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Exercise 1: Elastic net

We consider a dataset formed by X ∈ Rn×d and y ∈ Rn. Given this dataset, we form
a linear regression problem with so-called elastic net regularization :

minimize
w∈Rd

1

2n
∥Xw − y∥2 + λ2

2
∥w∥2 + λ1∥w∥1, (1)

where λ2 ≥ 0 and λ1 ≥ 0.

a) What is the role of a regularization term in general?

b) What is the purpose of the regularization term when λ1 = 0 and λ2 > 0?

c) What is the purpose of the regularization when λ2 = 0 and λ1 > 0?

d) Recall that the gradient of the function ϕ : w 7→ 1
2n∥Xw − y∥2 is given by

∇ϕ(w) =
1

n
XT(Xw − y).

Using this formula, write down the iteration of proximal gradient for problem (1).

e) When λ2 = 0 and λ1 > 0, which algorithm is proximal gradient equivalent to?

f) When λ1 > 0 and λ2 > 0, there does not exist an explicit formula for the proximal
gradient iterates, and the proximal subproblem has to be solved approximately at
every iteration. Propose an algorithm among those seen in class that could be
employed to compute such an approximate solution, and justify your choice of that
particular method.

Exercise 2: Reversed Huber loss

In this exercise, we consider the reverse philosophy of the Huber loss, that is, we propose to use a
loss function that looks like the absolute value on [−1, 1] and like a quadratic everywhere else.
The reversed Huber loss is thus defined as:

r : R → R

t 7→ r(t) :=

{
|t| if |t| < 1
t2+1
2 otherwise.

(2)
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This function is convex but nonsmooth, since it is not differentiable at 0.
As in Exercise 1, we consider linear models x 7→ wTx and a dataset {(xi, yi)}ni=1 with xi ∈ Rd

and yi ∈ R.

a) We first consider the convex, nonsmooth problem:

minimize
w∈Rd

1

n

n∑
i=1

r(xT
i w − yi). (3)

i) What mathematical tool can we use to design algorithms applicable to problem (3)?

ii) Using this tool, how can the solutions of (3) be characterized?

b) We now study the family of problems:

minimize
w∈Rd

f(w) + λ
d∑

i=1

r([w]i), (4)

where f(w) = 1
n

∑n
i=1 fi(w) with every fi C1 and depending on the data point (xi, yi), and

λ > 0.

i) How is this type of problem called? What is the purpose of the second term?

ii) Write the generic proximal gradient iteration for this problem.

iii) When is this algorithm worthy of consideration in practice?
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Solutions

Solutions for Exercise 1

a) A regularization term enforces a desired structure on the optimization variables.

b) When λ1 = 0 and λ2 > 0, the regularization term is an ℓ2 regularization term, that aims at
reducing the variance of the solution with respect to the data.

c) When λ2 = 0 and λ1 > 0, the regularization term is an ℓ1 regularization term, that aims at
promoting sparse solutions.

d) The kth iteration of proximal gradient applied to problem (1) is

wk+1 ∈ argmin
w∈Rd

{
ϕ(wk) +

1

n
(Xwk − y)TX(w −wk) +

1

2αk
∥w −wk∥2 +

λ2

2
∥w∥2 + λ1∥w∥1

}
where αk > 0.

e) A subgradient algorithm can be used to solve the subproblem, since it is defined even in the
presence of a nonsmooth function such as the ℓ1 norm. The iteration cost would involve computing
a subgradient. Alternatively, one may want to apply proximal gradient to this subproblem while
treating the ℓ1 norm as a regularization term. This would correspond to the ISTA method (with
a quadratic cost function), and would still be tractable given that the iterations of ISTA are
explicitly defined.

Solutions for Exercise 2

a)

i) Since w 7→ 1
n

∑n
i=1 r(x

T
i w− yi) is convex, it is possible to define the subdifferential of v at

any point: the elements of the subdifferential, called the subgradients, can be used in lieu of
the gradient to construct optimization methods for solving problem (3).

ii) Let ϕr : w 7→ 1
n

∑n
i=1 r(x

T
i w − yi). A point w̄ ∈ Rd is a global minimum of ϕr if and only

if
0 ∈ ∂ϕr(w̄),

where ∂ϕr(·) denotes the subdifferential of ϕr.

b)

i) Problem (4) is a regularized optimization problem. The goal of the second term, that does
not depend on data, is to enforce desired properties for the solution.

ii) At a point wk, the generic proximal gradient iteration (with a generic stepsize αk) for this
problem is:

wk+1 ∈ arg min
w∈Rd

{
f(wk) +∇f(wk)

T(w −wk) +
1

2αk
∥w −wk∥22 + λ

d∑
i=1

r([w]i)

}
.
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iii) The proximal gradient algorithm is only interesting when the cost of solving the subproblem
is cheaper than that of solving the original problem.


