≤ L

2

(
∥wk −w∗∥2 − ∥wk+1 −w∗∥2

)
. (2.1.8)

By summing (2.1.8) on all indices k between 0 and K − 1, we obtain

K−1∑
k=0

f(wk+1)− f(w∗) ≤ L

2

(
∥w0 −w∗∥2 − ∥wK −w∗∥2

)
≤ L

2
∥w0 −w∗∥2.

Finally, using f(w0) ≥ f(w1) ≥ ... ≥ f(wK) (a consequence of Proposition 2.1.1, we obtain that

K−1∑
k=0

f(wk+1)− f(w∗) ≥ K (f(wK)− f∗) .

Injecting this formula into the previous equation finally yields the desired outcome:

f(wk)− f(w∗) ≤ L∥w0 −w∗∥2

2

1

K
.

□
Equivalently, we say that the worst-case complexity of gradient descent is O

(
ϵ−1
)
, which means

here that there exist a positive constant C (that depends on ∥w0 −w∗∥ and L) such that

f(wK)− flow ≤ ϵ.

after at most Cϵ−1 iterations.

We now turn to the strongly convex case.

Theorem 2.1.3 Convergence of gradient descent for strongly convex functions Let f be a µ-strongly
convex function satisfying Assumption 2.1.1, with µ ∈ (0, L]. Suppose that Algorithm 1 is applied
with αk = 1

L and let ϵ > 0. Then, for any K ∈ N, we have

f(wk)− f∗ ≤ O
(
(1− µ

L)
k
)

(2.1.9)

for at most O(Lµ ln(1ϵ )) iterations before computing wk such that f(wk)− f∗ ≤ ϵ.

Equivalently, we say that the convergence rate of gradient descent is O
(
(1− µ

L)
k
)
.
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Proof. We exploit the strong convexity property (1.3.12). For any (x,y) ∈ (Rn)2, we have

f(y) ≥ f(x) +∇f(x)T(y − x) +
µ

2
∥y − x∥2.

Minimizing both sides with respect to y lead to y = w∗ on the left-hand side, and y = x− 1
µ∇f(x)

on the right-hand side (see Example ??). As a result, we obtain

f∗ ≥ f(x) +∇f(x)T
[
− 1

µ
∇f(x)

]
+

µ

2
∥ − 1

µ
∇f(x)∥2

f∗ ≥ f(x)− 1

2µ
∥∇f(x)∥2.

By re-arranging the terms, we arrive at

∥∇f(x)∥2 ≥ 2µ [f(x)− f∗] , (2.1.10)

which is valid for any x ∈ Rn. Using (2.1.10) together with (2.1.5) thus gives

f(wk+1) ≤ f(wk)−
1

2L
∥∇f(wk)∥2 ≤ f(wk)−

µ

L
(f(wk)− f∗).

This leads to

f(wk+1)− f∗ ≤
(
1− µ

L

)
(f(wk)− f∗),

which we can iterate in order to obtain

f(wK)− f∗ ≤
(
1− µ

L

)K
(f(w0)− f∗).

It then suffices to note that the bound is also valid for K = 0. □
Equivalently, we can show a worst-case complexity result: the method computes wk such that

f(wk)− f∗ ≤ ϵ in at most O(Lµ ln(1ϵ )) iterations.

Similar results can be shown for the criterion ∥wk −w∗∥: in other words, the distance between
the current iterate and the (unique) global optimum decreases at a rate O

(
(1− µ

L)
k
)
.

Remark 2.1.1 Proofs of convergence rates are typically more technical for convex and strongly
convex problems: in order to obtain better bounds than in the nonconvex setting, one must make
careful use of the (strong) convexity inequalities. In this course, we do not focus on these aspects,
but rather draw insights from the final complexity bounds or convergence rates.

2.1.4 Application: regression with logistic and sigmoid losses

As in Section ??, we consider a dataset {(xi, yi)}ni=1 where xi ∈ Rd are feature vectors, and the yis
represent binary labels. We wish to build a linear classifier x 7→ wTx to perform this classification,
i. e. identify the correct label from the feature.
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Logistic loss We first suppose that yi ∈ {−1,+1}; to model these discrete-valued labels, we
introduce an odds-like function

p(x;w) = (1 + ex
Tw)−1 ∈ (0, 1).

Given this function, our goal is to choose the model w such that{
p(xi;w) ≈ 1 if yi = +1;
p(xi;w) ≈ 0 if yi = −1.

Given this goal, we want to build an objective function that measures the error between our model
and the labels according to the property above. Therefore, we penalize situations in which yi = +1
and p(xi;w) is close to 0, or yi = −1 and p(xi;w) is close to 1. This results in the so-called logistic
loss, which is a function from Rd to R defined by

∀w ∈ Rd, f(w) =
1

n

 ∑
yi=−1

ln
(
1 + e−xT

i w
)
+
∑

yi=+1

ln
(
1 + ex

T
i w
) . (2.1.11)

The motivation behind introducing the logarithm of the function p is twofold. On the one hand,
it provides a statistical interpretation of the loss as a joint distribution; on the other hand, the
derivatives of this function have a more favorable structure.

Given this objective function, the logistic regression problem is given by

min
w∈Rd

1

n

 ∑
yi=−1

ln
(
1 + e−xT

i w
)
+
∑

yi=+1

ln
(
1 + ex

T
i w
) (2.1.12)

This is a convex, smooth problem (though not a strongly convex one), that can be made strongly
convex by adding a regularizing term, which will be done in a subsequent chapter. In both cases, we
can apply gradient descent with guaranteed convergence rates.

Sigmoid loss We now assume that yi ∈ {0, 1} for every i.In this case, and for similar reasons
than in the case of the logistic loss, we can measure agreement between the model and the label for
example i by looking at the sigmoid function

ϕ(xi;w) =
(
1 + e−xT

i w
)−1

;

Drawing inspiration from Section ??, we may want to penalize the average of the squared errors
(yi − ϕ(xi;w))2. This is the philosophy behind the nonlinear regression problem:

min
w∈Rd

1

n

n∑
i=1

(
yi − 1

1+e−xT
i
w

)2

. (2.1.13)

This problem is a nonlinear least-squares problems: it is twice continuously differentiable, but non-
convex. Therefore, we can apply gradient descent to this problem, but we will only be guaranteed
to reach a first-order stationary point.
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2.2 Acceleration techniques

2.2.1 Introduction: the concept of momentum

In Section 2.1.3, we derive complexity bounds for the gradient descent algorithm, and we saw in
particular that assuming that the function was convex (respectively, strongly convex) improved the
complexity. These results are called upper complexity bounds, in the sense that they reflect the worst
possible convergence rate that this algorithm could exhibit on a given problem. The issue of lower
bounds, that show a rate that cannot be improved upon, has been the subject to a lot of attention,
particularly in the convex optimization community.

For nonconvex optimization, it is known that there exists a function for which gradient descent
converges exactly at the O( 1√

K
) rate: in this case, the lower bound matches the upper bound. On the

contrary, for convex functions, the lower bound is actually O( 1
K2 ), which is a sensible improvement

over the bound in O( 1
K ) of Theorem 2.1.2. There are methods that can achieve this bound, thanks

to an algorithmic technique called acceleration.

The underlying idea of acceleration is that, at a given iteration and given the available information
from previous iterations (in particular, the latest displacement), one can move along a better step
than that given by the current gradient.

2.2.2 Nesterov’s accelerated gradient method

Among the existing methods based on acceleration, the accelerated gradient algorithm proposed
by Yurii Nesterov in 1983 is the most famous, to the point that it has been termed “Nesterov’s
algorithm”.

Algorithm 3: Accelerated gradient method.

Initialization: w0 ∈ Rd, w−1 = w0.
for k = 0, 1, ... do

1. Compute a steplength αk > 0 and a parameter βk > 0.

2. Compute the new iterate as

wk+1 = wk − αk∇f (wk + βk(wk −wk−1)) + βk(wk −wk−1). (2.2.1)

end

Algorithm 3 provides a description of the method. Like the gradient descent method of Sec-
tion 2.1, it requires a single gradient calculation per iteration; however, unlike in gradient descent,
the gradient is not evaluated at the current iterate wk, but at a combination of this iterate with the
previous step wk −wk−1: this term is called the momentum term, and is key to the performance
of accelerated gradient techniques.

Another view of the accelerated gradient descent is that of a two-loop recursion: given w0 and
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z0 = w0, the update (2.2.1) can be rewritten as{
wk+1 = zk − αk∇f(zk)
zk+1 = wk+1 + βk+1(wk+1 −wk).

(2.2.2)

This formulation decouples the two steps behind the accelerated gradient update: a gradient step
on zk, combined with a momentum step on wk+1.

Choosing the parameters We now comment on the choice of the stepsize αk and the momentum
parameter βk. The same techniques than those presented in Section 2.1.2 can be considered for the
choice of αk (stepsize parameter). As in the gradient descent case, the choice αk = 1

L is a standard
one.

The choice of βk is most crucial to obtaining the improved complexity bound. The standard
values proposed by Nesterov depend on the nature of the objective function:

• If f is a µ-strongly convex, we set

βk = β =
√
L−√

µ√
L+

√
µ

(2.2.3)

for every k. Note that this requires the knowledge of both the Lipschitz constant of the gradient
and the strong convexity constant.

• For a general convex function f , βk is computed in an adaptive way using two sequences, as
follows:

tk+1 =
1

2
(1 +

√
1 + 4t2k), t0 = 0, βk =

tk − 1

tk+1
. (2.2.4)

The following informal theorem summarizes the complexity results that can be proven for Algo-
rithm 3.

Theorem 2.2.1 Consider Algorithm 3 applied to a convex function f satisfying Assumption 2.1.1,
with αk = 1

L , and let ϵ > 0. Then, for any K ≥ 1, the iterate wK computed by Algorithm 3 satisfies

i) f(wK) − f∗ ≤ O( 1
K2 ) for a generic convex function if βk is set according to the adaptive

rule (2.2.4);

ii) At most f(wK) − f∗ ≤
(
(1−

√
µ
L)

K
)
for a µ-strongly convex function, provided βk is set to

the constant value given by (2.2.3).

Note that we can also derive worst-case complexity bounds for the accelerated gradient method,
that show the same improvement. For instance, for strongly convex functions, we can establish that

f(wk)− f∗ ≤ ϵ after at most O
(√

L
µ ln(ϵ−1)

)
O
(
L
µ ln(ϵ−1)

)
.

2.2.3 Other accelerated methods

Heavy ball method The heavy ball method is a precursor of the accelerated gradient algorithm,
that was proposed by Boris T. Polyak in 1964. Its k-th iteration can be written as

wk+1 = wk − α∇f(wk) + β(wk −wk+1),
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where the stepsize and momentum parameters are chosen to be constant values. The key difference
between this iteration and Nesterov’s lies in the gradient evaluation, which the heavy ball method
performs at the current point: in that sense, the heavy ball method performs first the gradient
update, then the momentum step, while Nesterov’s method adopts the inverse approach. This
method achieves the optimal rate of convergence on strongly convex quadratic functions, but can
fail on general strongly convex functions.

Conjugate gradient The (linear) conjugate gradient method, proposed by Hestenes and Stiefel in
1952, has remained to this day one of the preferred methods to solve linear systems of equations and
strongly convex quadratic minimization problems. Unlike Polyak’s method, the conjugate gradient
algorithm does not require knowledge of the Lipschitz constant L nor the parameter µ, because it
exploits knowledge from the past iterations. The k-th iteration of conjugate gradient can be written
as:

wk+1 = wk + αkpk, pk = −∇f(xk) + βkpk−1.

In a standard conjugate gradient algorithm, αk and βk are computed using formulas tailored to the
problem: this contributes to their convergence rate analysis, which leads to a rate similar to that
of accelerated gradient. However, unlike accelerated gradient, the conjugate gradient is guaranteed
to terminate after d iterations on a d-dimensional problem. When d is very large, the bound for
conjugate gradient matches that of the other methods, and in that sense does not depend on the
problem dimension.

