
Optimization for Machine Learning

Clément W. Royer

Lecture notes - M2 MIAGE ID Apprentissage - 2023/2024

• The last version of these notes can be found at:
https://www.lamsade.dauphine.fr/∼croyer/ensdocs/OML/PolyOML.pdf.

• Comments, typos, etc, can be sent to clement.royer@lamsade.dauphine.fr.
Thanks to the students who sent feedback. Thanks also to Sébastien Kerleau and Florian Le
Bronnec for their feedback.

• Version history:

– 2023.11.21: Fixed typo in Section 3.2.3.

– 2023.11.02: Revised version with significant changes in Chapter 2 (corresponding to the
second lecture and tutorial).

– 2023.08.28: First version of these notes.

• Learning goals:

– Understand the specifics of optimization problems, and the interest of certain formulations
over others.

– Given an optimization problem, select an algorithm well suited for solving the problem.

– Analyze the theoretical and practical properties of a particular algorithm.

– Identify challenges posed by optimization in a data science context, and ways to address
these challenges.

Note: This course was previously taught in M2 MIAGE ID Apprentissage under the name ”Op-
timization for Data and Decision Sciences”.

https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/OML/PolyOML.pdf

Contents

1 Introduction to optimization 4
1.1 About optimization . 4

1.1.1 The optimization process . 4
1.1.2 Modern optimization . 5

1.2 The optimization problem . 6
1.2.1 Mathematical background . 6
1.2.2 First definitions . 10
1.2.3 Convexity . 11

1.3 Optimization algorithms . 13
1.3.1 The algorithmic process . 13
1.3.2 Convergence and convergence rates . 14
1.3.3 Popular optimization packages . 15

2 Data fitting using standard optimization problems 16
2.1 Regression via linear least squares . 17

2.1.1 Linear algebra tools . 17
2.1.2 Linear least-squares optimization . 18
2.1.3 Link with linear regression . 19

2.2 Linear programming . 20
2.2.1 Linear optimization problem . 20
2.2.2 Robust linear regression and linear program 21

3 Unconstrained optimization 22
3.1 Gradient descent . 22

3.1.1 Algorithm . 22
3.1.2 Choosing the stepsize . 24
3.1.3 Theoretical analysis for gradient descent . 25

3.2 Acceleration . 28
3.2.1 Introduction: the momentum principle . 28
3.2.2 Nesterov’s accelerated gradient method . 29
3.2.3 Other accelerated methods . 30

4 Stochastic gradient techniques 32
4.1 Introduction . 32
4.2 Stochastic gradient method . 33

4.2.1 Algorithm . 33

2

Opti. ML - ID App. 2023/2024 3

4.2.2 Convergence rate analysis . 34
4.3 Variance reduction . 37

4.3.1 Batch methods . 37
4.3.2 Other variance reduction techniques . 38

4.4 Stochastic gradient methods for deep learning . 39
4.4.1 Stochastic gradient with momentum . 39
4.4.2 AdaGrad . 40
4.4.3 RMSProp . 40
4.4.4 Adam . 41

4.5 Conclusion . 41

5 Nonsmooth optimization and regularization 43
5.1 Introductory example: The perceptron method . 43
5.2 Nonsmooth optimization . 44

5.2.1 From nonsmooth functions to nonsmooth problems 44
5.2.2 Subgradient methods . 45

5.3 Regularization . 46
5.3.1 Regularized problems . 46
5.3.2 Sparsity-inducing regularizers . 47
5.3.3 Proximal methods . 47

5.4 Conclusion . 49

Appendix A Notations and mathematical tools 52
A.1 Notations . 52

A.1.1 Generic notations . 52
A.1.2 Scalar and vector notations . 52
A.1.3 Matrix notations . 53

A.2 Mathematical tools . 54
A.2.1 Vector linear algebra . 54
A.2.2 Matrix linear algebra . 56
A.2.3 Calculus . 58

A.3 Probability theory . 61
A.3.1 Random variables . 61
A.3.2 Pair of random variables . 62
A.3.3 Random vectors . 64

Chapter 1

Introduction to optimization

1.1 About optimization

Optimization is a field of study that is concerned with making the best possible decision out of a set
of alternatives. Mathematical optimization provides a framework to model optimization problems
using mathematical language. We provide below a broad definition of optimization problems in the
mathematical sense, and connect it to the concept of solving such a problem.

