TD 01: Introduction à l'optimisation

Outils d'optimisation pour les sciences des données et de la décision, M2 MIAGE

20 septembre 2024

Exercice 1 : Moindres carrés linéaires

On considère un jeu de données de la forme $\{(x_i,y_i)\}_{i=1}^n$, où chaque w_i est un vecteur de \mathbb{R}^n et chaque y_i appartient à \mathbb{R} . On cherche un modèle linéaire qui explique les données, que l'on obtient en considérant le problème :

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\text{minimiser}} f(\boldsymbol{w}) := \frac{1}{2} \| \boldsymbol{X} \boldsymbol{w} - \boldsymbol{y} \|^2 = \frac{1}{2} \sum_{i=1}^n (\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w} - y_i)^2, \tag{1}$$

où $m{X} \in \mathbb{R}^{n imes d}$ et $m{b} \in \mathbb{R}^n$ concatènent les données, c'est-à-dire que

$$m{X} = \left[egin{array}{c} m{x}_1^{
m T} \ dots \ m{x}_n^{
m T} \end{array}
ight], \quad m{y} = \left[egin{array}{c} y_1 \ dots \ y_n \end{array}
ight].$$

Ce problème est un des plus classiques en analyse de données; sa fonction objectif est de classe \mathcal{C}^2 , et on peut montrer qu'il possède toujours au moins une solution.

- a) Supposons que w^* vérifie $Xw^*=y$ (c'est donc une solution du système linéaire Xw=y). Justifier que w^* est alors un minimum global du problème.
- b) Le gradient de f en $\boldsymbol{w} \in \mathbb{R}^d$ est donné par $\nabla f(\boldsymbol{w}) = \boldsymbol{X}^{\mathrm{T}}(\boldsymbol{X}\boldsymbol{w} \boldsymbol{y})$. Si \boldsymbol{w}^* est un minimum local de f, que vaut $\nabla f(\boldsymbol{w}^*)$?
- c) La matrice hessienne de f en $\boldsymbol{w} \in \mathbb{R}^d$ est donnée par $\nabla^2 f(\boldsymbol{w}) = \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$. Elle est donc constante et définie par les données du problème.
 - i) On a toujours $X^TX \succeq 0$. Quelle propriété sur f cela implique-t-il ?
 - ii) On suppose que $X^TX \succeq \mu I_d$ avec $\mu > 0$. Dans ce cas, que peut-on dire de $\nabla^2 f(w)$ pour tout w? Qu'en déduit-on sur l'ensemble des solutions du problème (1)?

Exercice 2: Fonctions quasi-convexes

Une fonction $f: \mathbb{R}^d \to \mathbb{R}$ est dite quasi-convexe si

$$\forall \boldsymbol{w}, \boldsymbol{v} \in \mathbb{R}^d, \ \forall t \in [0, 1], \quad f(t\boldsymbol{w} + (1 - t)\boldsymbol{v}) \le \max\{f(\boldsymbol{w}), f(\boldsymbol{v})\}.$$
 (2)

Toute fonction convexe est quasi-convexe, mais la réciproque est fausse.

On s'intéresse ici aux solutions du problème

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\text{minimiser}} f(\boldsymbol{w}), \tag{3}$$

où l'on suppose que f est quasi-convexe et de classe C^2 .

- a) Donner les conditions d'optimalité nécessaires à l'ordre 1 et à l'ordre 2 pour le problème (3).
- b) Comme f est quasi-convexe, on a la propriété suivante :

$$\forall \boldsymbol{w} \in \mathbb{R}^d, \ \forall \boldsymbol{v} \in \mathbb{R}^d, \quad \boldsymbol{v}^{\mathrm{T}} \nabla f(\boldsymbol{w}) = 0 \Rightarrow \boldsymbol{v}^{\mathrm{T}} \nabla^2 f(\boldsymbol{w}) \boldsymbol{v} \ge 0.$$
 (4)

Soit w^* un point stationnaire d'ordre 1. Justifier que w^* est aussi un point stationnaire d'ordre 2.