Example 2.2.1 (Strongly convex quadratic minimization) A strongly convex quadratic minimiza-
tion problem is an optimization problem of the form

minimize
w∈Rd

q(w) := 1
2w

TAw − bTw

where A ∈ Rd×d is a symmetric positive definite matrix and b ∈ Rd. This problem is smooth
(because the objective is polynomial in all of the decision variables) and ∇2f(w) ≻ 0 for every w,
meaning that the problem is µ-strongly convex with µ denoting the minimum eigenvalue of A. As
a result, there exist a unique global minimum given by the solution of ∇q(w) = Aw − b = 0. This
equation is a linear system but the cost of inverting this system and computing a solution can be
prohibitive. For this reason, one can replace the exact solve by an iterative, gradient-based approach,
and apply Algorithm 1 or Algorithm 3. Note that q ∈ C1,1∥A∥(R

d), hence the choice of steplength 2.1.4
is a valid one.

If gradient descent is applied, then an ϵ-accuracy in the objective value can be reached in at most

O
(
L
µ ln(1ϵ )

)
iterations, while if one applies the accelerated gradient or the heavy ball method with

appropriately chosen parameters, this bound improves to O
(
L
µ ln(1ϵ

)
. Finally, if we aim at using

conjugate gradient, the result bound will be in O
(
min{d, Lµ ln(1ϵ )}

)
.
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2.3 Conclusion

The most classical optimization problems involve linear algebra: this is the case for linear least squares
as well as eigenvalue and singular value calculations, that can be viewed as solutions of optimization
problems. For these problems, it is possible to compute the solution explicitly (or in closed form).
Linear least squares is a particular case of such instances.

For general unconstrained optimization problems, it is not possible to obtain a closed-form expres-
sion of the solution(s). As a result, one must construct algorithms that proceed iteratively to move
from a starting point towards a solution. The gradient descent method is the canonical example of
such a framework: many variants have been built on this paradigm, especially regarding the choice of
the stepsize (or learning rate in machine learning applications). To analyze the behavior of gradient
descent, one can establish global convergence rates (or, equivalently, global complexity bounds) that
can be refined depending on the nature of the objective function. Indeed, gradient descent can be
shown to converge faster on convex problems than on nonconvex ones, and even faster on strongly
convex problems.

A natural question arising from these convergence rates results is whether those are optimal. For
gradient descent applied to nonconvex, differentiable functions, it is not possible to improve over the
rate established in Section 2.1.3. However, one can design accelerated methods for strongly convex
and convex functions that possess better rates, a fact that reflects on the practical performance.
These methods all rely on the concept of momentum, which is also exploited in state-of-the-art
algorithms used to learn complex models in machine learning (e. g. Adagrad).



Chapter 3

Regularization

In this chapter, we investigate several challenges that can be posed while trying to apply stochastic
gradient techniques to machine learning problems. To motivate these issues further, we will begin
with an introductory example and method.

3.1 Introduction : The perceptron algorithm

Recall that in section 1.1, we introduced a linear SVM problem of the following form :

min
w∈Rd

1

n

n∑
i=1

max{1− yix
T
i w, 0}+ λ

2
∥w∥22 (3.1.1)

where {(xi, yi)}ni=1 represents the dataset, and λ > 0.

One of the earliest methods that was proposed to solve this algorithm is the perceptron algo-
rithm, given in Algorithm 4.

Algorithm 4: Perceptron algorithm for problem 3.1.2.

Initialization: w0 ∈ Rd, α > 0.
for k = 0, 1, ... do

1. Draw an index ik ∈ {1, . . . , n} at random.

2. Compute the new iterate as

wk+1 =

(
1− αλ

n

)
wk +

{
αyikxik if 1− yikx

T
ik
wk > 0

0 otherwise,
(3.1.2)

end

In its basic form, the preceptron algorithm is quite similar to stochastic gradient with a constant
step size, in that it selects a single sample at every iteration and performs an update based on this

31
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value. In fact, this would be exactly the stochastic gradient method if the problem were

min
w∈Rd

1

n

n∑
i=1

(1− yix
T
i w) +

λ

2
∥w∥22.

However, this choice of loss function would not satisfy our desired requirements (see section 1.1).
The hinge loss is a more meaningful quantity, however it is nonsmooth, i.e. the gradient does not
exist at every point. In this situation, and with structured functions such as the hinge loss, it is
possible to define quantities that act as a proxy for the gradient, and can thus drive the optimization
process : we detail these aspects in Section 3.2.

Another interesting property of the problem (3.1.1) is that the objective function involves two
terms: the hinge loss term, which depends on the data and a regularizing term, which does not
depend on the data and serves to enforce structural properties on the solution. We will address this
topic and the associated algorithms in Section 3.3.

3.2 Nonsmooth optimization

3.2.1 From nonsmooth functions to nonsmooth problems

Problems such as (3.1.1), that involve a function possibly not differentiable, are termed nonsmooth
problems. They involve functions that we will call nonsmooth (by opposition with smooth) : for the
purpose of these notes, we will define nonsmooth functions as follows.

Definition 3.2.1 (Nonsmooth functions) A function f : Rd → R is called nonsmooth if it is not
differentiable everywhere.

Remark 3.2.1 A nonsmooth function can be continuous (this is the case for the hinge loss above).

Example 3.2.1 Examples of nonsmooth functions

• w 7→ |w| from R to R;

• w 7→ ∥w∥1 from Rd to R;

• ReLU: w 7→ max{w, 0} from Rd to R.

Since nonsmooth functions are not differentiable everywhere, optimization problems that involve
nonsmooth functions may be impossible to solve via gradient-based methods. Still, several approaches
can be used to tackle these problems.

One useful technique consists in reformulating a nonsmooth problem as a smooth one when
possible. For instance, the problem minw∈R |w| is equivalent to

min
w,t+,t−∈R

t+ + t− s. t. w = t+ − t−, t+ ≥ 0, t− ≥ 0.

This reformulation is a smooth problem involving only linear objective and constraints, which is easily
solvable by smooth solvers.

Another technique, frequently employed in practice, consists in working with functions that are
nonsmooth but Lipschitz continuous (denoted by C0,0L , by analogy with C1,1L ) and using a gradient-
based scheme. This approach is motivated by the following property.



Optimization for ML - 2023/2024 33

Theorem 3.2.1 Let f : Rd → R be a Lipschitz continuous function. Then it is differentiable at
almost every point in Rd.

For instance, the ReLU function is Lipschitz continuous (not differentiable at 0) thus most
constructions involving ReLU (such as neural networks) would not be differentiable everywhere.
However, most algorithms will operate under the assumption that the function is indeed differentiable.
This is the case for most points (in fact, almost every point), but nonsmooth functions are likely to
be non-differentiable at their minima, should they possess one.

3.2.2 Subgradient methods

In the case of convex functions, one can define a proxy for the gradient called the subgradient.

Definition 3.2.2 (Subgradient and subdifferential) Let f : Rd → R be a convex function. A
vector g ∈ Rd is called a subgradient of f at w ∈ Rd if

∀z ∈ Rn, f(z) ≥ f(w) + gT(z −w).

The set of all subgradients of f at w is called the subdifferential of f at w, and denoted by ∂f(w).

Note that when the function f is differentiable at w, we have ∂f(w) = {∇f(w)}, thus the notion
of subdifferential matches that of the gradient for differentiable functions.

The interest of subgradients is further illustrated by the following result.

Theorem 3.2.2 Let f : Rd → R be a convex function, and w ∈ Rd.

0 ∈ ∂f(w) ⇔ w minimum of f.

Example 3.2.2 Let f : R→ R, f(w) = |w|.

∂f(w) =


−1 if w < 0
1 if w > 0
[−1, 1] if w = 0.

The set [−1, 1] contains 0, which confirms that w∗ = 0 is the minimum of f .

Remark 3.2.2 Subgradients can also be defined for nonconvex functions, however in that case the
subdifferential may be empty (typically at local maxima of the function).

By analogy with gradient descent, we can design a subgradient method, as shown by Algorithm 5.
Such a method offers a flexibility in choosing the subgradient, which can be an issue. Moreover,

choosing the stepsize is more difficult than for gradient descent, due to the nonsmooth nature of the
problem. In fact, a subgradient can lead to increase in the function value for any stepsize, hence the
choice of subgradient is critical to the success of this method.

Variants of subgradient method Based on the existing variants on the gradient descent paradigm,
one can build algorithms that incorporate momentum and/or stochastic aspects; however, their
analysis is also more intricate.
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Algorithm 5: Subgradient descent method.

Initialization: w0 ∈ Rd.
for k = 0, 1, ... do

1. Compute a subgradient gk ∈ ∂f(wk).

2. Compute a steplength αk > 0.

3. Set wk+1 = wk − αkgk.

end

3.3 Regularization

3.3.1 Regularized problems

As we mentioned in introduction, a common practice in machine learning problems consists in en-
forcing a specific structure of the machine learning model through the objective function. Such
regularized problems have the following form :

minimize
w∈Rd

f(w)︸ ︷︷ ︸
loss function

+ λΩ(w)︸ ︷︷ ︸
regularization term

.

where λ > 0 is called a regularization parameter.

Example 3.3.1 (Ridge regularization) A problem with ridge regularization has the following form:

minimize
w∈Rd

f(w) +
λ

2
∥w∥2.

The ridge regularizer w 7→ 1
2∥w∥

2 has several interpretations. It effectively penalizes ws with
large components, and can be shown to be equivalent to a constraint on the squared norm ∥w∥2.
In addition, a ridge regularizer has the effect to reduce the variance of the problem solution with
respect to the data. Finally, when the regularizer λ > 0 is big enough, this often turns the objective
function into a strongly convex one, with the positive implications in terms of convergence speed
and uniqueness of the (global) minimum.

3.3.2 Sparsity-inducing regularizers

While computing a model to explain some data, we might want to compute a model that explains
the data using as few features as possible1. Mathematically speaking, if our model is parameterized
by a vector w ∈ Rd, our goal is to compute a vector that explains the data with as few nonzero
coordinates as possible.

There exists a regularizer that penalized vectors with nonzero components (not just large as
opposed to the ridge regularizer), called the ℓ0 norm 2. An ℓ0-regularized problem has the form

minimize
w

f(w) + λ∥w∥0, ∥v∥0 = |{i|[v]i ̸= 0}|.

1The goal of this process is feature selection.
2Though technically this function defines a semi-norm.
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However, this function is nonsmooth and discontinuous; its combinatorial nature also introduces
more complexity to the original problem. As a result, researchers have turned to an intermediate
regularization term, the ℓ1 norm defined by

∥w∥1 =
d∑

i=1

|wi|. (3.3.1)

This function is continuous and convex; moreover, it is a norm function, which endows it with many
desirable properties.

An illustration of this method is given below.

Example 3.3.2 LASSO (Least Absolute Shrinkage and Selection Operator) Consider the setting of
linear regression with data X ∈ Rn×d and y ∈ Rn. With an ℓ1 regularizer, the problem becomes:

minimize
w∈Rd

1

2
∥Xw − y∥2 + λ∥w∥1.

The solution of this problem is known to possess fewer nonzero elements than the un-regularized,
least-squares solution.

3.3.3 Proximal methods

Following our introduction of regularized problems in the previous section, we now describe optimiza-
tion algorithms tailored to such formulations.

We begin by describing our problem class of interest.

Definition 3.3.1 (Composite optimization) A composite optimization problem is of the form:

minimize
w∈Rd

f(w) + λΩ(w),

where f : Rd → R is a smooth, C1,1 function, λ > 0 and Ω : Rd → R is a convex, nonsmooth
regularizer.