1.1.1 The optimization process

Most optimization problems are readily formulated in plain language, and it can be difficult to extract
the core ideas behind the optimization task. On the contrary, a mathematical optimization problem
is a well-identified object, that corresponds to the following definition.

Definition 1.1.1 A mathematical optimization problem consists of three key components:

• An objective function, that quantifies the quality of a decision. If a better decision yields a
smaller objective value, the problem is called a minimization problem. On the other hand, if a
better decision yields a larger objective value, the problem is called a maximization problem.

• A number of decision variables: those are the knobs that can be turned to change the decision
and, as a result, the value of the objective function. The goal of optimization is to determine
what are the best (optimal) values of the decision variables relatively to the objective function.

• A set of constraints, that specify requirements on the decision variables that must be satisfied
for the decision to be valid.

An optimization procedure consists in minimizing or maximizing an objective function with respect
to the decision variables subject to constraints on those variables.

Remark 1.1.1 In practice, many optimization problems are subject to hidden or implicit constraints,
that may not appear in the optimization formulation yet can have a significant effect on an algorithm’s
performance. The absence of these constraints in the formulation may be due to misspecification
(not including a positivity constraint for a variable corresponding to a mass, for instance), but this
phenomenon often has a more subtle cause. In simulation-based optimization, where the objective
function corresponds to running expensive computational codes, an error may be triggered by certain

4

Opti. ML - ID App. 2023/2024 5

values of the decision variables that may not be known a priori. Such constraints must then be
addressed by an algorithm in real time.

Any concrete problem goes through a modeling phase that produces a mathematical optimiza-
tion problem. In order to solve this problem, we then use optimization algorithms, often designed
to be implemented and run on a computer. Such methods typically output a candidate solution (or,
possibly, that no solution exists), which may or may not form an appropriate answer to the problem.
If needed, the optimization process can go over another modeling phase followed by another solve.
In practice, it is typical that the optimization process includes a discussion phase with experts from
the application domain.

Remark 1.1.2 Numerical optimization typically obeys the following principles:

• There is no universal algorithm. Every method can be efficient on a certain class of problems
and perform poorly on another class. Studying the structure of a problem of interest helps in
choosing the best algorithm for solving this problem.

• There may be a big gap between theory and practice. Finite-precision arithmetic can introduce
round-off errors that result in worse practical performance than what the theory predicts.
Conversely, theory (such as complexity bounds introduced below) can be overly pessimistic,
and much better results can be observed in practice.

• Theory informs practice, and vice-versa. For most optimization problems, one can use math-
ematical formulas to assess whether a solution has been found: these expressions are at the
heart of most of the methods we will describe in this course. More broadly, theoretical guaran-
tees can help guiding the optimization process beyond pure heuristics and guesses. Meanwhile,
some algorithms have demonstrated success without being endowed with theoretical proper-
ties: such phenomena are common, and motivate researchers to explain this behavior using
mathematical tools.

1.1.2 Modern optimization

Numerical optimization started during the 1940s. Major theoretical advances were achieved during
the 1980s, along with significant algorithmic developments, that leverage the limited computing
power of this era. The next two decades saw the rise of computing power, leading to numerous
successes of optimization techniques. This trend continues to this day, albeit with a key change of
paradigm.

Indeed, as data becomes more prevalent, optimization problems now involve massive amounts
of data in the calculation of their objective. In addition to the challenges posed by the use of such
datasets, possibly in a distributed fashion, other difficulties arise due to the fact that the solutions
of these problems must generalize to yet unseen data.

In this course, we will go on a tour d’horizon of optimization problems and algorithms, with a
focus on methods that have been successful in classical industrial settings as well as new paradigms
such as machine learning. Our presentation will cover theoretical, algorithmic and practical aspects.

6 Opti. ML - ID App. 2023/2024

1.2 The optimization problem

We now introduce the mathematical foundations behind optimization. As a field of study, optimiza-
tion is defined as the process of making the best decision out of a set of alternatives.

