
Optimization for Machine Learning

M2 IASD Apprentissage

Course project - 2023/2024

• The last version of this document can be found at:
https://www.lamsade.dauphine.fr/∼croyer/ensdocs/OAA/ProjOAA.pdf.

• Typos, questions, etc, can be sent to clement.royer@lamsade.dauphine.fr.

• Current version: March 6, 2024.

• Major updates to the document

– 2024.03.06: Fixed typo in equations (18)-(19).

Assignment

• This project follows the template of the course notebooks by mixing optimization questions with imple-
mentation tasks.

• Students may discuss the project with their classmates, but the submitted version must be worked out,
written, and submitted individually.

• Students may submit their sources in either French or English.

• Students are expected to submit sources that include:

– Their answers to the questions (in PDF or notebook format).

– Their implementation of the proposed algorithms in Python (in .py files or in a notebook).

– A Python script or a notebook to run the methods and reproduce the results.

• Please send your sources to clement.royer@lamsade.dauphine.fr under the form of a compressed
folder. Those sources must include your first and last name.

• The deadline to send the sources is March 10, 2024 AOE (Anywhere On Earth).

https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/OAA/ProjOAA.pdf

2 Project OAA - 2023/2024

Contents

1 Second-order optimization methods 4
1.1 Newton’s method . 4
1.2 A globally convergent version of Newton’s method . 5
1.3 Quasi-Newton methods and BFGS . 5
1.4 Limited-memory BFGS . 6

2 Stochastic second-order methods 7
2.1 Subsampling Newton methods . 7
2.2 Stochastic quasi-Newton methods . 8

3 Binary classification on real-world data 9
3.1 Dataset . 9
3.2 Optimization problem . 9
3.3 Comparison of the algorithms . 9

Project OAA - 2023/2024 3

Project: Stochastic Newton and quasi-Newton methods

Introduction

This project is concerned with going beyond first-order techniques in machine learning. Algorithmic frameworks
such as gradient descent and stochastic gradient are inherently first-order methods, in that they rely solely
on first-order derivatives. Second-order methods, on the other hand, make use of higher-order information,
either explicitly or implicitly. Although those techniques are widely used in scientific computing, their use in
machine learning has yet to be generalized. The goal of this project is to illustrate the performance of these
techniques on learning problems involving both synthetic and real data.

Implementation guidelines

• All Python libraries are allowed, but the project should not rely on existing implementations of
optimization methods.

• NumPy structures and numerical procedures from the scipy library (except optimization ones!) are
recommended, especially for the linear algebra calculation (matrix inverse, eigenvalues) but not manda-
tory.

Question guidelines

• A comparison between methods consists in reporting numerical results (number of iterations, final
function values, convergence plots) and commenting on them. Is there a clear winner in the comparison?
Are there results that are surprising to you?

• When details of the implementation are left open, you should choose settings that allow for fast con-
vergence, or that look informative to you. Your comments should reflect these choices.

• The goal of testing several values of an hyperparameter (e.g. a constant step size) is to assess the
robustness of a given method with respect to this hyperparameter. Are the results sensitive to changes
in the value of the hyperparameter? Can you identify regimes of values that yield similar results (such
as the large batch and mini-batch regimes for the batch size in stochastic gradient)?

4 Project OAA - 2023/2024

1 Second-order optimization methods

The purpose of this section is to present the basic Newton and quasi-Newton methods that this project is
based upon. Those methods will be implemented and validated on small-dimensional toy problems of the
generic form

minimize
w∈Rd

f(w), (1)

where f is a twice continuously differentiable function (which we denote by f ∈ C2).

1.1 Newton’s method

Newton’s method is an optimization algorithm based on using the first- and second-order derivatives of the
objective function. Starting from a pointw0 ∈ Rd, the method generates a sequence {wk}k from the following
recursion:

wk+1 = wk −
[
∇2f(wk)

]−1 ∇f(wk). (2)

One immediately notices that iteration (2) is not well-defined, since the Hessian matrix of f at wk may not
be invertible. On the other hand, note that when the function is strongly convex, we have ∇2f(w) ≻ 0 for
any w ∈ Rd, and the Newton iteration is well defined. We will come back to this issue in Section 1.2.

