
Tutorial 3: Stochastic gradient

Optimization for data science, M2 MIAGE ID/ID Apprentissage

December 8, 2025

Exercise 1: Huber loss

We consider a dataset {(xi, yi)}ni=1, where n ≥ 1, xi ∈ Rd with d ≥ 1 and yi ∈ R. We
seek a linear model that best predicts every yi given the corresponding xi. To this end,
we consider a family of models parameterized by w ∈ Rd of the form

hw : Rd → R
x 7→ xTw =

∑d
i=1[x]i[w]i.

Given a model hw, we consider that this model perfectly predicts yi given xi if ℓ (hw(xi)− yi) =
ℓ
(
xT
i w − yi

)
= 0, where ℓ : R → R is the Huber loss given by

ℓ(t) =

{
1
2 t

2 if |t| < 1
|t| − 1

2 otherwise.
(1)

This function behaves like t 7→ t2

2 for |t| < 1 and like t 7→ |t| when |t| is large enough.
Unlike what its expression could suggest, the function ℓ is C1.

The term ℓ (hw(xi)− yi) represents the error corresponding to the data point (xi, yi),
and we seek a model (i.e. a vector w ∈ Rd) that yields the minimum sum of these errors.
As a result, we consider the problem:

minimize
w∈Rd

f(w) :=
1

n

n∑
i=1

ℓ(xT
i w − yi). (2)

a) Justify that 0 is a lower bound of the objective f of problem (2). Is it necessarily
its minimum value?

b) The gradient of f at w ∈ Rd is given by

∇f(w) =
1

n

n∑
i=1

ℓ′(xT
i w − yi)xi, (3)

2 Tuto 03 ODS - 2025/2026

with

ℓ′(t) =


1 if t > 1
t if |t| ≤ 1
−1 if t < −1.

Write down the gradient descent iteration with a constant stepsize α and using the
formula (3) for the gradient. If the current point is a local minimum, what happens
to this iteration?

c) The gradient ∇f is L-Lipschitz continuous with L = 1
n

∑n
i=1 ∥xi∥2. How can this

constant be used to define the stepsize? Give two other strategies for choosing the
stepsize that do not require knowledge of L.

d) The function f has the form f = 1
n

∑n
i=1 fi, where fi(w) = ℓ(xT

i w − yi). The
gradient of fi at w is

∇fi(w) = ℓ′(xT
i w − yi)xi.

Write the iteration of stochastic gradient for problem (2), using a generic choice
for the stepsize.

e) For the rest of the exercise, we consider that our unit of cost is one access to a
single xi. Using the unit, what is the cost of a gradient descent iteration? What is
the cost of a stochastic gradient iteration?

f) Discuss the interest of stochastic gradient in the following two cases:

i) n ≫ 1 and there are redundancies in the dataset {(xi, yi)} in the form of
duplicate elements;

ii) n = d and the xi are the coordinate vectors in Rn.

g) Suppose that we run stochastic gradient with a constant stepsize on our problem,
and that we observe that the method generates iterates with increasingly large
norm, leading to a memory overflow. Provide a justification for this behavior.

h) We consider a batch variant of stochastic gradient where we draw nb elements of
{(xi, yi)} at every iteration.

i) Write the corresponding iteration.

ii) If nb corresponds to the number of processors available for parallel calculations,
what can be the interest of choosing nb as batch size?

iii) What is the statistical advantage of batch methods over vanilla stochastic
gradient?

iv) Suppose that we compare several batch sizes. We observe that the practical
convergence rate of the method improves as nb increases from 1 to n

10 , but
that it deteriorates as nb increases from n/10 to n. How can you explain these
observations?

Tuto 03 ODS - 2025/2026 3

Exercise 2: Random reshuffling

In this exercise, we consider a stochastic optimization problem of the form

minimizew∈Rd f(w) =
1

n

n∑
i=1

fi(w), (4)

where every fi is C1 and depends solely on the ith data point in a dataset of size n. We also assume
that the objective function f is convex with Lipschitz continuous gradient and we let f∗ denote its
minimal value.