Exercice 3: Fonction convexe

Soit la fonction $q: \mathbb{R}^d \to \mathbb{R}$ définie par $q(w) = \frac{1}{4} ||w||^4$. Cette fonction est de classe \mathcal{C}^2 , et pour tout $w \in \mathbb{R}^d$, on a :

$$abla q(oldsymbol{w}) = \|oldsymbol{w}\|^2 oldsymbol{w}, \qquad
abla^2 q(oldsymbol{w}) = 2 oldsymbol{w} oldsymbol{w}^{\mathrm{T}} + \|oldsymbol{w}\|^2 oldsymbol{I}_d.$$

- a) En utilisant sa matrice hessienne, montrer que la fonction q est convexe. Quelle conséquence cela a-t-il sur ses minima ?
- b) Montrer que le vecteur nul $\mathbf{0}_{\mathbb{R}^d}$ est un minimum local. Satisfait-il la condition suffisante à l'ordre 2 ?
- c) En fonction de la réponse à la question précédente, la fonction peut-elle alors être fortement convexe ?

Solutions des exercices

Solutions de l'exercice 1

a) Si $oldsymbol{X} oldsymbol{w}^* = oldsymbol{y}$, alors on a

$$f(x^*) = \frac{1}{2} ||Xw^* - y||^2 = \frac{1}{2} ||\mathbf{0}||^2 = 0.$$

Or la fonction f est toujours positive ou nulle; on a ainsi

$$\forall \boldsymbol{w} \in \mathbb{R}^d, f(\boldsymbol{w}) \ge 0 = f(\boldsymbol{w}^*).$$

Cette propriété correspond à la définition d'un minimum global, d'où l'on conclut que w^* est bien un minimum global du problème.

- b) Si w^* est un minimum local du problème (1) et donc de f, alors on a $\nabla f(w^*) = 0$. C'est la condition d'optimalité nécessaire à l'ordre 1.
 - i) Si $X^TX \succeq 0$, alors on a $\nabla^2 f(w) \succeq 0$ pour tout w: c'est une caractérisation de la convexité pour une fonction de classe C^2 , et l'on en conclut donc que f est convexe.
 - ii) Comme dans la question précédente, le fait que $\boldsymbol{X}^T\boldsymbol{X}\succeq \mu\boldsymbol{I}_d$ signifie que $\nabla^2 f(\boldsymbol{w})\succeq \mu\boldsymbol{I}_d$ pour tout $\boldsymbol{w}\in\mathbb{R}^d$. C'est une caractérisation de la convexité forte, d'où l'on conclut que f est μ -fortement convexe. Par conséquent, la solution du problème (on sait qu'il en existe au moins une d'après l'énoncé) est unique.

Solutions de l'exercice 2

a) Il s'agit d'une question de cours. La condition nécessaire d'optimalité à l'ordre 1 s'énonce comme suit : si $w^* \in \mathbb{R}^d$ est un minimum local de f, alors $\nabla f(w^*) = \mathbf{0}$. La condition nécessaire d'optimalité à l'ordre 2 est plus précise encore : si $w^* \in \mathbb{R}^d$ est un minimum local de f, alors

$$\nabla f(\boldsymbol{w}^*) = \boldsymbol{0} \quad \text{et} \quad \nabla^2 f(\boldsymbol{w}^*) \succeq \boldsymbol{0}.$$

b) Puisque w^* est un point stationnaire d'ordre 1, il vérifie la condition d'optimalité nécessaire à l'ordre 1 : on a donc $\nabla f(w^*) = \mathbf{0}$. Par conséquent, on a

$$\forall \boldsymbol{v} \in \mathbb{R}^d, \quad \boldsymbol{v}^{\mathrm{T}} \nabla f(\boldsymbol{w}^*) = \boldsymbol{v}^{\mathrm{T}} \mathbf{0} = 0.$$