Mathematically, we write an optimization problem using three components:

• An objective function, i.e. a criterion that measures how good a given decision is, that we
want to minimize or maximize depending on the context;

• Decision variables, that represent the knobs we can turn to change the decision;

• Constraints, i.e. conditions that the decision variables must satisfy in order for the decision
to be acceptable.

The general form of the optimization problems considered in these notes will be the following

minimize
w∈Rd

f(w) subject to w ∈ F . (1.2.1)

In problem (1.2.1), f is the objective function (that we want to minimize), w is the vector of decision
variables defined over a definition set Rd, and F is a set encompassing all the constraints on the
decision variables. This set is called the feasible set, and is often described using mathematical
expressions.

There are multiple ways of formulating an optimization problem given a description of this problem
in plain language: constraints can be expressed in the definition set or in the objective, maximization
can be preferred over minimization, redundant constraints can be added to the problem, etc. Some
formulations will be well suited for theoretical analysis, while others will be efficiently solvable by
modern software.

Definition 1.2.1 Two mathematical optimization problems are called equivalent if the solution of
one is readily obtained from the solution of the other, and vice-versa.

For instance, the minimization problem (1.2.1) has an equivalent reformulation as a maximization
problem when f : Rd → R (i.e. f outputs numerical values):

maximize
w∈Rd

−f(w) subject to w ∈ F .

1.2.1 Mathematical background

Optimization draws from several fields of mathematics, mostly pertaining to linear algebra, topology
and differential calculus. We briefly review the key definitions below.

We will always consider Rd and Rn×d as endowed with their canonical normed vector space
structure; in particular, this means that we will be able to add two vectors (or two matrices), and to
multiply a vector (or a matrix) by a scalar value. It also implies that we can measure the distance
between two elements of these spaces using norms, the most classical of which is defined below.

Definition 1.2.2 (Euclidean norm on Rd) The Euclidean norm (or ℓ2 norm) of a vector w ∈ Rd

is given by:

∥w∥ :=

√√√√ d∑
i=1

w2
i .

Opti. ML - ID App. 2023/2024 7

Definition 1.2.3 (Scalar product on Rd) The scalar product is defined for every w, z ∈ Rd by:

wTz :=
d∑

i=1

wi zi.

One thus has wTz = zTw and wTw = ∥w∥2.

There are natural counterparts to the Euclidean norm and its associated scalar product in a
matrix space.

Definition 1.2.4 (Frobenius norm) For any matrix A ∈ Rn×d, the Frobenius norm is defined by

∥A∥F :=

√√√√ n∑
i=1

d∑
j=1

A2
ij =

√
trace(ATA).

The associated scalar product is the mapping

(A,B) ∈
(
Rn×d

)2
7−→ trace(ATB).

In this course, we will mainly rely on Euclidean norms to measure distance between vectors, and
algorithmic behavior. However, other norms will be used.

Definition 1.2.5 (ℓ1 norm) The ℓ1 norm of a vector w ∈ Rd is defined by:

∥w∥1 :=
d∑

i=1

|wi|.

Both the ℓ1 and ℓ2 norms are special cases of the ℓp norm, defined for any p ∈ [1,∞) by

∀w ∈ Rd, ∥w∥p :=

[
d∑

i=1

|wi|p
]1/p

.

Definition 1.2.6 (ℓ∞ norm) The ℓ∞ norm of a vector w ∈ Rd is defined by:

∥w∥∞ := max
1≤i≤d

|wi|.

Remark 1.2.1 Interestingly, all norms can be defined as optimal values of optimization problems.
This is clear from the definition of the ℓ∞ norm. Below are two optimization problems that yield
this optimal value:

maximize
i∈R

|wi| s.t. i ∈ {1, . . . , d}.

maximize
v∈R

|v| s.t. v ∈ {w1, . . . , wd}.

Notice that these two problems do not have the same decision variables or constraints, however they
both possess a combinatorial structure. 1

1By convention, in these notes, we will always consider optimization problems with real, continuous decision variables.
As illustrated by the ℓ∞ examples, it is indeed possible to model a discrete decision-making problem using continuous
formulations. Our focus in these notes in on continuous optimization problems.

8 Opti. ML - ID App. 2023/2024

Definition 1.2.7 (Matrix inversion) A matrix A ∈ Rd×d is invertible if it exists B ∈ Rd×d such
that BA = AB = Id, where Id is the identity matrix of Rd×d.