We assume that n is so large that using the entire dataset at once is not possible in practice,
and we thus perform stochastic gradient iterations of the form

wk+1 = wk − αk∇fik(wk), (5)

where αk > 0 and ik ∈ {1, . . . , n}. The goal of the exercise is to explore random reshuffling
stochastic gradient techniques, where the indices {ik} are drawn according to a random permutation
of {1, . . . , n} that changes every n iterations. At iteration 0, a random permutation of {1, . . . , n} is
computed, and it defines {i0, . . . , in−1}. At iteration n, another random permutation is computed,
that defines {in, . . . , i2n−1}, and so on.

a) Recall the definition of an epoch. With random reshuffling, what guarantee do we have on the
data points that have been used over the course of the first epoch?

b) Consider an iteration index k that corresponds to the first iteration of an epoch (i.e. k = ℓn for
some ℓ ∈ N).

i) Show that

Eik [∇fik(xk)] = ∇f(xk).

ii) Since the indices ik, . . . , ik+n−1 are not independent, justify that this property no longer
holds for other indices (we say that the stochastic gradient estimates for random reshuffling
are biased).

c) Despite the bias, it is possible to show convergence results for appropriate choices of step sizes.
Such results are based on analyzing the behavior of the average iterate sequence {x̄K}K , where

x̄K =
1

K + 1

K∑
k=0

xk ∀K ∈ N.

What interesting property does this sequence possess in general for stochastic gradient methods?

d) A typical convergence analysis for (5) shows that, for any K ≥ 1, after nK iterations, we have

E [f (x̄nK)]− f∗ ≤ O
(

1√
nK

)
,

Compare this rate with that typically obtained by gradient descent.

4 Tuto 03 ODS - 2025/2026

e) Consider a batch variant of stochastic gradient where the indices are drawn following a random
reshuffling approach. With a batch size of n, what algorithm do we recover?

f) Given that the random reshuffling strategy does not draw the same index twice during an epoch,
one may be tempted to use information from the past iterations to incorporate more (stochastic)
gradient information into the current iteration. What advanced stochastic gradient technique
would you use for that purpose? Justify your answer.

Tuto 03 ODS - 2025/2026 5

Solutions

Solutions for Exercise 1

a) The function ℓ is nonnegative on R. For any w ∈ Rd, we thus have

f(w) =
1

n

n∑
i=1

ℓ(xT
i w − yi) ≥

1

n

n∑
i=1

0 = 0.

Therefore, the value 0 is a lower bound for the objective of problem (2). This value is reached
only when there exists a point w such that xT

i w− yi = 0 for every i. This is not always possible
(take for instance n = 2, d = 1,x1 = 1,x2 = −1, y1 = y2 = 1), hence 0 is not necessarily the
minimum value for the problem.

b) At wk ∈ Rd, the gradient descent iteration with a constant stepsize α on this specific problem is

wk+1 = wk −
α

n

n∑
i=1

ℓ′(xT
i wk − yi)xi.

If wk is a local minimum, then ∇f(wk) = 0, and the iteration becomes wk+1 = wk.

c) If the Lispchitz constant L is known, then choosing α = 1
L is a good value.

If this value is unknown, we can instead use a decreasing stepsize sequence (such as αk = 1
k+1)

or use a line search to compute a stepsize tailored to the given iteration.

d) An iteration of stochastic gradient at wk ∈ Rd using stepsize αk first draws an index ik in
{1, . . . , n} at random. Then, the new iterate wk+1 is given by

wk+1 = wk − αk∇fik(wk) = wk − αkℓ
′(xT

ik
wk − yik)xik .

e) Every gradient descent iteration must access all data points in order to compute the full gradient.
Since our cost unit corresponds to an access to one point xi, the cost of one gradient descent
iteration according to this metric is n. As for an iteration of stochastic gradient, its cost is 1
because it only requires one data point (namely xik at iteration k, where ik is the random index
drawn at that iteration).

i) When n ≫ 1 and there are redundancies in the data, it is not necessary to “see” all data
points in order to perform optimization. As a result, stochastic gradient can be more efficient
than gradient descent, in that it will perform more optimization steps given the same amount
of accesses to data points. This is a situation in which stochastic gradient is relevant. N.B.
More broadly, when the data points are correlated, but not necessarily identical, we expect a
similar argument to hold in favor of stochastic gradient.

ii) When n = d and xi = ei (where ei is the ith coordinate vector in Rn defined by [ei]i = 1
and [ei]j = 0 for i ̸= j), the problem can be rewritten as

min
w∈Rn

1

n

n∑
i=1

ℓ(eTi w − yi) =
1

n

n∑
i=1

ℓ([w]i − yi).