One of the main characteristics of Newton’s method is its fast local convergence rate guarantees. When
f is a strongly convex quadratic, Newton’s method converges in one iteration. If f is strongly convex, it can
be shown that Newton’s method converges at a local quadratic rate, i.e. if w0 is close enough to the global
minimum w∗ of f , we have:

∥wk+1 −w∗∥ ≤ C ∥wk −w∗∥2,
where C > 0. By comparison, with a standard gradient descent approach, one would obtain a result of the
form ∥wk+1 −w∗∥ ≤ C ∥wk −w∗∥, i. e. a linear rate of convergence.

Implementation 1.1 Implement Newton’s method in its basic form (2). Your code should take f , ∇f and
∇2f as inputs.

Question 1 Suppose that we apply Newton’s method to the quadratic problem:

minimize
w∈R3

q(w) := 2(w1 + w2 + w3 − 3)2 + (w1 − w2)
2 + (w2 − w3)

2. (3)

This problem is a strongly convex quadratic function, with a unique minimizer w∗ =

11
1

.
a) Write down the first iteration of Newton’s method for problem (3), and show that Newton’s method indeed

converges in one iteration to the solution.

b) Run the method starting from the origin and two other starting points of your choice. Do you indeed
observe convergence in one iteration?

Question 2 We now consider the celebrated Rosenbrock function

minimize
w∈R2

100(w2 − w2
1)

2 + (1− w1)
2. (4)

a) Apply your implementation of Newton’s method to this problem starting from

w01 :=

[
−1.2
1

]
, and w02 :=

[
0

1
200 + 10−12

]
.

Report your results and your observations. Does the method converge?

b) Could we run the method starting from the point w03 =

[
0

0.005

]
? How does that illustrate that Newton’s

method is local in nature?

Project OAA - 2023/2024 5

1.2 A globally convergent version of Newton’s method

Newton’s method comes with strong local guarantees, but not global ones. For general nonconvex functions
(or even convex functions that are not strongly convex), the choice of the initial point determines whether or
not the method will converge, or be well-defined. Globalization techniques were developed to guarantee that
Newton’s method would converge independently of its starting point, and regardless of the convexity of the
problem. In this project, we will focus on one globalization technique based on line search.

Suppose that we are at iteration k of the method: in order to apply a Newton-like iteration, one can
always select a nonnegative value λk such that ∇2f(wk) + λkId ≻ 0 and compute a Newton-type direction
as

dk = −[∇2f(wk) + λkI]
−1∇f(wk). (5)

A common choice for λk is
λk = 2max

{
−λmin(∇2f(wk)), 10

−10
}
, (6)

where λmin(A) stands for the minimum eigenvalue of the matrix A, and the small positive constant 10−10

handles the singular case.
Once this direction has been defined, a line search is performed to compute a suitable stepsize along that

direction. In this project, we will consider the basic Armijo line-search defined below.

Definition 1.1 Consider the function f of problem (1). Given a vector wk and a search direction dk, the
Armijo line-search process consists in computing a stepsize αk = θjk , where θ ∈ (0, 1) and jk is the smallest
nonnegative integer such that

f(wk + αkdk) < f(wk) + cαkd
T
k∇f(wk), (7)

with c ∈
(
0, 1

2

)
.

Under classical assumptions, it is possible to show convergence of this framework regardless of the starting
point: this method is thus globally convergent. Under some additional conditions, it is also possible to obtain
local convergence results, that are usually worse than that of Newton’s method because of the use of λk. Still,
line-search methods are widely used in nonlinear optimization, and Newton-type directions turn out to be less
sensitive to the choice of stepsize than gradient-based methods.

Implementation 1.2 Implement the globalized version of Newton’s method using the direction choice (5)–
(6) and the Armijo line-search procedure from Definition 1.1.

