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Exercise 1: Gradient descent

In this exercise, we consider a logistic regression problem of the form

minimize
w,v∈Rd

f log(w) := log(1 + exp(−yix
T
i w)), (1)

where our dataset {(xi, yi)}ni=1 is such that xi ∈ Rd and yi ∈ {−1, 1} for any i = 1, . . . , n.
The function f log is C1.

a) Write down the iteration of gradient descent applied to problem (1) using a constant stepsize.

b) The function f log is C1,1
L for some L > 0. If the stepsize from question a) is chosen as 1

L , what
guarantee do we have on this iteration?

c) Give another way of choosing the stepsize than using a constant stepsize.

d) Knowing that f log is convex, what convergence rate can we expect for gradient descent on
problem (1)? What quantity does this rate apply to?

e) What would the answer to question d) be if the function was strongly convex instead of just
convex?

f) The accelerated gradient method (also known as Nesterov’s method) has a better convergence
rate than gradient descent on convex problems. What is this rate?

g) Explain the main algorithmic idea behind accelerated gradient.

h) In terms of algorithm, what is the difference between accelerated gradient for convex functions
and for strongly convex functions?
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Exercise 2: Least squares VS smoothed biweight loss

In this exercise, we consider data under the form of a matrix X =

x
T
1
...
xT
n

 and a vector y =

y1...
yn

.
Our goal is to find a linear model that best fits the data, i.e. a vector w ∈ Rd such that xT

i w ≈ yi
for i = 1, . . . , n.

a) We first consider the classical linear regression task represented by the following optimization
problem:

minimize
w∈Rd

f lin(w) :=
1

2n
∥Xw − y∥22 =

1

2n

n∑
i=1

(xT
i w − yi)

2. (2)

i) Justify that the optimal value of problem (2) is nonnegative. Can it be equal to 0?

ii) The objective function f lin of problem (2) is convex. What does convexity imply on the local
minima of this problem?

iii) Under additional conditions on the data, we can guarantee that f lin is µ-strongly convex for
some µ > 0. What can we say about the set of solutions of problem (2) in that case?

b) The linear regression problem (2) is known to be sensitive to outliers in the data. An alternate
formulation, that is more robust to these outliers, relies on the smoothed biweight loss, and gives
rise to the problem

minimize
w∈Rd

fsb(w) :=
1

n

n∑
i=1

ϕ(xT
i w − yi), where ϕ(t) =

t2

1 + t2
. (3)

The objective function fsb is C2 and nonconvex.

i) Consider a vector w̄ ∈ Rd such that ∇fsb(w̄) = 0Rd . Explain why this vector is not
necessarily a local minimum of problem (3).

ii) Suppose that the point w̄ from the previous question is not a local minimum of problem (3),
and suppose that we run gradient descent starting from w0 = w̄. Justify that the method
converges to w̄.

iii) To avoid converging towards points like w̄, how should w0 be picked in gradient descent?
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Exercise 3: Stochastic gradient

In this exercise, we consider an optimization problem of the form

minimize
w∈Rd

fsto(w) :=
1

n

n∑
i=1

fsto
i (w), (4)

where fsto
i is C1 for every i = 1, . . . , n. We further assume that every fsto

i depends on the ith
example in a dataset of n elements, with n ≫ 100.

a) Justify that the set of solutions of (4) is identical to that of

minimize
w∈Rd

1

2n

n∑
i=1

fsto
i (w).

b) Write down the iteration of stochastic gradient applied to problem (4) using a constant stepsize.

c) Recall the definition of an epoch. How many iterations of stochastic gradient can be performed
within a budget of one epoch?

d) We suppose that fsto is nonconvex. Under appropriate assumptions, one can show that after

K ≥ 1 iterations, the convergence rate (in expectation) of stochastic gradient is O
(

1
K1/4

)
.

i) What is the convergence rate of gradient descent on a nonconvex problem? Is it better or
worse than that of stochastic gradient?

ii) Suppose that we use a budget of E ≥ 1 epochs. What convergence rate do we obtain for
gradient descent?

iii) Given the same budget of E epochs, what is the convergence rate of stochastic gradient? Is
it better or worse than that of gradient descent?

e) Write down the iteration of batch stochastic gradient applied to problem (4) using a constant
stepsize.

f) Explain how batch stochastic gradient generalizes both gradient descent and stochastic gradient.

g) Suppose that we run batch stochastic gradient methods with the following batch sizes:
{
1, n

128 ,
n
2 , n

}
.

i) When we run each method 10 times, we observe a higher variability in the results for batch
size 1 than for the others. What property of batch methods does this illustrate?

ii) We also observe that the method with batch size n
2 converges more slowly than the variants

with smaller batch size, yet eventually reaches a smaller function value. Explain this behavior.
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Exercise 4: Matrix linear regression

In this exercise, we consider data under the form of two matrices X ∈ Rp×d1 and Y ∈ Rp×d2 . In a
regression context, one considers the following extension of linear regression

minimize
W∈Rd1×d2

fml :=
1

2p
∥XW − Y ∥2F =

1

2p

p∑
ℓ=1

∥Xwℓ − yℓ∥
2
2 , (5)

where wℓ ∈ Rd1 and yℓ ∈ Rp are the ℓth columns of W and Y , respectively.

a) Given ℓ ∈ {1, . . . , p}, we consider the problem

minimize
wℓ∈Rd1

fml
ℓ (wℓ) :=

1

2
∥Xwℓ − yℓ∥

2
2 . (6)

i) Justify that problem (5) has a convex objective.

ii) Write down the iteration of gradient descent for problem (7) using a constant stepsize.

iii) Can stochastic gradient be applied to (7) ? Justify your answer.

b) Suppose that w∗
1, . . . ,w

∗
p are minima of fml

1 , . . . , fml
p , respectively. Justify that the matrix

W ∗ = [w∗
1 · · · w∗

p] is a solution of problem (5).

c) Based on the previous questions, propose an algorithm to solve problem (5).
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Solutions

Solutions for Exercise 1

a) The kth iteration of gradient descent for this problem is given by wk+1 = wk − α∇f log(wk)
where α > 0 is a constant stepsize.

b) With this stepsize, we are guaranteed that f log(wk+1) ≤ f log(wk) at every iteration (with a
strict decrease as long as ∇f log(wk) ̸= 0).

c) One could choose the stepsize a priori as a decreasing sequence {αk} converging to 0. Another
option would be to choose αk in an adaptive fashion, that depends on the current iterate wk

and/or f log.