6 Tuto 03 ODS - 2025/2026

It can then be seen that the objective function is a sum of n terms, each involving a dif-
ferent coordinate of w. An iteration of gradient descent will then update all coordinates at
once, whereas an iteration of stochastic gradient will only modify one (random) coordinate
at a time. In that context, gradient descent is more interesting than stochastic gradient.
N.B. Here all terms in the finite sum must be considered to compute the solution of the
optimization problem. The data points are independent, and not correlated.

f) Stochastic gradient is a randomized method, implying that the result of a particular run depends
on a random draw of a sequence of indices. As a result, it is possible that a particular run does
not converge (even though the theory guarantees convergence in expectation), and this is an
explanation for the observed behavior.

i) The kth iteration of a batch stochastic gradient with batch size nb, starting from a point
wk ∈ Rd proceeds as follows. First, a random subset of indices of cardinality nb is drawn
such that Sk ⊂ {1, . . . , n}nb . Then, the next iterate is computed through the formula

wk+1 = wk −
αk

|Sk|
∑
i∈Sk

∇fi(wk),

where αk > 0 is a stepsize.

ii) If nb are available and the gradients of the fis can be computed in parallel, then the evaluation
of the batch stochastic gradient can be distributed over these nb processors.

iii) Batch stochastic gradient methods rely on a gradient estimate of the form 1
|Sk|

∑
i∈Sk

∇fi(wk).

The variance of this estimator (as defined in the lectures) is smaller than that of a standard
stochastic gradient estimate, of the form ∇fik(wk).

iv) If we observe that the convergence improves while increasing the batch size, it means that
considering more than one data point is beneficial (typically because of the variance reduction
effect, but also because more information is captured by those gradient estimators). However,
increasing the batch size too much leads to a drop in performance, as the method then gets
more expensive (with a per-iteration cost being significantly higher than stochastic gradient)
while being more sensitive to redundancies in the data. This explains that the performance
worsens as nb gets above n/10.

Solutions for Exercise 2

a) An epoch is a unit of cost corresponding to n accesses of an example in the data set. Running
random reshuffling for one epoch represents a pass through the entire dataset.

b) Consider an iteration index k that corresponds to the first iteration of an epoch (i.e. k = ℓn for
some ℓ ∈ N).

i) Since ik is the first index corresponding to a random permutation, it has equal probability to
be equal to any value in {1, . . . , n}, and it is independent of xk. As a result, the expected
value can be analyzed similarly to the uniform distribution case, and we get

Eik [∇fik(xk)] =

n∑
i=1

1

n
×∇fi(xk) = ∇f(xk).

Tuto 03 ODS - 2025/2026 7

ii) Consider the iteration k + 1. The value of ik+1 depends on that of ik, and therefore the
reasoning above no longer holds. The situation complicates even further when considering
later indices.

c) The sequence of averaged iterates has less variance than the sequence of iterates.

d) After nK iterations of gradient descent, we would obtain a point xGnK such that

f(xGnK)− f∗ ≤ O
(

1

nK

)
,

This is a better convergence rate than random reshuffling, in the sense that the quantity to which
the rate applies is deterministic and relates to the last iterate, and that the rate converges to zero
faster than that of random reshuffling when K → ∞.

On the other hand, one iteration of gradient descent is more expensive than an iteration of random
reshuffling. For a fixed number of epochs NE , random reshuffling performs nNE iterations while
gradient descent performs only NE iterations. Provided n is sufficiently large, we will have√
nNE ≫ NE , and thus the convergence rate will be better for random reshuffling.

e) With a batch size of n, we recover gradient descent since the indices will be drawn without
replacement.

f) Advanced stochastic gradient techniques such as SGD with momentum and Adam are based on
combining the current stochastic gradient with past directions chosen in previous iterations, thus
they would be good choices for this purpose.