Question 3 Apply Newton’s method with line search to the problem (4) using c = 0.0001, θ = 0.5, and the
two initial points mentioned in Question 2. Compare your results with those obtained for the basic Newton
iteration.

Question 4 Try out a few values for c and θ (report the results of your tests). How sensitive does the method
appear to be to these values?

1.3 Quasi-Newton methods and BFGS

Second-order methods are often deemed too expensive because of their need to evaluate the Hessian matrix:
this issue was addressed in the 1950s through the development of quasi-Newton methods, that form one of
the most powerful techniques in smooth optimization.

For the generic problem (1), the k-th iteration of a quasi-Newton method typically has the following form:

wk+1 = wk − αkHk∇f(wk), (8)

where Hk is a symmetric, positive-definite matrix such that H−1
k ≈ ∇2f(wk), and αk > 0 is a stepsize

typically computed through a line search. The sequence of quasi-Newton matrices {Hk}k is built so that
every matrix is invertible, and the iteration (8) is well-defined.

6 Project OAA - 2023/2024

Several formulas for defining {Hk}k have been proposed in the literature. We focus here on the most
popular of all, named BFGS after the four researchers that (independently) designed it (Broyden, Fletcher,
Goldfarb and Shanno).

Definition 1.2 (BFGS Quasi-Newton update) Start with w0 and H0 = Id (the identity matrix in Rd×d).
At every iteration k, compute wk+1 according to (8), then define

sk = wk+1 −wk and vk = ∇f(wk+1)−∇f(wk).

Finally, update the quasi-Newton matrix as follows:

Hk+1 =

{ (
Id − vks

T
k

sT
k vk

)T
Hk

(
Id − vks

T
k

sT
k vk

)
+

sks
T
k

sT
k vk

if sTk vk > 0

Hk otherwise.
(9)

The update formula (9) not only guarantees that Hk+1 ≻ 0 , but it also ensures that H−1
k+1sk = vk.

This latter property means that H−1
k+1 is consistent with ∇2f(wk) in the direction of the step wk+1 −wk.

In the case of a strongly convex function f , it can be shown that quasi-Newton methods such as BFGS
possess a local superlinear rate. That is, for w0 sufficiently close to the optimum w∗, the iterates satisfy the
relation

∥wk+1 −w∗∥ ≤ C ∥wk −w∗∥1+t,

where t ∈ (0, 1), C > 0 and w∗ is the global minimum of the function. One thus sees that the convergence
guarantees are not as good as those of Newton’s method: however, they are still (locally) better than that of
gradient descent, which is remarkable as a quasi-Newton approach never accesses the Hessian matrix.

Implementation 1.3 Implement a quasi-Newton method with the BFGS update (9) and Armijo line search (7).

Question 5 Compare the quasi-Newton method from Implementation 1.3 and the line-search Newton method
from Implementation 1.1 on problems (3) and (4). Use the same starting points and the same values for c
and θ in the comparison. Illustrate the comparison in terms of

• Iterations;

• Gradient and Hessian evaluations, assuming the cost of a Hessian matrix is d times that of a gradient
vector;

• Function evaluations.

1.4 Limited-memory BFGS

The standard, recursive formula for BFGS defines Hk+1 as a function of H0 and the pairs (s0,v0),
(s1,v1),. . . ,(sk,vk). Such a matrix is likely to become dense as the iteration unfolds, while the informa-
tion going back several iterations will become less and less relevant. The limited-memory variant of the
BFGS quasi-Newton update computes Hk+1 according to the most recent displacements, by computing

Hk+1 based on the latest m pairs {(sk−i,vk−i)}max{0,m−1}
i=0 (and a given matrix H0, which we will choose

to be the identity). This process is detailed in Algorithm 1.

Implementation 1.4 Implement a quasi-Newton method with the L-BFGS update described by Algorithm 1
and Armijo line search (7).

Question 6 Run BFGS and three variants of L-BFGS respectively using m = 0, m = 1 and m = 5 on the
Rosenbrock function (4), and compare the results. What metric could show the computational interest of
limited memory quasi-Newton? Do you observe this improvement here?