The proximal approach follows a classical optimization paradigm, in which a given problem is
replaced by a sequence of easier problems called subproblems (note that all methods that we covered
in these notes implicitly rely on these techniques). In the case of proximal methods, one aims at
exploiting the smoothness of f to obtain easier problems, while using the structure of Ω directly into
the subproblems.

Algorithm 6 gives a sketch of a proximal gradient method. The cost of an iteration of this
algorithm is clearly more than that of other methods we have seen so far, given that it includes a
gradient calculation as well as solving an auxiliary optimization problem (3.3.2), called the proximal
subproblem.

Remark 3.3.1 If Ω ≡ 0 (i. e. Ω is the zero function and the problem is un-regularized), one can
show that the solution of (3.3.2) is given by

wk+1 = wk − αk∇f(wk).

We thus recognize the gradient iteration of Algorithm 1.
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Algorithm 6: Proximal gradient method.

Initialization: w0 ∈ Rd.
for k = 0, 1, ... do

1. Compute the gradient of the smooth part ∇f(wk).

2. Compute a steplength αk > 0.

3. Compute wk+1 such that

wk+1 ∈ argmin
w∈Rd

{
f(wk) +∇f(wk)

T(w −wk) +
1

2αk
∥w −wk∥22 + λΩ(w)

}
. (3.3.2)

end

Proximal gradient methods can be designed using most of the tools that can be applied to
gradient descent : this includes stepsize choices, acceleration as well as stochastic aspects. Moreover,
complexity results exist for nonconvex and convex f , though the latter has attracted more attention
in the literature.

Example of proximal method: ISTA We end this section on proximal methods by a instance of
Algorithm 6 that has proven successful in signal and image processing. This method is dedicated to
solving problems with an ℓ1 regularization term, of the form:

minimize
w∈Rd

f(w) + λ∥w∥1.

Unlike for general regularizers, one can obtain a closed-form solution of the subproblem (3.3.2).
Indeed, the proximal subproblem, given by

minimize
w∈Rd

{
f(wk) +∇f(wk)

T(w −wk) +
1

2αk
∥w −wk∥22 + λ∥w∥1

}
,

has a unique solution. To obtain it, one computes the usual gradient step wk − αk∇f(wk), then
one applies the soft-thresholding function sαkλ(•) to each component, where this function is given
by

∀µ > 0, ∀t ∈ R, sµ(t) =


t+ µ if t < −µ
t− µ if t > µ
0 otherwise.

As a result, the solution of the proximal subproblem is defined component-wise according to the
components of the gradient step. The resulting update is at the heart of the corresponding proximal
algorithm, called ISTA (Iterative Soft-Thresholding Algorithm): a description of ISTA is given in
Algorithm 7.

It can be shown that the use of the soft-thresholding function does promote zero components in
the new iterates, which results in sparser solutions at the end of the algorithmic run.
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Algorithm 7: ISTA: Iterative Soft-Thresholding Algorithm.

Initialization: w0 ∈ Rd.
for k = 0, 1, ... do

1. Compute the gradient of the smooth par ∇f(wk).

2. Compute a steplength αk > 0.

3. Compute wk+1 component-wise through the following rule

[wk+1]i =


[wk − αk∇f(wk)]i + αkλ if [wk − αk∇f(wk)]i < −αkλ
[wk − αk∇f(wk)]i − αkλ if [wk − αk∇f(wk)]i > αkλ
0 if [wk − αk∇f(wk)]i ∈ [−αkλ, αkλ].

(3.3.3)

end

Remark 3.3.2 A notable improvement on ISTA was the inclusion of momentum, which resulted in
a new algorithm called FISTA (Fast ISTA): this method is now the most widely used instance of
ISTA.

3.4 Conclusion

Nonsmoothness is a very common property in optimization, that can lead to mild or major challenges
in implementing algorithms to minimize nonsmooth functions. In certain cases, the structure and
the impact of nonsmoothness are well understood; in other cases, generalized notions of derivative
such as subgradients may have to come into play.

Nonsmoothness frequently arises in regularized problem, where the goal is to enforce properties
for a model, that do not depend on the data. The optimization schemes of choice for these problems
are proximal gradient methods, that proceed by solving subproblems involving the regularizer. For
instance, the ℓ1 regularizer, that promotes sparsity of the solution, can be tackled using the ISTA
method. Note that a regularizer need not be nonsmooth, in which case a classical gradient method
could be applied. This is for instance the case with the ℓ2 regularizer, that aims at reducing variance
with respect to the data, and leads to a smooth, possibly strongly convex problem.



Chapter 4

Stochastic optimization methods

4.1 Motivation

In this chapter, we will leverage the structure inherent to data science problems. More formally, we
suppose that we have access to data samples {(xi, yi)}ni=1, xi ∈ Rd, yi ∈ R, that are drawn from an
unknown distribution. As in the regression examples studied above, we seek a predictor function or a
model h such that h(xi) ≈ yi for every i = 1, . . . , n. Rather than optimizing over a space of models,
we assume that a given model is defined by means of a vector w ∈ Rd (i.e. h(xi) = h(w;xi)).
Therefore, we only need to determine the vector w in order to obtain the model.

To assess the accuracy of our model in predicting the data, we define a loss function, i.e. a
mapping ℓ : (h, y) 7→ ℓ(h, y), that penalize pairs (h, y) such that h ̸= y. We have already seen
several examples of such losses (least-squares loss, sigmoid loss, etc). The loss at a given sample of
the dataset thus is ℓ(h(w;xi), yi): in order to account for all samples, we consider the average of
all losses as our objective to be minimized. This gives rise to the following optimization problem.

Definition 4.1.1 (Finite-sum optimization problem) Given a dataset {(xi, yi)}ni=1, xi ∈ Rd, yi ∈
R, a class of predictor functions {h(w; ·)}w∈Rd and a loss function ℓ, we define the corresponding
optimization problem:

min
w∈Rd

f(w) =
1

n

n∑
i=1

ℓ(h(w;xi), yi) =
1

n

n∑
i=1

fi(w). (4.1.1)

Suppose that we apply gradient descent (Algorithm 1) to that problem, assuming all fi are
differentiable. The k-th iteration of this method is

wk+1 = wk − αk∇f(wk) = wk −
αk

n

n∑
i=1

∇fi(w).

From this update, we see that one iteration of gradient descent requires to look over the entire
dataset in order to compute the gradient vector. In a big data setting where the number of samples
n is very large, this cost can be prohibitive.

Remark 4.1.1 In stochastic optimization, the data samples might be generated directly from the
distribution, and be available in a streaming fashion. Instead of involving a discrete average on the

38



Optimization for ML - 2023/2024 39

sample, the resulting optimization problem would involve a mathematical expectation of the form

min
w∈Rd

E(x,y)

[
f(x,y)(w)

]
.

In such a context, the full gradient cannot be computed exactly. However, most of the reasoning of
stochastic gradient will still be applicable.

4.2 Stochastic gradient algorithm

4.2.1 Algorithm

At its core, the idea of the stochastic gradient method is remarkably simple. Starting from the
problem minw∈Rd

1
n

∑n
i=1 fi(w), and assuming each component function fi is differentiable, the

method picks an index i at random and takes a step in the direction of the negative gradient of the
component function fi.

Algorithm 8: Stochastic gradient method.

Initialization: w0 ∈ Rd.
for k = 0, 1, ... do

1. Compute a steplength αk > 0.

2. Draw a random index ik ∈ {1, . . . , n}.

3. Compute the new iterate as
wk+1 = wk − αk∇fik(wk). (4.2.1)

end

The key motivation for this process is that using a single data point at a time results in updates
that are n times cheaper than a full gradient step.

Remark 4.2.1 In general, considering independent updates may not be desirable. Consider for
instance the problem minw∈R

1
2(f1(w) + f2(w)) with f1(w) = 2w2 and f2 = −w2. Starting from

wk > 0, drawing ik = 2 will necessarily lead to an increase in the function value.

In finite-sum problems arising from machine learning, the data samples are correlated enough
that an update according to one sample might lead to improvement with respect to other samples
as well: this is a key reason for the success of stochastic gradient methods in this setting.

Remark 4.2.2 Algorithm 8 is often referred to as Stochastic Gradient Descent, or SGD, by analogy
with Gradient Descent. However, for the reason mentioned in the previous remark, the stochastic
gradient algorithm is not a descent method in general (as we will see in the next section, it can
however produce descent in expectation). In these notes, we will adopt the terminology stochastic
gradient.
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4.2.2 Analysis

We now describe the main arguments in deriving convergence rates for stochastic gradient, under a
slightly modified version of Assumption 2.1.1.

Assumption 4.2.1 The objective function f = 1
n

∑n
i=1 fi belongs to C

1,1
L (Rd) for L > 0 and there

exists flow ∈ R such that for every w ∈ Rd, f(w) ≥ flow. Moreover, every function fi belongs to
C1(Rd).

Recall that, for gradient descent, the key result was Proposition 2.1.1, which gave

f(wk+1) ≤ f(wk) +∇f(wk)
T(wk+1 −wk) +

L

2
∥wk+1 −wk∥2.

A similar result can be shown for stochastic gradient under certain assumptions on how the
random components are drawn. Those are summarized below.

Assumption 4.2.2 (Assumptions on stochastic gradient) At any iteration of Algorithm 8 of in-
dex k, the index ik is drawn independently from the previous indices i0, . . . , ik−1 so that the following
properties are satisfied:

1. Eik [∇fik(wk)] = ∇f(wk);

2. Eik

[
∥∇fik(wk)∥2

]
≤ σ2 + ∥∇f(wk)∥2 with σ2 > 0.

The first property of Assumption 4.2.2 forces the stochastic gradient ∇fik(wk) to be an unbiased
estimate of the true gradient ∇f(wk). The second property controls the variance of the norm of this
stochastic gradient, so as to control the variations in its magnitude due to noise. Several strategies
can be designed to draw an index ik that satisfies these properties, the most classical of which is
given below.

Example 4.2.1 (Uniform sampling) Suppose that the k-th iteration of stochastic gradient draws
the index ik uniformly at random in {1, . . . , n}. Then Algorithm 8 satisfies Assumption 4.2.2.

Proposition 4.2.1 Under Assumptions 2.1.1 and 4.2.2, consider the k-th iteration of Algorithm 8.
Then,

Eik [f(wk+1)]− f(wk) ≤ ∇f(wk)
T Eik [wk+1 −wk] +

L

2
Eik

[
∥wk+1 −wk∥2

]
.

A stochastic gradient update will thus lead to decrease in expectation. Such a property suffices
to derive convergence rates (or complexity results) for stochastic gradient applied to strongly convex,
convex or nonconvex problems. Those results heavily depend upon the formula for the step sizes
{αk}k. In fact, one of the major problems in machine learning consists in tuning the learning rate,
which corresponds to choosing the step size in stochastic gradient. We will illustrate the various
challenges posed by this choice in the context of strongly convex functions.

Assumption 4.2.3 The objective function is µ-strongly convex and possesses a unique global mini-
mizer w∗. We let f∗ = f(w∗).

We first provide a global rate result in the case of a constant step size.
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Theorem 4.2.1 (SG with constant stepsize) Let Assumptions 2.1.1, 4.2.2 and 4.2.3, and con-
sider Algorithm 8 applied with a constant stepsize

αk = α ∈ (0, 1
2µ)∀k.

Then,

E [f(wk)− f∗] ≤ αLσ2

2µ
+ (1− 2αµ)k

[
f(w0)− f∗ − αLσ2

2µ

]
. (4.2.2)

We note that this convergence rate corresponds to guaranteeing E [f(wk)− f∗] ≤ ϵ after at
most O (ln(1/ϵ)) iterations. However, unlike in the gradient descent case, the tolerance ϵ cannot
be arbitrarily close to zero. In fact, the use of stochastic gradients introduces an additional (bias)

term αLσ2

2µ . As a result, SG with constant stepsize can only be guaranteed to converge towards a
neighborhood of the optimal function value f∗. On the other hand, such a method is capable of
taking long steps, as opposed to the next technique based on decreasing step sizes.