La première partie de l'implication (4) est donc vraie pour w^* et pour tout vecteur v. On en déduit donc que la seconde partie de l'implication l'est aussi, c'est-à-dire que l'on a :

$$\boldsymbol{v}^{\mathrm{T}} \nabla^2 f(\boldsymbol{w}^*) \boldsymbol{v} \ge 0 \ \forall \boldsymbol{v} \in \mathbb{R}^d,$$

qui correspond à $\nabla^2 f(w^*) \succeq \mathbf{0}$. Par conséquent, w^* vérifie la condition nécessaire d'optimalité à l'ordre 2: c'est donc bien un point stationnaire d'ordre 2.

Solutions de l'exercice 3

a) Pour tous $w \in \mathbb{R}^d$ et $v \in \mathbb{R}^d$, on a en utilisant la linéarité des produits scalaires et produits matrice-vecteur :

$$\mathbf{v}^{\mathrm{T}}\nabla^{2}q(\mathbf{w})\mathbf{v} = \mathbf{v}^{\mathrm{T}}(2\mathbf{w}\mathbf{w}^{\mathrm{T}} + \|\mathbf{w}\|^{2}\mathbf{I}_{d})\mathbf{v}$$

$$= \mathbf{v}^{\mathrm{T}}(2\mathbf{w}\mathbf{w}^{\mathrm{T}}\mathbf{v} + \|\mathbf{w}\|^{2}\mathbf{v})$$

$$= 2\mathbf{v}^{\mathrm{T}}\mathbf{w}\mathbf{w}^{\mathrm{T}}\mathbf{v} + \|\mathbf{w}\|^{2}\mathbf{v}^{\mathrm{T}}\mathbf{v}$$

$$= 2(\mathbf{w}^{\mathrm{T}}\mathbf{v})^{2} + \|\mathbf{w}\|^{2}\mathbf{v}^{\mathrm{T}}\mathbf{v}$$

$$= 2(\mathbf{w}^{\mathrm{T}}\mathbf{v})^{2} + \|\mathbf{w}\|^{2}\|\mathbf{v}\|^{2}$$

$$\geq 0.$$

Par conséquent, pour tout $w \in \mathbb{R}^d$, la matrice hessienne $\nabla^2 q(w)$ est semi-définie positive : on a $\nabla^2 q(w) \succeq \mathbf{0}$. On en déduit que la fonction q est convexe, et donc que tous ses minima locaux sont globaux (elle ne possède ainsi que des minima globaux).

b) Puisque q est convexe, il y a équivalence entre minimum local et minimum global. Or, on a

$$q(\mathbf{w}) = \frac{1}{4} ||\mathbf{w}||^4 \ge 0 = q(\mathbf{0}_{\mathbb{R}^d}).$$

Le vecteur nul $\mathbf{0}_{\mathbb{R}^d}$ est donc un minimum global de q. Pour satisfaire la condition suffisante d'optimalité à l'ordre 2, il faudrait avoir $\nabla^2 q(\boldsymbol{w}) \succ \mathbf{0}$; or, on trouve en remplaçant dans l'expression donnée dans l'énoncé que

$$\nabla^2 q(\mathbf{0}_{\mathbb{R}^d}) = \mathbf{0},$$

qui n'est pas définie positive mais uniquement semi-définie positive : par conséquent, le vecteur nul ne vérifie pas la condition suffisante d'optimalité. Remarque : cela ne contredit pas le fait que 0 est un minimum global.

c) Si la fonction était fortement convexe, on aurait $\nabla^2 q(w) \succeq \mu I_d \succ \mathbf{0}$ pour tout $w \in \mathbb{R}^d$, et donc en particulier pour le vecteur nul. Ce n'est pas le cas, et on en conclut donc que cette fonction n'est pas fortement convexe.