In this case, B is the unique matrix with this property: B is called the inverse matrix of A, and
is denoted by A−1.

Definition 1.2.8 (Positive (semi-)definiteness) A symmetric matrixA ∈ Rd×d is positive semidef-
inite if

∀x ∈ Rn, xTAx ≥ 0.

It is called positive definite when xTAx > 0 for every nonzero vector x.

Definition 1.2.9 (Eigenvalues and eigenvectors) Let A ∈ Rd×d. A real λ is called an eigenvalue
of A if

∃v ∈ Rd, ∥v∥ ≠ 0, Av = λv.

The vector v is then called an eigenvector of A associated to the eigenvalue λ.

Theorem 1.2.1 Any symmetric matrix in Rd×d possesses d real eigenvalues.

Notation 1.2.1 Given two symmetric matrices (A,B) ∈ Rd×d, we introduce the following nota-
tions:

• λmin(A)/λmax(A): smallest/largest eigenvalue of A;

• A ⪰ B ⇔ λmin(A) ≥ λmax(B);

• A ≻ B ⇔ λmin(A) > λmax(B).

Following these notations, a matrix A is positive semi-definite (resp. positive definite) if and
only if A ⪰ 0 (resp. A ≻ 0).

Differential calculus We will mostly consider minimization problems involving a smooth objective
function: the term “smooth” can be loosely defined in the optimization or learning literature, but
generally means that the function is as regular as needed for the desired algorithms and analysis
to be applicable. In these notes, we will consider that a smooth function is at least continuously
differentiable.

Definition 1.2.10 (Continuous function) A function f : Rd → Rm is continuous at w ∈ Rd if for
every ϵ > 0, it exists δ > 0 such that

∀v ∈ Rd, ∥v −w∥ ≤ δ =⇒ ∥f(v)− f(w)∥ ≤ ϵ.

Definition 1.2.11 (Lipschitz continuous function) A function f : Rd → Rm is L-Lipschitz con-
tinuous over Rd if

∀(u,v) ∈
(
Rd
)2

, ∥f(u)− f(v)∥ ≤ L ∥u− v∥,

where L > 0 is called a Lipschitz constant.

Opti. ML - ID App. 2023/2024 9

Note that every Lipschitz continuous function is continuous.

Derivatives are ubiquitous in continuous optimization, as they allow to characterize the local
behavior of a function. We assume that the reader is familiar with the concept of derivative of a
function from R → R. A function f : Rd → R is called differentiable at w ∈ Rd if all its partial
derivatives at w exist.

Definition 1.2.12 (Classes of functions) • A function f : Rd → R is continuously differen-
tiable if its first-order derivative exists and is continuous. The set of continously differentiable
functions is denoted by C1(Rd).

• A function f : Rd → R is twice continuously differentiable if f ∈ C1(Rd), its second-order
derivative of f exists and is continuous. The set of twice continously differentiable functions
is denoted by C2(Rd).

Definition 1.2.13 (First-order derivative) Let f ∈ C1(Rd) be a continuously differentiable func-
tion. For any w ∈ Rd, the gradient of f at w is given by

∇f(w) :=

[
∂f

∂wi
(w)

]
1≤i≤d

∈ Rd.

Definition 1.2.14 (Second-order derivative) Let f ∈ C2(Rd) be a twice continuously differen-
tiable function. For any w ∈ Rd, the Hessian of f at w is given by

∇2f(w) :=

[
∂2f

∂wi∂wj
(w)

]
1≤i,j≤d

∈ Rd×d.

The Hessian matrix is symmetric.

Finally, we define an important class of problems involving a Lipschitz continuity assumption.

Definition 1.2.15 (Smooth functions with Lipschitz derivatives) • Given L > 0, the set
C1,1L (Rd) represents the set of all functions f : Rd → R that belong to C1(Rd) such that ∇f
is L-Lipschitz continuous.

• Given L > 0, the set C2,2L (Rd) represents the set of all functions f : Rd → R that belong to
C2(Rd) such that ∇2f is L-Lipschitz continuous.

An important property of such functions is that one can derive upper approximations on their
values, as shown by the following theorem.

