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Exercise 1: Linear least squares

We consider a dataset {(xi, yi)}ni=1, wherein xi ∈ Rd and yi ∈ R for every i = 1, . . . , n.
We seek a linear model that best fits the data, which we formulate as the following
optimization problem:

minimize
w∈Rd

f(w) :=
1

2n
∥Xw − y∥2 = 1

2n

n∑
i=1

(xT
i w − yi)

2, (1)

where X ∈ Rn×d and y ∈ Rn are given by

X =

 xT
1
...
xT
n

 , y =

 y1
...
yn

 .

This problem is among the most classical in data analysis. Its objective function is C2,
and the problem (1) always has at least one solution.

a) Let w∗ ∈ Rd satisfy Xw∗ = y (hence w∗ is a solution of the linear system
Xw = y). Justify then that w∗ is a global minimum of the objective function.

b) The gradient of f at any w ∈ Rd is given by ∇f(w) = 1
nX

T(Xw − y). If w∗

satisfies Xw∗ = y as in question a), what is the value of ∇f(w∗)?

c) The Hessian matrix of f at w ∈ Rd is given by ∇2f(w) = 1
nX

TX. Note that it
is constant with respect to w, and that it only depends on the data matrix X.

i) By construction, we have 1
nX

TX ⪰ 0. What property on f does this imply?

ii) Suppose that 1
nX

TX ⪰ µId with µ > 0. Given w ∈ Rd, what can we say
about ∇2f(w) in that case? What information does this provide about the set
of solutions of problem (1)?
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Exercise 2: Convex function

Let q : Rd → R be defined as q(w) = 1
4∥w∥4. This function is C2, and for every w ∈ Rd,

we have
∇q(w) = ∥w∥2w, ∇2q(w) = 2wwT + ∥w∥2Id.

a) Using the expression of the Hessian matrix of q, show that the function q is convex.
What does it imply on its local minima?

b) Show that the zero vector 0Rd is a local minimum of q. Does it satisfy the second-
order sufficient condition?

c) Given the answer to the previous question, can the function q be strongly convex?

d) Justify that the function has a single global minimum.

Exercise 3: Quasiconvex functions

A function f : Rd → R is called quasiconvex if

∀w,v ∈ Rd, ∀t ∈ [0, 1], f(tw + (1− t)v) ≤ max{f(w), f(v)}. (2)

Any convex function is quasiconvex, but the converse is not true.

Let f be a quasiconvex, C2 function. We consider:

minimize
w∈Rd

f(w). (3)

a) Write the first- and second-order optimality conditions for problem (3).

b) Since f is quasiconvex, it can be shown that

∀w ∈ Rd, ∀v ∈ Rd, vT∇f(w) = 0 ⇒ vT∇2f(w)v ≥ 0. (4)

Let w∗ be a first-order stationary point. Justify that w∗ is also a second-order
stationary point.