In the original stochastic gradient method (proposed by Robbins and Monro in 1951), the stepsize
sequence was required to satisfy

∞∑
k=0

αk =∞ and
∞∑
k=0

α2
k <∞,

which implies that αk → 0. In our next result, we thus consider the case of diminishing stepsizes.

Theorem 4.2.2 (SG with diminishing stepsize) Let Assumptions 2.1.1, 4.2.2 and 4.2.3, and con-
sider Algorithm 8 applied with a decreasing stepsize sequence {αk}k satisfying

αk =
β

k + γ
,

where β > 1
µ and γ > 0 is chosen such that α0 =

β
γ ≤

1
L . Then,

E [f(wk)− f∗] ≤ ν

γ + k
, (4.2.3)

where

ν = max

{
γ(f(w0)− f∗),

β2Lσ2

2(βµ− 1)

}
.

The decreasing stepsize choice possesses the same drawbacks than for gradient descent, namely
that it results in increasingly small steps. It also provides a global convergence rate that is sublinear,
as opposed to linear with a constant stepsize. Note, however, that SG with a decreasing stepsize is
guaranteed to reach any neighborhood of a solution, unlike its variant with a constant stepsize.

Remark 4.2.3 (A practical constant stepsize approach) A common practical strategy in ma-
chine learning consists in running the algorithm with a value α until the method stalls (which
can indicate that the smallest neighborhood attainable with this stepsize choice has been reached).
When that occurs, the stepsize can be reduced, and the algorithmic run can continue until it stalls
again, then the stepsize will be further reduced, etc (say α, α/2, α/4, etc). This process can lead to
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convergence guarantees, however the convergence is slower than that produced by constant stepsize
SG:

E [f(wk)− f∗] ≤ ϵ after O(1/ϵ) iterations.

This choice of stepsize is adaptive, in that it is designed to reach closer and closer neighborhoods as
the algorithm proceeds. However, it requires the method to be able to detect stalling, and act upon
it.

Stepsize choice in the nonconvex setting Stochastic gradient (or some variant thereof) is the
method of choice for training neural networks, which is usually a nonconvex problem. It is thus
natural to ask whether global rates can be obtained for stochastic gradient in the nonconvex setting.
The situation is significantly more complicated, as we get guarantees on

• E
[

1
K

∑K
i=1 ∥∇f(wk)∥2

]
for constant stepsizes;

• E
[

1∑K
i=1 αk

∑K
i=1 αk∥∇f(wk)∥2

]
for decreasing stepsizes.

Similarly to the strongly convex case, the complexity bounds are affected by a residual term which
in turns lead to worse rates than in the deterministic setting.

Example 4.2.2 A typical stochastic gradient method with constant stepsize will satisfy

E

[
1
K

K∑
i=1

∥∇f(wk)∥2
]
≤ ϵ

in at most O(ϵ−4) iterations, where ϵ is a sufficient large threshold of accuracy.

Remark 4.2.4 (What about momentum?) The most successful implementations of stochastic
gradient, such as ADAM, rely on some form of momentum incorporated in the stochastic gradient
update. Intuitively, the hope is that incorporating momentum will allow the method to promote
moves along good directions of decrease, while steps in bad directions will eventually cancel out.
Some theory has been developed in the recent years to accelerate stochastic gradient yet, unlike in
the deterministic setting, theory is still decorrelated from practice.

4.3 Variance reduction

As we saw in the previous section, the theory for stochastic gradient is based on Assumption 4.2.2,
and in particular on the fact that the variance of stochastic gradient estimates is bounded (by σ2). It
can clearly be seen from bounds such as (4.2.2) that the bigger σ is, the looser the bound becomes.
More practically, this means that gradient estimates with high variance are unlikely to yield fast
convergence.

Variance reduction techniques have precisely been developed in the aim of diminishing the variance
of traditional stochastic gradient estimates. They can be categorized in two families, that either
exploit more sampled gradients at every iteration, or use past history of the method. In these notes,
we will focus on the former category.
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4.3.1 Batch variants

We recall that the main part of Algorithm 8 consists in the update

wk+1 = wk − αk∇fik(wk),

where the index ik is drawn at random. The use of a single sample is partially responsible for the
importance of the variance term σ2 in Assumption 4.2.2. One can thus consider stochastic gradient
estimates that are built using several samples at once : this is the idea behind batch stochastic
gradient.

Formally, the update of a batch stochastic gradient method is given by

wk+1 = wk − αk
1

|Sk|
∑
i∈Sk

∇fi(wk) (4.3.1)

where Sk ⊂ {1, . . . , n} is drawn at random. When Sk consists in a single index, we recover the
usual stochastic gradient algorithm; conceptually, one could also consider a set Sk of cardinality n,
in which case we would recover the usual gradient method.

Overall, two batch regimes can be distinguished:

• |Sk| ≈ n, which has a cost essentially equivalent to that of a full gradient update;

• |Sk| = nb << n, also called mini-batching, which may be advantageous in theory and variance
reduction while still being affordable in practice. The resulting method is called mini-batch SG.

In fact, if we assume that |Sk| = nb ∀k, it is possible to show that with the same stepsize,
mini-batch SG requires nb less iterations than SG. Moreover, mini-batch SGD can exploit parallel
computing, by computing the nb stochastic gradients on distributed processors. Moreover, we have
the following property.

Proposition 4.3.1 Under Assumptions 2.1.1 and 4.2.2, the variance of a mini-batch stochastic
gradient estimate is given by

VarSk

∥∥∥∥∥∥ 1
|Sk|

∑
i∈Sk

∇fi(wk)

∥∥∥∥∥∥
2

 ≤ σ2

nb
.

As a final note, we mention that batch techniques are still more expensive than stochastic
gradient, while being more sensitive to redundancies in the data. Tuning the best batch size is not
necessarily an easy task. These concerns partly explain why stochastic gradient (or other schemes
based on his sampling paradigm) remains the preferred approach.

4.3.2 Other variants

Gradient aggregation methods have attracted a lot of attention in the learning and optimization
theory, because of the nice theory and algorithms that have been proposed and guarantee linear
convergence rates. Their main principle consists in computing a full gradient step once in a while
during the algorithmic run, in order to correct high-variance components. Despite their strong guar-
antees, they have not been widely exploited in practice, due to the cost of full gradient evaluations,
that is still too prohibitive in certain applications.
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Iterate averaging is another popular technique, that can be easier to implement. The underlying
idea consists in analyzing (and possibly returning as output) the average iterate of a run of stochastic
gradient, given by 1

K

∑K−1
k=0 wk. In certain contexts (e.g. α = 1

µ(k+1) and f µ-strongly convex),
this average has good properties with respect to the optimization, and is also a more robust solution
than the last iterate obtained. However, returning this average either requires to store the history of
iterates, or to maintain an average which can be prone to cancellation or numerical errors.

4.4 Stochastic gradient methods for deep learning

In this section, we focus on stochastic gradient algorithms that have proven useful in training deep
learning models (though the methods we will present are not tailored to a particular architecture).

We again consider a finite-sum problem of the form (4.1.1) under Assumption 4.2.1. Our objective
is to analyze several variants on the basic scheme

wk+1 = wk − αgk, (4.4.1)

where α > 0 is a stepsize (also known as learning rate in the machine learning community) and gk is
a stochastic gradient estimator, that either corresponds to a single gradient component (as in vanilla
stochastic gradient) or a batch of indices.

We will present all our variants within a unified framework that highlights the key features of
these methods: this framework is given by the iteration

wk+1 = wk − αmk ⊘ vk, (4.4.2)

where α > 0, mk,vk ∈ Rd and ⊘ denotes the componentwise division, i. e.

mk ⊘ vk :=

[
[mk]i
[vk]i

]
i=1,...,d

.

Note that by letting mk = gk and vk = 1Rd , we recover the classical stochastic gradient itera-
tion (4.4.1).

4.4.1 Stochastic gradient with momentum

Inspired by the accelerated methods that we investigated in Chapter 2, we first consider adding
momentum to the basic iteration (4.4.1). The most common approach, called stochastic gradient
with momentum, corresponds to the iteration:

wk+1 = wk − α(1− β1)gk + αβ1 (wk −wk−1) , (4.4.3)

where β1 ∈ (0, 1) is a constant parameter (β1 = 0 would correspond to the classical stochastic
gradient method). This method is a (stochastic) variant on Polyak’s heavy-ball method, for which
the gradient step is combined with the previous displacement. As in momentum-based methods, the
idea consists in accumulating information from the previous iteration. In practice, the iteration (4.4.3)
tends to accumulate good directions (in the optimization sense) while “bad” directions tend to cancel
out.

The method (4.4.3) is a special case of (4.4.2), corresponding to vk = 1Rd and mk defined
recursively by m−1 = 0Rd and

mk = (1− β1)gk − β1mk−1 ∀k ∈ N.
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where β1 is the constant defined in (4.4.3).
Stochastic gradient with momentum is implemented in standard deep learning librairies such as

PyTorch. It is particularly useful in training deep neural netwroks on computer vision tasks, and, as
such, played a role in the outbreak of deep learning circa 2012.

Remark 4.4.1 It is less straightforward to derive theoretical guarantees for the method (4.4.3) than
for accelerated gradient descent, even in a strongly convex setting. Nevertheless, adding momentum
to the stochastic gradient iteration is a popular practice in solving nonconvex problems such as those
arising from training neural networks.

4.4.2 AdaGrad

The adaptive gradient method, or AdaGrad, was proposed in 2011 to address the issue of selecting
the learning rate α in stochastic gradient without relying on adaptive approaches like line searches.
In AdaGrad, every component of the stochastic gradient is scaled according to a running average
of the values taken by that component over all iterations. The method maintains a sequence {rk}k
given by

∀i = 1, . . . , d,

{
[r−1]i = 0
[rk]i = [rk−1]i + [gk]

2
i ∀k ≥ 0,

(4.4.4)

The AdaGrad iteration is thus

wk+1 = wk − αgk ⊘
√
rk, (4.4.5)

where the square root is applied to every component of rk. This iteration matches (4.4.2) with
mk = gk and vk =

√
rk. The contribution of AdaGrad thus consists in using a different stepsize

for each coordinate, leading the sequence :{[
α√
[rk]i

]d
i=1

}
k

.

The method performs a diagonal scaling of the components of the stochastic gradient gk, which
is particularly well suited for ill-conditioned problems where the components have a high variance.
However, such stepsizes typically decrease very quickly towards 0.

Remark 4.4.2 In practice, we replace rk by rk + η1Rd where η > 0 is a small quantity, so that the
algorithm is numerically stable.

AdaGrad is particularly suited for problems with sparse gradients, for which stochastic graidents
also tend to have many zero components. In this situation, computing rk will only change the
stepsize for the nonzero coordinates. Problems from recommender systems typically come with
sparse gradients, which explains the popularity of AdaGrad in this setting.

4.4.3 RMSProp

The Root Mean Square Propagation algorithm, or RMSProp, is similar to AdaGrad in that it
scales the stochastic gradient components. To this end, the method computes a vector sequence
{rk}k as follows:

∀i = 1, . . . , d,

{
[r−1]i = 0
[rk]i = (1− λ)[rk−1]i + λ[gk]

2
i ∀k ≥ 0,

(4.4.6)
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where λ ∈ (0, 1). The value of λ controls how much weight is given to the past stochastic gradient
components over the current stochastic gradient components. This idea leads to a slower decrease
in the stepsizes compared to the values of AdaGrad.

As for AdaGrad, the iteration of RMSProp corresponds to a special case of (4.4.2) using
mk = gk and vk =

√
rk.