Theorem 1.2.2 (First-order Taylor expansion) Let f ∈ C1,1
L (Rd) with L > 0. For any vectors

w, z ∈ Rd, one has:

f(z) ≤ f(w) +∇f(w)T(z −w) +
L

2
∥z −w∥2. (1.2.2)

10 Opti. ML - ID App. 2023/2024

1.2.2 First definitions

Having defined an optimization problem as a mathematical object, we are now able to consider
solving this problem. For simplicity, we will focus on minimization problems of the form:

minimize
w∈Rd

f(w) s.t.w ∈ F , (1.2.3)

with f : Rd → R and F ⊆ Rd. Similar definitions hold for maximization problems.

Definition 1.2.16 (Feasible point) A point w ∈ Rd is called a feasible point of the optimization
problem (1.2.3) if w ∈ F .

If w ̸∈ F , we say that w is infeasible. If F is empty, the problem (1.2.3) is said to be infeasible.
For some optimization problems, the objective function may not be defined at infeasible points.

A solution of problem (1.2.3) must be a feasible point by definition. It should also lead to the
best value in terms of cost function, hence the following definition.

Definition 1.2.17 (Global minimum) A point w∗ ∈ Rd is called a solution or a global minimum
of problem (1.2.3) if

1. w∗ is feasible, i.e. w∗ ∈ F ;

2. f(w∗) ≤ f(w) for any feasible point w ∈ F .

The set of global minima of problem (1.2.3) will be denoted by

argmin
w∈Rd

{f(w) | w ∈ F} ⊂ Rd, (1.2.4)

and the minimal value of the problem will be defined as

min
w∈Rd

{f(w) | w ∈ F} ∈ R ∪ {−∞,+∞}. (1.2.5)

By convention, if f is unbounded below on F ̸= ∅, the minimal value is set to −∞, while it is set
to +∞ if the problem is infeasible.

Definition 1.2.18 (Local minimum) A pointw∗ ∈ Rd is called a local minimum of problem (1.2.3)
if

1. w∗ is feasible, i.e. w∗ ∈ F ;

2. There exists ϵ > 0 such that f(w∗) ≤ f(w) for any feasible point w ∈ F close to w∗ in the
sense that ∥w −w∗∥ ≤ ϵ.

The notion of local minimum is weaker than that of global minimum. In practice, however,
it is often more reasonable to seek local minima, as those can be characterized by mathematical
conditions.

Opti. ML - ID App. 2023/2024 11

Optimality conditions In general, finding global or even local minima is a hard problem. For this
reason, researchers in optimization have developed optimality conditions. These are mathematical
expressions that can be checked at a given point (unlike the conditions above) and help assessing
whether a given point is a local minimum or not.

minimize
w∈Rd

f(w), (1.2.6)

Theorem 1.2.3 (First-order necessary condition) Suppose that the objective function f in prob-
lem (1.2.6) belongs to C1(Rd). Then,

[w∗ is a local minimum of f] =⇒ ∥∇f(w∗)∥ = 0. (1.2.7)

Note that this condition is only necessary: there may exist points with zero gradient that are not
local minima. Indeed, the set of points with zero gradient, called first-order stationary points, also
includes local maxima and saddle points2.

Provided we strengthen our smoothness requirements on f , we can establish stronger optimality
conditions for problem (1.2.6).

Theorem 1.2.4 (Second-order necessary condition) Suppose that the objective function f in
problem (1.2.6) belongs to C2(Rd). Then,

[w∗ is a local minimum of f] =⇒
[
∥∇f(w∗)∥ = 0 and ∇2f(w∗) ⪰ 0

]
. (1.2.8)

From Theorem 1.2.3, first-order stationary points that violate the condition ∇2f(w∗) ⪰ 0 cannot
be local minima. This new condition is thus more precise than the first-order condition, although it
remains a necessary. For an arbitrary function, there may exist points with zero gradient and positive
semidefinite Hessian (termed second-order stationary points) that are not local minima.

On the other hand, and unlike first-order conditions, it is possible to derive a sufficient version
of the second-order optimality conditions, that can be used to certify local optimality.

