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Exercise 1: Linear least squares

We consider a dataset {(x;,y;)}", wherein ¢; € R? and y; € R for every i = 1,...,n.
We seek a linear model that best fits the data, which we formulate as the following
optimization problem:
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minimize f(w) := Q—HXw —y|? = o Z(%Tw — i), (1)
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where X € R"*? and y € R” are given by
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This problem is among the most classical in data analysis. lts objective function is C?,
and the problem (1) always has at least one solution.

a) Let w* € R? satisfy Xw* = y (hence w* is a solution of the linear system
Xw = y). Justify then that w* is a global minimum of the objective function.

b) The gradient of f at any w € R? is given by Vf(w) = 1 XT(Xw — y). If w*

T n

satisfies X w™ = y as in question a), what is the value of V f(w™*)?

c) The Hessian matrix of f at w € R? is given by V2f(w) = %XTX. Note that it
is constant with respect to w, and that it only depends on the data matrix X.
i) By construction, we have %XTX > 0. What property on f does this imply?

ii) Suppose that %XTX > uIy with > 0. Given w € R? what can we say
about V2 f(w) in that case? What information does this provide about the set
of solutions of problem (1)?
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Exercise 2: Convex function

Let ¢ : R? — R be defined as g(w) = 1|lw||*. This function is C?, and for every w € R¢,
we have
Vo(w) = w|?w,  Vq(w) =2ww" + ||Jw|* L,

a) Using the expression of the Hessian matrix of ¢, show that the function ¢ is convex.
What does it imply on its local minima?

b) Show that the zero vector Opa is a local minimum of ¢q. Does it satisfy the second-
order sufficient condition?

c) Given the answer to the previous question, can the function ¢ be strongly convex?

d) Justify that the function has a single global minimum.

Exercise 3: Quasiconvex functions
A function f : R? — R is called quasiconvex if
Vw,v € RY vt e [0,1], f(tw + (1 —t)v) < max{f(w), f(v)}. (2)

Any convex function is quasiconvex, but the converse is not true.

Let f be a quasiconvex, C? function. We consider:

minimize f(w). (3)

weRd

a) Write the first- and second-order optimality conditions for problem (3).

b) Since f is quasiconvex, it can be shown that
Vw € RY, Yo € RY, TV f(w) =0= vV f(w)v > 0. (4)

Let w* be a first-order stationary point. Justify that w* is also a second-order
stationary point.
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Solutions

Solutions for Exercise 1

a) If Xw* =y, then
1 1
Flw') = o[ Xw* —y]? = 2 [o]? =0

Since f is always nonnegative (definition of a norm), we also have
Vw € RY, f(w) > 0 = f(w").

The latter property corresponds to the definition of a global minimum for f, from which we
conclude that w* is a global minimum of f or, equivalently, a solution of the unconstrained
problem (1).

b) The function f is continuously differentiable (C2, so C!). If X w* =y, then
Viw) = 1XN (X w" —y)= X (y —y) =0,
confirming the first-order optimality condition.

<)

i) If LXTX = 0, then V2f(w) = 0 for any w € R? This property is a characterization of
convexity for a C? function, from which we conclude that f is a convex function.

ii) Similarly to the previous question, the fact that %XTX >= uI g means that V2 f(w) = plg4
for any w € R This is again a characterization of strong convexity for C? functions,
and therefore f is pu-strongly convex. As a result, there exists a unique solution for the
optimization problem (or equivalently, f has a unique global minimum).

Solutions for Exercise 2

a) For any w € R? and any v € RY, the linearity of both scalar products and matrix-vector products
gives:

vV (w)r = vTQww! + |w| v
= v Qww v + [|w|?v)
= 20 Twwlv + |w|*v v
= 2wTv)? 4 ||w|*vTv
= 2(w'v)? + [Jw|?|v|

> 0.

Thus, for any w € R?, the Hessian matrix V2q(w) is positive semidefinite, i.e. VZq(w) > 0.
Consequently, the (C2) function ¢ is convex, and all its local minima are global.
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b)

Since the function g is convex, every local minimum is global. Moreover, we have
(w) = tllw|* > 0= q(0ga)
q(w) = zl[lw||” > 0 = q(Oga

for any w € R%. The zero vector Oga is thus a global minimum of ¢. If the zero vector were to
satisfy the second-order sufficient optimality conditions, we would have V2¢(0ga) = 0. However,
the expression for V2¢ gives

V?(0pa) = 0,

and the zero matrix is only positive semidefinite (instead of positive definite). As a result, the
zero vector does not satisfy the second-order sufficient optimality conditions. Note: This does
not contradict the fact that this vector is a global minimum, as the condition is sufficient but not
necessary.

If the function were strongly convex, there would exist ;> 0 such that V2q(w) = uIy = 0 for
any w, including the zero vector. Since the Hessian is zero at the zero vector, this cannot be
true, from which we conclude that ¢ is not strongly convex.

For every w € R?, we have ¢(w) > ¢(Oga) = 0, hence the zero vector is a global minimum.
Moreover, g(w) = 0 if and only if w = Oga, and thus the zero vector is the only global minimum
of q.

Note: Classical argument in this last question, typical first question of an exam.

Solutions for Exercise 3

The result is expected to be known. The first-order necessary optimality conditions can be stated
as follows. If a vector w* € R is a local minimum of a C! function f, then V f(w*) = 0. The
second-order necessary optimality conditions are a stronger characterization. If w* € R% is a local
minimum of f, then

Vf(w*)=0 and V2f(w*)>0.

Since w* is a first-order stationary point, it satisfies the first-order necessary conditions, hence
Vf(w*) =0 and
Yo e R4, TV f(w*) =vT0=0.

The left-hand side of the implication (4) thus holds for w* and any vector v. Thus the right-hand

also holds, i.e.
vIV2f(w*)v > 0 Vo € RY,

which is equivalent to V2 f(w*) = 0. Therefore, the vector w* satisfies the second-order necessary
optimality conditions, and it is a second-order stationary point.