Remark 4.4.3 In practice, and as in AdaGrad, the vector rk is replaced by rk + η1Rd for a small
value η > 0.

The RMSProp algorithm has been successfully applied to training very deep neural networks.

4.4.4 Adam

The Adam algorithm1 was proposed in 2013, and has been one of the most popular stochastic gra-
dient technique in pratice. This method can be viewed as combining the idea of momentum together
with scaling: scaling will be performed according to the past gradients, and the search direction will
also include pas gradient information. The Adam iteration corresponds to applying (4.4.2) with

mk =
(1− β1)

∑k
j=0 β

k−j
1 gj

1− βk+1
1

(4.4.7)

for β1 ∈ (0, 1). This is indeed a momentum-type iteration, since we can obtain mk from mk−1 and
gk through the formula

mk = β1
1− βk

1

1− βk+1
1

mk−1 +
1− β1

1− βk+1
1

gk.

The other component of the Adam update is given by

vk =

√√√√(1− β2)
∑k

j=0 β
k−j
2 gj ⊙ gj

1− βk+1
2

. (4.4.8)

where β2 ∈ (0, 1) and ⊙ denoting the componentwise or Hadamard product given by

gk ⊙ gk =
[
[gk]

2
i

]d
i=1

.

Remark 4.4.4 In practice, a vector of the form vk + η1Rd will be used in lieu of vk, with η being
a small positive number.

The above formulae amount to combining previously employed directions with the latest stochas-
tic gradient vector, and normalizing the components of the obtained vector according to the history
of these components. In both cases, more importance is given to the latest values that have been
computed. This is a key feature of the method, that has statistical motivations, and may explain
the impressive performance of Adam. In practice, Adam (and its variant AdamW based on reg-
ularization) are among the most efficient methods for training architectures on Natural Language
Processing tasks.

1The name Adam is derived from ADAptive Momentum estimation.
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4.5 Conclusion

From a pure optimization perspective, stochastic gradient methods may not seem so attractive, as
they only rely on partial information from the gradient and possess worse convergence guarantees than
gradient descent. However, they have encountered tremendous success in data-related applications,
where computing gradients involves looking at the entire data and is thus too prohibitive. On the
contrary, using stochastic gradient estimates represents a significantly cheaper cost per iteration;
in a data science setting, where there can be redundancies (or even underlying randomness) in the
data, such updates do not necessarily hinder the progress of the algorithm, but rather lead to faster
convergence in practice.

Still, the stochastic gradient approach suffers from high-variance estimates. For this reason,
practical variants typically incorporate enhancements to reduce the variance. The most prominent
technique for finite-sum and stochastic problems consist in using a batch of samples, which provably
reduces the variance and can improve the performance. Meanwhile, the most efficient stochastic
gradient techniques, such as those used in deep learning, employ both momentum terms and diagonal
scaling to improve the quality of the steps. These techniques may not be endowed with better (if any)
theoretical guarantees, especially when applied to nonconvex training problems. However, methods
such as Stochastic Gradient with Momentum or Adam have been widely adopted by the learning
community because of their practical efficiency.



Chapter 5

Large-scale and distributed optimization

In this last chapter, we dive into a increasingly important area of focus in optimization methods for
data science. As we witness a growth in both the model complexity (i.e. the number of parameters)
and the amount of data available (i.e. the size of the dataset), standard optimization techniques
may suffer from the curse of dimensionality and their performance may deteriorate as dimensions
grow. The goal of this chapter is to present some algorithmic ideas that can reduce the impact of
large dimensions, either in terms of parameters or data points.

5.1 Coordinate descent methods

In this section, we address the treatment of large-scale optimization problems, where the number of
parameters to be optimized over is extremely large. In general, due to the curse of dimensionality,
the difficulty of the problem increases with the dimension, simply because there are more variables
to consider. However, on structured problems such as those arising in data science, the problem
may possess a low-dimensional or separable structure that allows for optimization steps to be taken
over a subset of variables. This is the underlying idea of coordinate descent methods, that have
regained interest in the early 2000s due to their applicability in certain data science settings.

5.1.1 Algorithmic framework

Consider the unconstrained optimization problem

minimize
w∈Rd

f(w), (5.1.1)

where f ∈ C1(Rd). The idea of coordinate descent methods consist in taking a gradient step with
respect to a single decision variable at every iteration. To this end, we observe that for every w ∈ Rd,
the gradient of f at w can be decomposed as

∇f(w) =
d∑

j=1

∇jf(w)ej ,

where ∇j denotes the partial derivative with respect to the j-th variable of the function f (that is,
the jth coordinate of f) and ej ∈ Rd is the jth coordinate vector of the canonical basis in Rd. Not

48
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unlike the stochastic gradient paradigm1, the coordinate descent approach replaces the full gradient
by a step along a coordinate gradient, as formalized in Algorithm 9.

Algorithm 9: Coordinate descent method.

Initialization: w0 ∈ Rd.
for k = 0, 1, ... do

1. Select a coordinate index jk ∈ {1, . . . , d}.

2. Compute a steplength αk > 0.

3. Set
wk+1 = wk − αk∇jkf(wk)ejk . (5.1.2)

end

The variants of coordinate descent are mainly identified by the way they select the coordinate
sequence {jk}. There exist numerous rules for choosing the coordinate index, among which:

• Cyclic: Select the indices by cycling over {1, . . . , d} in that order. After d iterations, all indices
have been selected.

• Randomized cyclic: Cycle through a random ordering of {1, . . . , d}, that changes every d steps.

• Randomized: Draw jk at random in {1, . . . , d} at every iteration.

The last two strategies are those for which the strongest results can be obtained.

Block coordinate descent Rather than using a single index, it is possible to select a subset of the
coordinates (called “block” in the literature). The kth iteration of such a block coordinate descent
algorithm thus is

wk+1 = wk − αk

∑
j∈Bk

∇jf(wk)ej , (5.1.3)

where Bk ⊂ {1, . . . , d}.

5.1.2 Theoretical guarantees of coordinate descent methods

A famous 3-dimensional example designed by M. J. D. Powell in 1973 shows that coordinate descent
methods do not necessarily converge. Nevertheless, it is possibly to provide guarantees on coordinate
descent methods under appropriate assumptions. In particular, a linear rate of convergence can be
obtained for coordinate descent methods on strongly convex problems: we provide below the necessary
assumptions to arrive at such a result.

1But not to be confused with it!
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Assumption 5.1.1 The objective function f in (5.1.1) is C1 and µ-strongly convex, with f∗ =
minw∈Rd f(w). Moreover, for every j = 1, . . . , d, the partial derivative ∇if is Li-Lipschitz contin-
uous, i.e.

∀w ∈ Rd, ∀h ∈ R, |∇jf(w + hej)−∇jf(w)| ≤ Lj |h|. (5.1.4)

We let Lmax = max1≤j≤d Lj .

Theorem 5.1.1 Suppose that Assumption 5.1.1 holds, and that Algorithm 9 is applied to prob-
lem (5.1.1) with αk = 1

Lmax
for all k and jk being drawn uniformly at random in {1, . . . , d}. Then,

for any K ∈ N, we have

E [f(wk)− f∗] ≤
(
1− µ

dLmax

)K

(f(w0)− f∗) . (5.1.5)

Other results have been established in the convex and nonconvex settings, under additional
assumptions. In all cases, properties on the partial derivatives are required.

Remark 5.1.1 As described in the lab session, it is possible to combine randomized coordinate
descent with Nesterov’s acceleration technique to yield improve theoretical guarantees. However,
this raises implementation issues that may alleviate the practical interest of coordinate descent
approaches.

5.1.3 Applications of coordinate descent methods

Coordinate descent techniques are particularly useful for large-scale sparse optimization. Consider a
regularized problem of the form

minimize
w∈Rd

1

n

n∑
i=1

f̃i(x
T
i w) +

d∑
j=1

Ω(wj), (5.1.6)

where f̃i : R → R is (possibly) data-dependent, xi ∈ Rd is a sparse data vector, and Ω : R → R is
a regularization function applied componentwise to the vector w.

Example 5.1.1 (Regularized least squares with sparse data) Given X ∈ Rn×d with sparse rows
and y ∈ Rn, consider the problem

minimize
w∈Rd

f(w) :=
1

2n

n∑
i=1

∥Xw − y∥2 + λ
d∑

j=1

w2
i .

Apply Algorithm 9 to this problem. For any iteration k, if we move along the jkth coordinate, the
partial derivative under consideration is

∇jkf(wk) = xT
jk
(Xwk − y) + 2λ[wk]jk .

By storing the vector {Xwk} across all iterations, the calculation of ∇jkf(wk) can be greatly
reduced when xjk is sparse, to the point that the cost of a coordinate descent iteration will be of
the order of the number of nonzero elements in xjk .

Coordinate descent techniques are quite prominent in parallel optimization algorithms. In this
setting, several cores are cooperating to solve problem (5.1.1): each core can then run its own
coordinate descent method and all cores update the same shared iterate vector. The most efficient
parallel coordinate descent techniques perform these iterations in an asynchronous fashion, which
does not prevent from guaranteeing convergence of this framework!
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Link with stochastic gradient Consider a finite-sum problem of the form

minimize
w∈Rd

1

n

n∑
i=1

fi(w), fi(w) := ℓi(x
T
i w), (5.1.7)

where xT
i w is a linear model of the data vector xi, and ℓi : R→ R is a convex loss function specific

to the ith data point (such as ℓi(h) =
1
2(h− yi)

2 for linear least squares). In Chapter 4, we saw how
to apply stochastic gradient to this problem. Another approach consists in considering an equivalent
formulation of (5.1.7) through duality, given by

maximize
v∈Rn

g(v) := − 1

n

n∑
i=1

f∗
i (vi) (5.1.8)

where for any convex function ϕ : Rm → R, the conjugate function ϕ∗ is defined by

ϕ∗(a) = sup
b∈Rm

{
aTb− ϕ(b)

}
.

The so-called dual problem (5.1.8) has a finite-sum, separable form. It can thus be tackled using
(dual) coordinate ascent, the counterpart of coordinate descent for minimization: the iteration of
this method is given by

vk+1 = vk + αk∇ig(vk), (5.1.9)

leading to updating the iterate one coordinate at a time. Under the appropriate assumptions on the
problem, the iteration (5.1.9) is equivalent to the original stochastic gradient iteration: this is why
stochastic gradient is sometimes viewed as applying coordinate ascent to the dual problem. We will
come back to this notion of duality in the next section.

5.2 Distributed and constrained optimization

In this section, we describe the theoretical insights behind distributed optimization formulations, in
which several agents collaborate to solve an optimization problem. This paradigm can be modeled
using a constrained optimization formulation, leading to a dual view of certain algorithms.

5.2.1 Linear constraints and dual problem

Consider the following optimization problem with linear equality constraints:

minimize
w∈Rd

f(w) subject to Aw = b, (5.2.1)

where A ∈ Rm×d and b ∈ Rm. For simplicity, we will assume that the feasible set {w ∈ Rd | Aw =
b} is not empty.

Duality theory consists in handling constraints formulations by reformulating the problem into an
unconstrained optimization problem. We present the theoretical arguments for the special case of
problem (5.2.1), which yields a much simpler analysis.

Definition 5.2.1 The Lagrangian function of problem (5.2.1) is given by

L(w, z) := f(w) + zT (Aw − b) . (5.2.2)
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The Lagrangian function combines the objective function and the constraints, and allows to
restate the original problem as an unconstrained one, called the primal problem:

minimize
w∈Rd

max
z∈Rm

L(w, z). (5.2.3)

The solutions of the primal problem are identical to that of problem (5.2.3) in our case. The difficulty
of solving problem (5.2.3) lies in the definition of its objective function as the optimal value of a
maximization problem.

Definition 5.2.2 The dual problem of (5.2.1) is the maximization problem

maximize
z∈Rm

min
w∈Rd

L(w, z), (5.2.4)

where the function z 7→ minw∈Rd L(w, z) is called the dual function of the problem.