Theorem 1.2.5 (Second-order sufficient condition) Suppose that the objective function f in
problem (1.2.6) belongs to C2(Rd). Then,[

∥∇f(w∗)∥ = 0 and ∇2f(w∗) ≻ 0
]
=⇒ [w∗ is a local minimum of f] (1.2.9)

By exploiting the second-order derivative, it is thus possible to certify whether a point is a local
minima (note that there could be local minima such that ∇2f(w∗) ⪰ 0). With further assumptions
on the structure of the problem, these optimality conditions can be more informative about minima.
This is the case when the objective function is convex: we detail this property in the next section.

1.2.3 Convexity

Convexity is at its core a geometric notion: before defining what a convex function is, we describe
the corresponding property for a set.

2A vector is a saddle point of a function if it is a local minimum with respect to certain directions and a local
maximum with respect to other directions of the space.

12 Opti. ML - ID App. 2023/2024

Definition 1.2.19 (Convex set) A set C ∈ Rd is called convex if

∀(u,v) ∈ C2, ∀t ∈ [0, 1], tu+ (1− t)v ∈ C.

Example 1.2.1 (Examples of convex sets) The following sets are convex:

• Rd;

• Every line segment of the form {tw|t ∈ R} for some w ∈ Rd;

• Every (Euclidean) ball of the form
{
w ∈ Rd

∣∣∣ ∥w∥22 =∑d
i=1[w]2i ≤ 1

}
.

We now provide the basic definition of a convex function.

Definition 1.2.20 (Convex function) A function f : Rd → R is convex if

∀(u,v) ∈ (Rd)2, ∀t ∈ [0, 1], f(tu+ (1− t)v) ≤ t f(u) + (1− t) f(v). (1.2.10)

Example 1.2.2 The following functions are convex :

• Linear functions of the form w 7→ aTw + b, with a ∈ Rd and b ∈ R;

• Squared Euclidean norm: w 7→ ∥w∥22 = wTw.

If we consider differentiable functions, it is possible to characterize convexity using the derivatives
of the function.

Theorem 1.2.6 Let f : Rd → R be an element of C1(Rd). Then, the function f is convex if and
only if

∀u,v ∈ Rd, f(v) ≥ f(u) +∇f(u)T(v − u). (1.2.11)

Theorem 1.2.7 Let f : Rd → R be an element of C2(Rd). Then, the function f is convex if and
only if

∀w ∈ Rd, ∇2f(w) ⪰ 0. (1.2.12)

Convex functions are particularly suitable for minimization problems as they satisfy the following
property.

Theorem 1.2.8 If f is a convex function, then every local minimum of f is a global minimum.

If the function is differentiable, the optimality conditions as well as the characterization of con-
vexity lead us to the following result.

Corollary 1.2.1 If f is continuously differentiable, every point w∗ such that ∥∇f(w∗)∥ = 0 is a
global minimum of f .

Opti. ML - ID App. 2023/2024 13

Strong convexity The results above can be further improved by assuming that a convex function
is strongly convex, as defined below.

Definition 1.2.21 (Strongly convex function) A function f : Rd → R in C1 is µ-strongly convex
(or strongly convex of modulus µ > 0) if for all (u,v) ∈ (Rd)2 and t ∈ [0, 1],

f(tu+ (1− t)v) ≤ t f(u) + (1− t)f(v)−µ

2
t(1− t)∥v − u∥2.

Theorem 1.2.9 Any strongly convex function has a unique global minimizer.

As for convex functions, there exist characterizations of strong convexity that involve derivatives.

Theorem 1.2.10 Let f : Rd → R be an element of C1(Rd). Then, the function f is µ-strongly
convex if and only if

∀u,v ∈ Rd, f(v) ≥ f(u) +∇f(u)T(v − u)+
µ

2
∥v − u∥2. (1.2.13)

Theorem 1.2.11 Let f : Rd → R be an element of C2(Rd). Then, the function f is µ-strongly
convex if and only if

∀w ∈ Rd, ∇2f(w) ⪰ µI. (1.2.14)

1.3 Optimization algorithms

The field of optimization can be broadly divided into three categories:

• Mathematical optimization is concerned with the theoretical study of complex optimization
formulations, and the proof of well-posedness of such problems (for instance, prove that their
exist solutions);

• Computational optimization deals with the development of software that can solve a family of
optimization problems, through careful implementation of efficient methods;

• Algorithmic optimization lies in-between the previous two categories, and aims at proposing
new algorithms that address a particular issue, with theoretical guarantees and/or validation
of their practical interest.

