Tutorial 1: Basics of optimization

Optimization for data science, M2 MIAGE ID/ID Apprentissage

September 29, 2025

Exercise 1: Linear least squares

We consider a dataset $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^n$, wherein $\boldsymbol{x}_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ for every $i=1,\ldots,n$. We seek a linear model that best fits the data, which we formulate as the following optimization problem:

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\operatorname{minimize}} f(\boldsymbol{w}) := \frac{1}{2n} \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|^2 = \frac{1}{2n} \sum_{i=1}^n (\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w} - y_i)^2, \tag{1}$$

where $oldsymbol{X} \in \mathbb{R}^{n imes d}$ and $oldsymbol{y} \in \mathbb{R}^n$ are given by

$$m{X} = \left[egin{array}{c} m{x}_1^{
m T} \ dots \ m{x}_n^{
m T} \end{array}
ight], \quad m{y} = \left[egin{array}{c} y_1 \ dots \ y_n \end{array}
ight].$$

This problem is among the most classical in data analysis. Its objective function is C^2 , and the problem (1) always has at least one solution.

- a) Let $w^* \in \mathbb{R}^d$ satisfy $Xw^* = y$ (hence w^* is a solution of the linear system Xw = y). Justify then that w^* is a global minimum of the objective function.
- b) The gradient of f at any $w \in \mathbb{R}^d$ is given by $\nabla f(w) = \frac{1}{n} X^T (Xw y)$. If w^* satisfies $Xw^* = y$ as in question a), what is the value of $\nabla f(w^*)$?
- c) The Hessian matrix of f at $\boldsymbol{w} \in \mathbb{R}^d$ is given by $\nabla^2 f(\boldsymbol{w}) = \frac{1}{n} \boldsymbol{X}^T \boldsymbol{X}$. Note that it is constant with respect to \boldsymbol{w} , and that it only depends on the data matrix \boldsymbol{X} .
 - i) By construction, we have $\frac{1}{n}X^{T}X \succeq 0$. What property on f does this imply?
 - ii) Suppose that $\frac{1}{n}X^TX \succeq \mu I_d$ with $\mu > 0$. Given $w \in \mathbb{R}^d$, what can we say about $\nabla^2 f(w)$ in that case? What information does this provide about the set of solutions of problem (1)?

Exercise 2: Convex function

Let $q: \mathbb{R}^d \to \mathbb{R}$ be defined as $q(w) = \frac{1}{4} ||w||^4$. This function is \mathcal{C}^2 , and for every $w \in \mathbb{R}^d$, we have

$$abla q(oldsymbol{w}) = \|oldsymbol{w}\|^2 oldsymbol{w}, \qquad
abla^2 q(oldsymbol{w}) = 2 oldsymbol{w} oldsymbol{w}^{\mathrm{T}} + \|oldsymbol{w}\|^2 oldsymbol{I}_d.$$

- a) Using the expression of the Hessian matrix of q, show that the function q is convex. What does it imply on its local minima?
- b) Show that the zero vector $\mathbf{0}_{\mathbb{R}^d}$ is a local minimum of q. Does it satisfy the second-order sufficient condition?
- c) Given the answer to the previous question, can the function q be strongly convex?
- d) Justify that the function has a single global minimum.

Exercise 3: Quasiconvex functions

A function $f: \mathbb{R}^d \to \mathbb{R}$ is called **quasiconvex** if

$$\forall \boldsymbol{w}, \boldsymbol{v} \in \mathbb{R}^d, \ \forall t \in [0, 1], \quad f(t\boldsymbol{w} + (1 - t)\boldsymbol{v}) \le \max\{f(\boldsymbol{w}), f(\boldsymbol{v})\}. \tag{2}$$

Any convex function is quasiconvex, but the converse is not true.

Let f be a quasiconvex, C^2 function. We consider:

- a) Write the first- and second-order optimality conditions for problem (3).
- b) Since f is quasiconvex, it can be shown that

$$\forall \boldsymbol{w} \in \mathbb{R}^d, \ \forall \boldsymbol{v} \in \mathbb{R}^d, \quad \boldsymbol{v}^{\mathrm{T}} \nabla f(\boldsymbol{w}) = 0 \Rightarrow \boldsymbol{v}^{\mathrm{T}} \nabla^2 f(\boldsymbol{w}) \boldsymbol{v} \ge 0.$$
 (4)

Let w^* be a first-order stationary point. Justify that w^* is also a second-order stationary point.