Project OAA - 2023/2024 7

Algorithm 1: L-BFGS update

1 Inputs: k ∈ N, wk,wk+1 ∈ Rd, m ∈ N, {sk−i,vk−i}
max{0,m−1}
i=1 .

2 Compute sk = wk+1 −wk and vk = ∇f(wk+1)−∇f(wk).
3 Set Hk+1 = Id.
4 for i = max{0,m− 1}, . . . , 0 do
5 If sTk−ivk−i > 0, set

Hk+1 =

(
Id −

vk−is
T
k−i

sTk−ivk−i

)T

Hk+1

(
Id −

vk−is
T
k−i

sTk−ivk−i

)
+

sk−is
T
k−i

sTk−ivk−i
.

6 end

2 Stochastic second-order methods

In this section, we describe practical variants of second-order methods that have been tailored to machine
learning formulations. For the purpose of this project, we will follow the lectures and focus on finite-sum
problems of the form

minimize
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w), (10)

where every fi is C2 and depends on one data point. Our canonical example will be the logistic regression
problem used in the course notebooks, which is strongly convex.

Exemple 2.1 Given a dataset {(xi, yi)}ni=1 with xi ∈ Rd and yi ∈ {−1, 1}, we consider the problem

minimize
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w), fi(w) = ln(1 + exp(−yix
T
i w)) +

λ

2
∥w∥2. (11)

Every function fi is C2, and we have

∇fi(w) = − yi
1 + exp(yixT

i w)
xi + λw. (12)

as well as

∇2fi(w) :=
exp(yiw

Txi)

(1 + exp(yiwTxi))
2xix

T
i + λId. (13)

2.1 Subsampling Newton methods

In subsampling Newton methods, we construct stochastic gradient and Hessian estimates from batches of data
points, akin to a batch stochastic gradient approach. At every iteration k of the algorithm, given the current
iterate wk, one computes subsampling derivatives as

∇fSk
(wk) =

1

|Sk|
∑
i∈Sk

∇fi(wk), ∇2fSH
k
(wk) =

1

|SH
k |

∑
i∈SH

k

∇2fi(wk), (14)

where Sk and SH
k are sets of random indices drawn in {1, . . . , n}. The subsampling iteration then reads

wk+1 = wk − αkdk, dk =
[
∇2fSH

k
(wk)

]−1

∇fSk
(wk), (15)

8 Project OAA - 2023/2024

where αk > 0 is a positive stepsize, that can either be chosen as constant or through a line search. For the
latter, we must adapt the line-search condition to avoid using the entire dataset at every line-search iteration.
In the case of the Armijo line search described in Definition 1.1, a natural choice consists in using the same
sample for the gradient and the line search.

Definition 2.1 (Subsampling Armijo line search) Consider the finite-sum optimization problem (10). Given
a vector wk, a search direction dk and a set Sk of random indices in {1, . . . , n}, the subsampling Armijo
line-search process consists in computing a stepsize αk = θjk , where θ ∈ (0, 1) and jk is the smallest
nonnegative integer such that

fSk
(wk + αkdk) < fSk

(wk) + cαkd
T
k∇fSk

(wk), (16)

for some c ∈
(
0, 1

2

)
.

Implementation 2.1 Implement a subsampling Newton method with the following requirements:

• The method should take |Sk| and |SH
k | as inputs (for simplicity, we only consider constant sample sizes).

• The method should be able to use two different stepsize approaches:

– Constant stepsize αk = α > 0 (provided by the user);

– Stepsize computed via the subsampling line-search technique described in Definition 2.1.

Question 7 Using the same (synthetic) dataset than in lab 4 of the course (on stochastic gradient methods),
compare the subsampling Newton method with the standard Newton method with the following settings:

• Use the appropriate version of Armijo line search for each method (use the same c and θ);

• Use different sizes for |Sk| and |SH
k |, including the configuration |Sk| = |SH

k | = 1.

Use the notion of epoch for the comparison.