Unlike the primal problem, the dual problem is always concave (i.e. the opposite of the dual
function is convex), which facilitates its resolution by standard optimization techniques. The goal is
then to solve the dual problem in order to get the solution of the primal problem, thanks to properties
such as the one below.

Assumption 5.2.1 We suppose that strong duality holds between problem (5.2.1) and its dual,
that is,

min
w∈Rd

max
z∈Rm

L(w, z) = max
z∈Rm

min
w∈Rd

L(w, z).

A sufficient condition for Assumption 5.2.1 is that f be convex, but this is not necessary.

5.3 Dual algorithms

We are now concerned with solving the dual problem (5.2.4), and we will present three methods for
this purpose.

5.3.1 Dual ascent

The dual ascent method is implicitly a subgradient method applied to the dual problem (which we
recall is a maximimization problem). At every iteration, it starts from a primal-dual pair (wk, zk)
and performs the following iteration:{

wk+1 ∈ argminw∈Rd L(w, zk)
zk+1 = zk + αk(Awk+1 − b),

(5.3.1)

where αk > 0 is a stepsize for the dual ascent step, and Awk+1 − b is a subgradient for the dual
function z 7→ minw∈Rd L(w, z) at zk.
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5.3.2 Augmented Lagrangian

The dual ascent method generally has weak convergence guarantees. For this reason, the optimization
literature has introduced other frameworks based on a regularized version of the Lagrangian function.

Definition 5.3.1 The augmented Lagrangian of problem (5.2.1) is the function on Rd×Rm×R++

by

La(w, z;λ) := f(w) + zT (Aw − b) +
λ

2
∥Aw − b∥2. (5.3.2)

Augmented Lagrangians thus are a family of functions parameterized by λ > 0, that put more
emphasis on the constraint violation as λ grows.

The augmented Lagrangian algorithm, also called method of multipliers, performs the following
iteration: {

wk+1 ∈ argminw∈Rd La(w, zk;λ)
zk+1 = zk + λ(Awk+1 − b).

(5.3.3)

In this algorithm, λ is constant and used as a constant stepsize: many more sophisticated choices
of both the augmented Lagrangian function and the stepsizes have been proposed. In general, the
advantages of augmented Lagrangian techniques are that the subproblems defining wk+1 become
easier to solve (thanks to regularization) and that the overall guarantees on the primal-dual pair are
stronger.

5.3.3 ADMM

The Alternated Direction Method of Multipliers, or ADMM, is an increasingly popular varia-
tion on the augmented Lagrangian paradigm that bears some connection with coordinate descent
approaches, in that it splits the problem in two sets of variables.

Suppose that we consider a linearly constrained problem with a separable form:{
minimizeu∈Rd1 ,v∈Rd2 f(u) + g(v)

subject to Au+Bv = c,
(5.3.4)

where A ∈ Rd1×m, B ∈ Rd2×m and c ∈ Rm. In that case, for any λ > 0, the augmented Lagrangian
of problem (5.3.4) has the form

La(u,v, z;λ) = f(u) + g(v) + zT(Au+Bv − c) +
λ

2
∥Au+Bv − c∥2 .

The ADMM iteration exploits the separable nature of the problem by computing the values u and v
independently. Starting from (uk,vk, zk), the ADMM counterpart to iteration (5.3.3) is

uk+1 ∈ argminu∈Rd1 La(u,vk, zk;λ)
vk+1 ∈ argminv∈Rd2 La(uk+1,v, zk;λ)
zk+1 = zk + λ(Auk+1 +Bvk+1 − c).

(5.3.5)

The two-subproblem process of (5.3.5) corresponds to two iterations of block coordinate descent,
which is often beneficial to the optimization process compared to a joint iteration in u and v.

Remark 5.3.1 The idea of splitting the objective and the constraints across two groups of variables
can be declined into as many groups of variables as possible, depending on the structure of the
problem.
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To end this section, we briefly mention that there exist convergence results for ADMM-type
frameworks, typically under convexity assumptions on the problem [?]. A typical result consist in
showing that 

∥Auk +Bvk − c∥ → 0
f(uk) + g(vk) → minu,v f(u) + g(v)
zk → z∗,

where z∗ is a solution of the dual problem.

5.4 Consensus optimization

We end this chapter by describing an increasingly common setup in optimization over large datasets,
often termed consensus optimization or decentralized optimization. In this setup, we consider a
dataset that is split across m entities called agents. Every agent uses its own data to train a certain
learning model parameterized by a vector in Rd. To this end, each agent not only has its own
function f (i), but also its own copy of the model parameters w(i). The optimization problem at
hand considers a master iterate w, and attempts to reach consensus between all the agents. This
leads to the following formulation:

minimizew,w(1),...,w(m)∈Rd

∑m
i=1 f

(i)(w(i))

subject to w = w(i) ∀i = 1, . . . ,m.
(5.4.1)

This problem is a proxy for minimizew∈Rd

∑m
i=1 f

(i)(w), but the latter problem cannot be solved by
a single agent since every agent has exclusive access to its data by design. The formulation (5.4.1)
models the fact that all agents are involved in computing w by acting on wi. It is possible to apply
ADMM to problem (5.4.1) by setting

u =

w
(1)

...

w(m)

 ∈ Rmd, v = w ∈ Rd.

Generalization The idea behind the formulation (5.4.1) can be extended to the case of data spread
over a network, represented by a graph G = (V, E): every vertex s ∈ V of the graph represents an
agent, while every edge (s, s′) ∈ E represents a channel of communication between two agents in the
graph. Letting w(s) ∈ Rd and f (s) : Rd → R represent the parameter copy and objective function
for agent s ∈ V, respectively, the consensus optimization problem can be written as:

minimize{w(s)}s∈V∈(Rd)|V|
∑

s∈V f (s)(w(s))

subject to w(s) = w(s′) ∀(s, s′) ∈ E .
(5.4.2)

When the graph is fully connected, i.e. all agents communicate, this problem reduces to an uncon-
strained problem. However, in general, the solutions of this problem are much difficult to identify, and
one must work through minimizing the objective and satisfying the so-called consensus constraints.
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5.5 Conclusion

Large-scale problems have always pushed optimization algorithms to their limits, and have lead to
reconsidering certain algorithms in light of their applicability to large-scale settings. Coordinate
descent methods are the perfect example of classical techniques that regained popularity because
of their efficiency in data science settings. On some instances, randomized coordinate descent
techniques bear a close connection with stochastic gradient methods, but are more amenable to
large-dimensional problems, particularly those exhibiting sparsity in the problem data.

In modern data science tasks, the amount of data available requires distributed storage, and
possibly agents cooperating in order to solve the optimization problem at hand. Linearly constrained
formulations can capture this behavior, and ad hoc algorithms such as ADMM are perfectly suited
for distributing the optimization effort among all agents.
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Appendix A

Mock exam: Around the Huber loss

This appendix contains the material of the 2022-2023 exam of the course. It investigated various
optimization problems arising from the use of the Huber loss (named after the Swiss statistician Peter
J. Huber), a loss function commonly used in robust statistics. Throughout, we define the Huber loss
as the function ℓ from R to R such that

ℓ(t) =

{
1
2 t

2 if |t| < 1
|t| − 1

2 otherwise.
(A.0.1)

This function behaves like t 7→ t2

2 for |t| < 1, and looks like t 7→ |t| when |t| becomes large. Unlike
what its expression might suggest, it is continuously differentiable (i.e. ℓ ∈ C1).

Part 1: Huber loss and linear models

We consider a dataset {(xi, yi)}ni=1 where xi ∈ Rd and yi ∈ R. Our goal is to find a linear model
that predicts every yi given the corresponding xi as best as possible. We thus define a family of
model functions parameterized by a vector w as follows:

hw : Rd → R
x 7→ xTw =

∑d
i=1[x]i[w]i.

Given hw, we will consider that the model function correctly predicts yi from xi if

ℓ (hw(xi)− yi) = ℓ
(
xT
i w − yi

)
= 0.

The value ℓ
(
xT
i w − yi

)
represents the error of the model at (xi, yi). Therefore, we are interested

in selecting a model (i.e. a vector w ∈ Rd) such that the sum of the errors is minimized. As a result,
we arrive at the following optimization problem:

minimize
w∈Rd

f(w) :=
1

n

n∑
i=1

ℓ(xT
i w − yi). (A.0.2)

a) Justify that 0 is a lower bound for problem (A.0.2). Is it necessarily the minimum value of (A.0.2)?

57
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b) The gradient of f at w ∈ Rd is given by

∇f(w) =
1

n

n∑
i=1

ℓ′(xT
i w − yi)xi, (A.0.3)

with

ℓ′(t) =


1 if t > 1
t if |t| ≤ 1
−1 if t < −1.

i) Write down the gradient descent iteration with a constant stepsize α and using the for-
mula (A.0.3).

ii) What happens to this iteration if the current point is a local minimum?

c) A Lipschitz constant for the gradient is given by L = 1
n

∑n
i=1 ∥xi∥2.

i) How can this constant be used to choose the stepsize?

ii) Provide two additional ways of choosing the stepsize when the value of L is unknown.

d) The function f can be decomposed as f = 1
n

∑n
i=1 fi, with fi(w) = ℓ(xT

i w− yi). The gradient
of fi at w is

∇fi(w) = ℓ′(xT
i w − yi)xi.

Write down the stochastic gradient iteration for this problem with a generic stepsize choice.

e) We suppose that our unit of cost is an access to one xi. What is the cost of a gradient iteration
and that of a stochastic gradient iteration?

f) We now consider a batch stochastic gradient method in which we select a subset of nb compo-
nents.

i) Write the resulting iteration using a constant stepsize.

ii) If m is the number of processors available for computation, what can be the interest of
choosing nb = m?

iii) Practical situation: suppose that we use several batch sizes and we observe that going from
nb = 1 to nb = n/4 constantly gives better results in terms of convergence speed. Suppose
that we also see a degradation in the convergence speed for batch values greater than n/4.
How can this behavior be explained?

g) Using batches of gradients is one way of reducing the variance in the stochastic gradient estimates.
Name one other variance reduction technique among those seen in class.

h) Consider an instance of problem (A.0.2) for which the components of the stochastic gradient
estimates differ by orders of magnitude. Propose (with justification) an advanced stochastic
gradient method among those seen in class that could prove efficient given that property.
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Solutions

a) The function ℓ is nonnegative on R. Thus, for any w ∈ Rd,

f(w) =
1

n

n∑
i=1

ℓ(xT
i w − yi) ≥

1

n

n∑
i=1

0 = 0.