Note: Only one answer was required.

d) After K ≥ 1 iterations, the iterate wK of gradient descent satisfies

f log(wK)− min
w∈Rd

f log(w) ≤ O
(

1

K

)
.

e) The rate (that applies to the same quantity than in the previous question) would be O(tK) with
t ∈ (0, 1).

f) The rate of accelerated gradient on convex problems is O
(

1
K2

)
.

g) Accelerated gradient consists in combining a gradient step with the previous step taken by the
algorithm, the momentum step.

h) The momentum parameter appearing in accelerated gradient must be set differently for convex
problems and for strongly convex problems.

Solutions for Exercise 2

a) Classical linear regression

i) For everyw ∈ Rd, f lin(w) ≥ 0 because it is a sum of squares. As a result,minw∈Rd f lin(w) ≥
0, with equality if and only if it exists w∗ such that Xw∗ − y = 0.

ii) By convexity, all local minima of the problem are global minima.

iii) If f lin is µ-strongly convex, the set of solutions of the problem consists of a single element.

b) Smoothed biweight loss problem

i) Since the function is nonconvex, a point with zero gradient is not necessarily a local minimum.
It could be a saddle point or a global minimum.

ii) If w0 = w̄, then ∇fsb(w0) = 0, and thus w1 = w0 − α0∇fsb(w0) = w0. It follows that
all iterates are equal to w̄, hence the method converges to w̄.

iii) Picking w0 at random in Rd avoids points with zero gradients that are not local minima.
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Solutions for Exercise 3

a) Multiplying the objective function by a positive constant does not change the set of solutions.
Indeed,

w∗ ∈ argmin
w∈Rd

1

n

n∑
i=1

fsto
i (w) ⇔ 1

n

n∑
i=1

fsto
i (w∗) ≤ 1

n

n∑
i=1

fsto
i (w) ∀w ∈ Rd

⇔ 1

2n

n∑
i=1

fsto
i (w∗) ≤ 1

2n

n∑
i=1

f sto
i (w) ∀w ∈ Rd

⇔ w∗ ∈ argmin
w∈Rd

1

n

n∑
i=1

fsto
i (w).

b) wk+1 = wk − α∇fik(wk), where α > 0 and ik is an index drawn randomly in {1, . . . , n}.

c) An epoch is a unit of cost corresponding to n accesses to data points in a dataset with n elements.
With a budget of one epoch, one can perform n iterations of stochastic gradient.

d) i) The convergence rate of gradient descent is O
(

1
K1/2

)
. It is a better (faster) rate than

stochastic gradient in terms of dependency on K, and it is also deterministic, unlike the rate
in expectation for stochastic gradient.

ii) Since 1 epoch corresponds to the budget of one gradient descent iteration, we obtain the
convergence rate O( 1

E1/2 ).

iii) With a budget of E epochs, we perform nE iterations of stochastic gradient, which yields a

convergence rate in O
(

1
(nE)1/4

)
. For large n and small E, the rate for stochastic gradient

is better (faster) than the rate for gradient descent.

e) wk+1 = wk − α
|Sk|

∑
i∈Sk

∇fi(wk), where Sk is a set of indices drawn randomly with or without

replacement in {1, . . . , n}, and α > 0.

f) Taking |Sk| = 1 corresponds to stochastic gradient, while taking |Sk| = n and drawing without
replacement corresponds to gradient descent.

g) i) This observation illustrates that using a batch is a variance reduction technique.

ii) A variant with large batch typically converges to a smaller neighborhood of the solution,
hence a smaller function value. However, it typically converges more slowly than variants
with smaller batch sizes, because its behavior is close to that of gradient descent.

Solutions for Exercise 4

a) Given ℓ ∈ {1, . . . , p}, we consider the problem

minimize
wℓ∈Rd1

fml
ℓ (wℓ) :=

1

2
∥Xwℓ − yℓ∥

2
2 . (7)

i) The objective function of problem (5) is a sum of convex functions, which is convex.
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ii) Letting wk
ℓ denote the kth iterate of gradient descent applied to problem (7), we have

wk+1
ℓ = wk

ℓ − α∇fml
ℓ (wk

ℓ ),

where α > 0.

iii) Problem (7) is a finite-sum problem, and thus stochastic gradient can be applied to this
problem.

b) The objective function of problem (5) can be rewritten as f(W ) = 1
p

∑p
ℓ=1 f

ml
ℓ (wℓ), where wℓ

is the ℓth column of W . If w∗
1, . . . ,w

∗
p are minima of fml

1 , . . . , fml
p , respectively, it follows that

fml
ℓ (w∗

ℓ ) ≤ fml
ℓ (wℓ) for any wℓ and any ℓ = 1, . . . , p. As a result, one also has f(W ∗) ≤ f(W )

for every W , showing that the matrix W ∗ = [w∗
1 · · · w∗

p] is a solution of problem (7).

c) An algorithm for problem (5) could consist in running p variants of gradient descent on all
problems of the form (7).