Question 8 Fix sample sizes for the gradient and Hessian. We consider two possible stepsize choices

a) αk = ᾱ
L , where L = 4∥XXT∥

n + λ is the Lipschitz constant of ∇f ;

b) αk = ᾱ
LSk

, where

LSk
=

4
∥∥∑

i∈Sk
xix

T
i

∥∥
|Sk|

+ λ

is the Lipschitz constant of ∇fSk
.

Compare the two choices for different values of ᾱ and a fixed number of epochs.

2.2 Stochastic quasi-Newton methods

The implementation of stochastic quasi-Newton methods easily follows from the material above, and is closer
in spirit to that of stochastic gradient methods. At iteration k, the gradient vectors ∇f(wk+1) and ∇f(wk)
used in Definition 1.2 are replaced by ∇fSk

(wk) and ∇fSk
(wk+1), respectively.

Implementation 2.2 Implement stochastic variants of BFGS and L-BFGS using the modified Armijo line
search described in Definition 2.1, with the following requirements:

• Both methods should take |Sk| as an input;

• The same stepsize strategies than in Implementation 2.1 should be included.

Question 9 Using the same (synthetic) dataset for logistic regression than in Question 7, compare the stochas-
tic BFGS and L-BFGS methods with their counterparts from Section 1, using the appropriate Armijo line-search
technique for each method and a fixed epoch budget. Use different values for the sample size |Sk|, including
|Sk| = 1.

Project OAA - 2023/2024 9

3 Binary classification on real-world data

In this final part, we will apply our techniques to a classification problem based on real-world data.

3.1 Dataset

We consider data under the form {(xi, yi)}ni=1 with xi ∈ Rd and yi ∈ {0, 1}. To this end, we will rely on
datasets from the libsvm repository, that can be downloaded from

https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

Recommended datasets are a9a,covtype.binary,ijcnn1,mushrooms. To load the dataset in Python,
students may use the routine

sklearn.datasets.load svmlight file

from the scikit-learn library.

Remark 3.1 For the purpose of this project, we do not require to split the data between a training set and a
testing set. If both sets appear in the data, the testing set may be ignored for this section.

Implementation 3.1 Select a dataset from the libsvm repository. The dataset should have at least 20 features
and 1,000 training samples.

3.2 Optimization problem

Given our dataset, we formulate the following finite-sum optimization problem

minimize
w∈Rd

g(w) :=
1

n

n∑
i=1

gi(w), gi(w) :=

(
yi −

1

1 + exp(−xT
i w)

)2

. (17)

This problem is nonconvex in general. The function t 7→ 1
1+exp(−t) is called the sigmoid function. For any

i = 1, . . . , n, the function gi is C2: its derivatives are given by

∇gi(w) = −
2 exp(xT

i w)
(
exp(xT

i w)(yi − 1) + yi
)

(1 + exp(xT
i w))3

xi (18)

and

∇2gi(w) =
2 exp(xT

i w)
(
exp(2xT

i w)(yi − 1) + 2 exp(xT
i w)− yi

)
(1 + exp(xT

i w))4
xix

T
i . (19)

Implementation 3.2 Given your dataset, implement the associated codes for gS , ∇gS and ∇2gS , where S
is a set of random indices in {1, . . . , n}.

3.3 Comparison of the algorithms

Our goal is now to find a suitable method for this problem.

Question 10 Compare the performance of the subsampling Newton method from Section 2.1 and that of the
stochastic quasi-Newton method of Section 2.2 with a (batch) stochastic gradient approach. You may reuse
the stochastic gradient implementation from the course notebooks.

Extra credit (optional): Choose a dataset with a testing set and compare the testing loss versus the
training loss.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

	Second-order optimization methods
	Newton's method
	A globally convergent version of Newton's method
	Quasi-Newton methods and BFGS
	Limited-memory BFGS

	Stochastic second-order methods
	Subsampling Newton methods
	Stochastic quasi-Newton methods

	Binary classification on real-world data
	Dataset
	Optimization problem
	Comparison of the algorithms