This shows that the value 0 is a lower bound for problem (??). This value is only attained if there
exists a w such that xT

i w − yi = 0 for every i: this might not always be the case (for instance
with n = 2, d = 1,x1 = 1,x2 = −1, y1 = y2 = 1), therefore 0 is not necessarily the minimum
value of the problem.

b)

i) At a point wk ∈ Rd, the gradient descent iteration with a constant stepsize α is written as
follows:

wk+1 = wk −
α

n

n∑
i=1

ℓ′(xT
i wk − yi)xi.

ii) If wk is a local minimum, then ∇f(wk) = 0, and the gradient descent iteration reduces to
wk+1 = wk.

c)

i) If a Lipschitz constant L for the gradient is known, an appropriate choice for a constant
stepsize is α = 1

L .

ii) When such a value is unknown, one can use a decreasing stepsize (e.g. αk = 1
k+1) or perform

a line search at every iteration in order to find an appropriate stepsize value.

d) At wk ∈ Rd, the stochastic gradient iteration with generic stepsize αk consists in two steps.
First, an index ik is drawn at random in {1, . . . , n}; secondly, the new iterate is computed using
the formula:

wk+1 = wk − αk∇fik(wk) = wk − αkℓ
′(xT

ik
wk − yik)xik .

e) Every gradient descent iteration must access all the data in order to compute the gradient: if
our unit of cost is an access to one xi, the cost of a gradient descent iteration is n. As for the
stochastic gradient iteration, it only accesses one data point (xik where ik is drawn at random):
its cost is thus 1.

f)

i) The batch stochastic gradient iteration at wk ∈ Rd consists in two steps. First, a ran-
dom index set Sk ⊂ {1, . . . , n} of size |Sk| = nb is drawn; then, the following iteration is
performed:

wk+1 = wk −
α

|Sk|
∑
i∈Sk

∇fi(wk),

where α > 0 is the constant stepsize.

ii) If m processors are available for computation, and the gradients ∇fi can be computed in
parallel, the cost of a batch stochastic gradient can be distributed over these m processors.
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iii) If improvement is observed while using a small batch size, this means that the data is
sufficiently correlated that considering a subset of it at every iteration is enough to converge.
Using more than one data point at every iteration also leads to steps with a lower variance,
and this explains why nb = n/4 can give better performance than nb = 1 (classical stochastic
gradient iteration). When the batch size gets closer to n, its cost also gets closer to that of
a full gradient iteration, and the method is also at risk of suffering from redundancies in the
data. This explains why the behavior of the method worsens when nb > n/4.

g) Gradient aggregation is another technique that reduces the variance. Another valid answer was
iterate averaging.

h) The use of a variant with diagonal scaling is appropriate in this setting, since it uses different
stepsizes for every coordinate. As such, it will be less sensitive to differences of magnitude between
gradient components.

Part 2: Pseudo-Huber loss

The goal of this part is to replace the Huber loss by a (smoothed) pseudo-Huber loss function,
namely:

p : R → R
t 7→ p(t) :=

√
1 + t2 − 1.

(A.0.4)

It can be shown that the function p is twice continuously differentiable (whereas ℓ is only once
continuously differentiable). Its derivatives are given for every t ∈ R by

∇p(t) = t√
1+t2

and ∇2p(t) = 1
1+t2

.

a) Justify that the function p is convex. What can be said of its local minima ?

b) Show that argmint∈R p(t) = {0}.

c) Using the same data as that of Exercise 1, consider the problem

minimize
w∈Rd

g(w) :=
1

n

n∑
i=1

p(xT
i w − yi). (A.0.5)

The function g is convex but not strongly convex in general.

i) What is the convergence rate of gradient descent applied to problem (A.0.5)? What quantity
does this rate apply to?

ii) Give the convergence rate of accelerated gradient on problem (A.0.5). Is it better or worse
than that of gradient descent?

d) Suppose that we apply a stochastic gradient method to problem (A.0.5) by exploiting its finite-

sum structure, and that the method we apply has a convergence rate (in expectation) in O
(

1√
K

)
for the same quantity than that considered in question c), with K being the iteration count.

i) In terms of iterations, justify that this rate is worse than that of gradient descent.
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ii) Is there another metric in which this rate can be better than that of gradient descent? If so,
which metric?

iii) Does the result from the previous question apply when we compare the rates for stochastic
gradient and accelerated gradient?

Solutions

a) From the formula for the second derivative of p, we observe that

∇2p(t) =
1

1 + t2
> 0 ∀t ∈ R.

Therefore, the function p has a positive definite Hessian, which means that it is convex. This
implies that any local minimum of u is a global minimum.

b) We have p(t) ≥ 0 for every t ∈ R, and p(0) = 0: this allows us to conclude that 0 is a global
minimum of the function. In addition, for any value t > 0, we have p(t) > 0, showing that 0 is
the unique global minimum.

c)

i) After K ≥ 1 iterations of gradient descent, the convergence rate guarantee is

g(wk)− min
w∈Rd

g(w) ≤ O
(

1

K

)
.

ii) The convergence rate of accelerated gradient on this problem is O
(

1
K2

)
, which is better than

that for gradient descent.

d)

i) The sequence
{

1√
K

}
converges to 0 more slowly than

{
1
K

}
, which is the rate of gradient

descent. As a result, the rate for stochastic gradient is worse in terms of iterations.

ii) By comparing the convergence rates in terms of epochs rather than iterations, we obtain (for

a fixed epoch number NE ≥ 1) a rate of O
(

1√
nNE

)
for stochastic gradient and a rate of

O
(

1
NE

)
for gradient descent. The former is better when n≫ NE .

iii) The same observation applies to the rates for stochastic gradient and accelerated gradient,

which become O
(

1√
nNE

)
and O

(
1

N2
E

)
, respectively. For stochastic gradient to yield a

better convergence rate, one needs n≫ N2
E , which is a stronger requirement.

Part 3: Reversed Huber loss

In this part, we consider the reverse philosophy of the Huber loss, that is, we propose to use a loss
function that looks like the absolute value on [−1, 1] and like a quadratic everywhere else.
The reversed Huber loss is thus defined as:

r : R → R

t 7→ r(t) :=

{
|t| if |t| < 1
t2+1
2 otherwise.

(A.0.6)
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This function is convex but nonsmooth, since it is not differentiable at 0.
As in the first part, we consider linear models x 7→ wTx and a dataset {(xi, yi)}ni=1 with xi ∈ Rd

and yi ∈ R.

a) We first consider the convex, nonsmooth problem:

minimize
w∈Rd

1

n

n∑
i=1

r(xT
i w − yi). (A.0.7)

i) What mathematical tool can we use to design algorithms applicable to problem (A.0.7)?

ii) Using this tool, how can the solutions of (A.0.7) be characterized?

b) We now study the family of problems:

minimize
w∈Rd

f(w) + λ
d∑

i=1

r([w]i), (A.0.8)

where f is the objective function of (A.0.2), and λ > 0.

i) How is this type of problem called? What is the purpose of the second term?

ii) Write the generic proximal gradient iteration for this problem.

iii) When is this algorithm worthy of consideration in practice?

Solutions

a)

i) Since w 7→ 1
n

∑n
i=1 r(x

T
i w− yi) is convex, it is possible to define the subdifferential of v at

any point: the elements of the subdifferential, called the subgradients, can be used in lieu of
the gradient to construct optimization methods for solving problem (A.0.7).

ii) Let ϕr : w 7→ 1
n

∑n
i=1 r(x

T
i w − yi). A point w̄ ∈ Rd is a global minimum of ϕr if and only

if
0 ∈ ∂ϕr(w̄),

where ∂ϕr(·) denotes the subdifferential of ϕr.

b)

i) Problem (A.0.8) is a regularized (or composite) optimization problem. The goal of the second
term, that does not depend on data, is to enforce desired properties for the solution.

ii) At a point wk, the generic proximal gradient iteration (with a generic stepsize αk) for this
problem is:

wk+1 ∈ arg min
w∈Rd

{
f(wk) +∇f(wk)

T(w −wk) +
1

2αk
∥w −wk∥22 + λ

d∑
i=1

r([w]i)

}
.

iii) The proximal gradient algorithm is only interesting when the cost of solving the subproblem
is cheaper than that of solving the original problem.
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Part 4: Large-scale reversed Huber loss

In this part, we consider an instance of the problem family (A.0.8). More precisely, we focus on

minimize
w∈Rd

f(w) + γΩ(w), (A.0.9)

for a fixed value γ ≥ 0, where f = 1
n

∑n
i=1 fi is defined as in Exercise 1 and Ω(w) :=

∑d
i=1 r([w]i)

with r being the function (A.0.6) defined in Exercise 3.

a) Suppose first that the number of parameters d is quite large.

i) Assuming γ = 0, write down a block coordinate descent iteration for problem (A.0.9).

ii) How can you combine this iteration with other algorithms seen in class to develop a method
based on coordinate updates that can be applied to problem (A.0.9) with γ > 0?

b) We now introduce an auxiliary variable to the problem, which we then rewrite as

minimizeu∈Rd

v∈Rd

f(u) + γΩ(v)

subject to u− v = 0Rd .
(A.0.10)

i) Write down the augmented Lagrangian formula for problem (A.0.10).

ii) Which method is based on the augmented Lagrangian and can exploit the structure of
problem (A.0.10)? What is the main idea behind exploiting such a structure?

c) Suppose now that the number of data points used in defining f is so large that all fi are spread
across several agents, each of which has only access to its own fi and maintains its own copy
u(i) of u. All agents share knowledge of v,γ and Ω.

i) Rewrite problem (A.0.10) to model the distributed aspect of the problem as described above.

ii) How can the method from question b)ii) be adapted to this new setting?

Solutions

a)

i) Starting from wk ∈ Rd, a block coordinate descent iteration with a generic stepsize αk > 0
can be written as

wk+1 = wk − αk

∑
j∈Bk

[∇f(wk)]jej ,

where Bk ⊂ {1, . . . , d} is a block of coordinate indices

ii) Since Ω is separable, we can combine proximal gradient and coordinate descent to perform
updates only concerned with the coordinates in the block, leading to the iteration

wk+1 ∈ argmin
w∈Rd

f(wk) +
∑
j∈Bk

[∇f(wk)]je
T
j (w −wk) +

1

2αk
∥w −wk∥2 +

∑
j∈Bk

r([w]j)


An answer without a formula could have sufficed.
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b)

i) The augmented Lagrangian for problem (A.0.10) is

La(u,v, z;λ) = f(u) + γΩ(v) + zT(u− v) +
λ

2
∥u− v∥2.

ii) The Alternating Direction Method of Multipliers, or ADMM. Its goal consists in exploiting
separable structure in the problem to perform possibly cheaper updates consecutively rather
than jointly.

c)

i) The problem can be rewritten by adding the copies as variables, so that we obtain

minimizeu(1),...,u(n)∈Rd

v∈Rd

1
n

∑n
i=1 fi(u

(i)) + γΩ(v)

subject to u(i) − v = 0Rd ∀i = 1, . . . , n.

ii) To adapt ADMM, one would consider concurrent updates on the variables u(1), . . . ,u(n) so
as to exploit the separability of the objective further.



Appendix B

Mock exam: Shallow neural networks

In this appendix, we review the material from the lectures through a study of (basic) shallow neural
network architectures.

Part 1: Two-layer linear neural networks

We consider a dataset {(xi,yi)}ni=1 where xi ∈ Rdx and yi ∈ Rdy . We wish to learn
a mapping from Rdx to Rdy that correctly outputs yi when given xi as an input. Our
model will be that of a two-layer linear neural network :

h(·;w) : Rdx −→ Rdy

x 7−→ W 2(W 1x+ b1) + b2,
(B.0.1)

where W 1 ∈ Rdx×m, b1 ∈ Rm, W 2 ∈ Rm×dy and b2 ∈ Rdy . We will consider h as
being parameterized by w ∈ Rd, with d = dxm+m+mdy + dy and w concatenating
all coefficients from W 1, b1,W 2, b2. Our goal is to determine a value of w so that
h(xi;w) ≈ yi, which we formalize using the squared loss (h,y) 7→ 1

2∥h− y∥2.
Overall, we obtain the following problem:

minimize
w∈Rd

f(w) :=
1

2n

n∑
i=1

∥h(xi;w)− yi∥2. (B.0.2)

a) Give a lower bound on the objective function of problem (B.0.2).

b) In general, problem (B.0.2) is nonconvex. What does this imply about its local
minima?

c) The function f is continuously differentiable, or C1.
i) Suppose thatw∗ is a solution of (B.0.2). What can be said about the derivative

of f at w∗?

ii) Write down the gradient descent iteration for problem (B.0.2) with an arbitrary
stepsize.

iii) Given that the problem is nonconvex, what is the theoretical convergence rate
of gradient descent applied to (B.0.2)?

65
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d) We now exploit the fact that f has a finite-sum structure :

f(w) =
1

n

n∑
i=1

fi(w) with fi(w) =
1

2
∥h(xi;w)− yi∥2 ∀i = 1, . . . , n.

Every fi is C1.
i) Write down the iteration of stochastic gradient for this problem with a constant

stepsize.

ii) Can we guarantee that a run of stochastic gradient will converge on this prob-
lem? Justify your answer.

iii) What is the main computational advantage of stochastic gradient over gradient
descent?

iv) Recall the definition of an epoch. How many iterations of stochastic gradient
does an epoch correspond to?

v) Write down the iteration of a batch stochastic gradient method with fixed
batch size nb ∈ {1, . . . , n} and an arbitrary stepsize.

vi) Compare the cost of one iteration of the batch stochastic gradient from the
previous question with that of one iteration of stochastic gradient.

vii) In a parallel environment, how can the cost of a batch approach be reduced?

Solutions

a) Any value less than or equal to 0 is a lower bound on the objective function of (B.0.2). Note
that 0 is the only attainable value, but that is not necessarily attained by the function.

b) The local minima of problem (B.0.2) may not be global minima.

c) (Using the C1 nature of the objective.)

i) The derivative, or gradient of f at w∗ is zero: ∇f(w∗) = 0.

ii) The kth iteration of gradient descent for problem (B.0.2) is

wk+1 = wk − αk∇f(wk),

where αk > 0.

iii) For nonconvex problems, the convergence rate of gradient descent is O
(

1√
K

)
: that is, after

K ≥ 1 iterations, we can guarantee that

min
0≤k≤K−1

∥∇f(wk)∥ ≤ O
(

1√
K

)
.

d) (Exploiting the finite-sum structure.)

i) The kth iteration of stochastic gradient is

wk+1 = wk − α∇fik(wk),

where α > 0 is the chosen constant stepsize, and ik is an index drawn at random in {1, . . . , n}.
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ii) Because of the intrinsic randomness within stochastic gradient, we cannot guarantee that it
will converge to a solution of the problem.

iii) Stochastic gradient only accesses on data point per iteration, whereas an iteration of gradient
descent must access all data points in order to compute a gradient.

iv) An epoch is a unit of cost corresponding to n access to one element in the dataset. Since
every iteration of stochastic gradient accesses a single element, one epoch corresponds (in
terms of cost) to n iterations of stochastic gradient.

v) The kth iteration of the proposed batch stochastic gradient method is

wk+1 = wk −
α

nb

∑
i∈Sk

∇fi(wk),

where Sk is a set of nb random indices drawn in {1, . . . , n} with or without replacement, and
α > 0 is the chosen constant stepsize.

vi) In terms of accesses to data points, one iteration of the proposed batch stochastic gradient
has a cost of nb, which is nb times more expensive than that of one iteration of stochastic
gradient, where only a single index is accessed.

vii) A parallel environment can enable parallel accesses to data points, thereby reducing the cost
of a batch stochastic gradient approach. Note: The cost will only be reduced according to
the number of tasks that can be performed in parallel.

Part 2: Two-layer ReLU neural network

Building on Part 1, we consider a dataset {(xi,yi)}ni=1 with xi ∈ Rdx and yi ∈ Rdy .
Our model will now consist in a two-layer neural network with nonsmooth rectified linear
unit (ReLU) activation:

hReLU (·;w) : Rdx −→ Rdy

x 7−→ W 2 σ(W 1x+ b1) + b2,
(B.0.3)

where W 1 ∈ Rdx×m, b1 ∈ Rm, W 2 ∈ Rm×dy , b2 ∈ Rdy , and σ : Rm → Rm is defined
componentwise by

∀v ∈ Rm, σ(v) := [max{vi, 0}]mi=1 .

As before, w ∈ Rd with d = dxm +m +mdy + dy concatenates all the coefficients of
the W i matrices and the bi vectors.

Using a square loss 1
2∥ · ∥

2, our training problem thus becomes

minimize
w∈Rd

fReLU (w) :=
1

2n

n∑
i=1

∥∥hReLU (xi;w)− yi

∥∥2 . (B.0.4)

a) Justify that gradient-based methods (such as gradient descent) cannot be directly
applied to that problem.

b) What other approaches can be used to tackle problem (B.0.4)?

c) We now look at the activation function r : t 7→ max{t, 0}, which is convex on R.
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i) Using the expression of r(t), justify that

argmin
t∈R

{r(t)} = {t ∈ R, t ≤ 0},

that is, every t ≤ 0 is a global minimum of r.

ii) For any t ∈ R, we define the set S(t) as

S(t) :=


1 if t > 0,
0 if t < 0,
[0, 1] if t = 0.

How does this set confirm the result of question i)?

Solutions

a) The objective function of problem (B.0.4) is not differentiable at every point. Therefore, the
gradient does not exist at certain points, and this prevents from applying gradient-based methods
like gradient descent.

b) Subgradient methods can be applied to problem (B.0.4)?

c) (Activation function r : t 7→ max{t, 0}.)

i) For every t ≤ 0, we have
r(t) = 0 ≤ r(s) ∀s ∈ R.

By definition, this means that t is a global minimum of the function r, leading to

argmin
t∈R

{r(t)} = {t ∈ R, t ≤ 0},

ii) The set S(t) represents the subdifferential of the function r at t. From its expression, we see
that 0 ∈ S(t) if and only if t ≤ 0, therefore any t ≤ 0 is a global minimum of the convex
function r.

Part 3: One-layer linear neural network

In this exercise, we consider the special case of a dataset with scalar labels/outputs, i.e.
of the form {(xi, yi)}ni=1 with xi ∈ Rdx and yi ∈ R for every i = 1, . . . , n. We build a
simple neural network with no activation function and one homogeneous linear layer to
predict the value yi from the vector xi, resulting in the model

hlin(·;w) : Rdx −→ R
x 7−→ W 1x,

(B.0.5)

with W 1 ∈ R1×dx . Letting d = dx and w = WT
1 ∈ Rd, finding the best model amounts

to solving

minimize
w∈Rd

f lin(w) :=
1

2n

n∑
i=1

(wTxi − yi)
2. (B.0.6)
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a) What class of problems does problem (B.0.6) belong to?

b) The objective function f lin is C1,1L , i.e. its gradient is L-Lipschitz continuous. If L
is known, how can its value be used in an algorithm such as gradient descent?

c) Problem (B.0.6) is convex with a C1 objective function.

i) What can then be said about a point w̄ such that ∇f lin(w̄) = 0Rd?

ii) What is the convergence rate of gradient descent on this problem?

iii) What is the convergence rate of accelerated descent on a convex problem? Is
it better or worse than that of the previous question ?

d) Suppose that the data is such that the objective f lin is µ-strongly convex, in
addition to the properties already mentioned above.

i) Let w,v ∈ Rd be two points such that ∇f lin(w) = ∇f lin(v) = 0Rd . What
can we say about v and w?

ii) What is the convergence rate of accelerated gradient on this problem?

e) If f lin is convex but not strongly convex, how can problem (B.0.6) be modified into
a strongly convex one without changing its problem class?

Solutions

a) Problem (B.0.6) is a linear least-squares problems (it also belongs to the class of quadratic
optimization problems).

b) If f lin is C1,1L with L is known, any postive value less than 2
L can be used as a constant stepsize:

the value 1
L gives precise decrease guarantees at every iteration. Note: The answer 1

L would
suffice here.

c) (Convexity of problem (B.0.6).)

i) If ∇f lin(w̄) = 0Rd , we know that this point is a global minimum because the function is
convex.

ii) Since the objective function is convex, the convergence rate of gradient descent is O( 1
K ):

that is, for every K ≥ 1, if wK is the Kth iterate of gradient descent, we have

f lin(wK)− min
w∈Rd

f(w) ≤ O
(

1

K

)
.

iii) The convergence rate of accelerated descent on a convex problem is O( 1
K2 ): this is better

than the rate for gradient descent, in that it converges more rapidly towards 0 as K increases.

d) (f lin µ-strongly convex.)

i) If w,v ∈ Rd are such that ∇f lin(w) = ∇f lin(v) = 0Rd , then they are both global minima
(recall that f lin is convex). But since f lin is strongly convex, it has a unique global minimum,
from which we conclude that v = w.

ii) Accelerated gradient has a convergence rate in O
(
(1− t)K

)
on this problem with t ∈ (0, 1).

With standard assumptions, it is possible to establish this rate with t =
√

µ
L .
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e) One way to turn problem (B.0.6) into a strongly convex one without changing its problem class
consists in adding an ℓ2 regularization term, so that (B.0.6) becomes

minimize
w∈Rd

f lin(w) +
λ

2
∥w∥2

for some λ > 0. This problem is still a quadratic optimization problem (and can even be expressed
as a linear least-squares problems), but the objective function is now λ-strongly convex.

Part 4: Revised one-layer linear neural network

Building on Part 3, we finally consider the linear neural network model hlin(x;w) defined
in (B.0.5). In order to train this model on a dataset {(xi, yi)}ni=1, we consider the
optimization problem

minimize
w∈Rd

fℓ1(w) := f lin(w) + λ∥w∥1, (B.0.7)

where f lin is the objective function of problem (B.0.6), λ > 0 and ∥w∥1 =
∑d

i=1 |[w]i|.

a) What is the purpose of adding the λ∥w∥1 term to the objective? How are problems
of this form called?

b) We recall that f lin ∈ C1. Write down the proximal gradient iteration for prob-
lem (B.0.7) in its generic form, using an arbitrary stepsize.

c) In the specific case of problem (B.0.7), the proximal gradient iteration corresponds
to the ISTA iteration. What is the interest of using the ISTA formula compared to
that of the previous question?

d) A possible reformulation of (B.0.7) as a constrained optimization problem is

minimizeu,v∈Rd f lin(u) + λ∥u∥1
s. t. u− v = 0.

(B.0.8)

i) Justify that the set of solutions of problems (B.0.7) and (B.0.8) are identical.

ii) For any ρ > 0, form the augmented Lagrangian associated to problem (B.0.8)
with parameter ρ.

iii) Write down the ADMM iteration for problem (B.0.8) using ρk > 0 as a stepsize.
What is the interest of such an approach?

Solutions

a) The term λ∥w∥1 is added to the objective function to promote sparse solutions. As a result, the
problem becomes a regularized optimization problem, in a composite form.

b) The kth iteration of proximal gradient for problem (B.0.6) is given by

wk+1 ∈ argmin
w∈Rd

{
f lin(wk) +∇f lin(wk)

T(w −wk) +
1

2αk
∥w −wk∥2 + λ∥w∥1

}
,

where αk > 0 is the stepsize for iteration k.
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c) The ISTA iteration gives an explicit formula for wk+1 given wk and αk, which means that the
next iterate is computed explicitly without the need to solve a subproblem.

d) (Constrained reformulation.)

i) For any feasible point of problem (B.0.8), we have u = v, and thus the objective value is
equal to f lin(u) + λ∥u∥1. With this observation in mind, we have

argmin
(u,v)

{
f lin(u) + λ∥v∥1|u− v = 0

}
= argmin

u∈Rd

{
f lin(u) + λ∥u∥1

}
.

The set of the right-hand side is the set of solutions of problem (B.0.7) by definition, which
concludes the argument.

ii) For any ρ > 0, the augmented Lagrangian of problem (B.0.8) with parameter ρ is given by

La(u,v, z; ρ) = f lin(u) + λ∥v∥1 + zT(u− v) +
ρ

2
∥u− v∥2.

iii) The kth iteration of ADMM applied to problem (B.0.8) is
uk+1 ∈ argminu∈Rd La(u,vk, zk; ρk)
vk+1 ∈ argminv∈Rd La(uk+1,v, zk; ρk)
zk+1 = zk + ρk(Auk+1 − vk+1),

with ρk > 0 being the augmented Lagrangian parameter. This approach exploits the separable
nature of the objective by solving two subproblems at every iteration, akin to two iterations
of block coordinate descent.
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