These notes cover material from the third category of optimization activities. The design of opti-
mization algorithms (also called methods, or schemes) is a particularly subtle process, as an algorithm
must exploit the theoretical properties of the problem while being amenable to implementation on a
computer.

1.3.1 The algorithmic process

Most numerical optimization algorithms do not attempt to find a solution of a problem in a direct
way, and rather proceed in an iterative fashion. Given a current point, that represents the current
approximation to the solution, an optimization procedure attempts to move towards a (potentially)
better point: to this end, the method generally requires a certain amount of calculation.

Suppose we apply such a process to the problem minw∈Rd f(w), resulting in a sequence of
iterates {wk}k. Ideally, these iterates obey one of the scenarios below:

14 Opti. ML - ID App. 2023/2024

1. The iterates produced get increasingly close to a solution, i. e.

∥wk −w∗∥ → 0 when k →∞.

Although w∗ is generally not known in practice, such results can be guaranteed by the theory,
for instance on strongly convex problems.

2. The function values associated with the iterates get increasingly close to the optimum, i. e.

f(wk)→ f∗ when k →∞,

As for the case above, f∗ may not be known, but it can still be possible to prove convergence
for certain algorithms and function classes (typically strongly convex, smooth functions).

3. The first-order optimality condition gets close to being satisfied, that is, f ∈ C1(Rd) and

∥∇f(wk)∥ → 0 when k →∞.

Out of the three conditions, the last one is the easiest to track as the algorithm unfolds: it is,
however, only a necessary condition, and does not guarantee convergence to a local minimum for
generic, nonconvex functions. On the other hand, the first two conditions can only be measured
approximately (by looking at the behavior of the iterates and enforcing decrease in the function
values), but lead to stronger guarantees.

1.3.2 Convergence and convergence rates

The typical theoretical results that optimizers aim at proving for algorithms are asymptotic, as shown
above: they only provide a guarantee in the limit. In practice, one may want to obtain more precise
guarantees, that relate to a certain accuracy target that the practitioner would like to achieve. This
led to the development of global convergence rates.

Example 1.3.1 (Global convergence rate for the gradient norm) Given an algorithm applied to
minw∈Rd f(w) that produces a sequence of iterates {wk}, we say that the method is O(1/k) for
the gradient norm, or ∥∇f(wk)∥ = O

(
1
k

)
if

∃C > 0, ∥∇f(wk)∥ ≤
C

k
∀k.

Such rates allow to quantify how much effort (in terms of iterations) is needed to reach a certain
target accuracy ϵ > 0. This leads to the companion notion of worst-case complexity bound.

Example 1.3.2 (Worst-case complexity for the gradient norm) Given an algorithm applied to
minw∈Rd f(w) that produces a sequence of iterates {wk}, we say that the method has a worst-case
complexity of O

(
ϵ−1
)
for the gradient norm if

∃C > 0, ∥∇f(wk)∥ ≤ ϵ when k ≥ C

ϵ
.

Such results are quite common in theoretical computer science or statistics, which partly explain
their popularity in machine learning. In optimization, they have been developed for a number of
years in the context of convex optimization but have only gained momentum in general optimization
over the last decade.

Opti. ML - ID App. 2023/2024 15

1.3.3 Popular optimization packages

Although a thorough numerical study is out of the scope of this course, we briefly mention popular
choices for implementing optimization methods, either for industrial use or as research prototypes.

The most popular programming languages for optimization are C/C++/Fortran for high per-
formance implementations, with Python and Julia raising increasing interest. The use of MAT-
LAB/Octave is also widespread throughout the optimization community for prototyping (i.e. rapid
and simple validation of an implementation), along with Python and Julia,

In addition to programming languages, optimizers have developed modeling languages that help
bringing the code and the mathematical formulation of a problem closer. The broad-spectrum lan-
guages GAMS/AMPL/CVX are reknown examples; other languages, that are more domain-oriented,
include MATPOWER and PyTorch.

Finally, there are many commercial solvers available, with CPLEX and Gurobi being arguably
some of the most efficient for certain classes of problems. Some of those solvers are implemented in
standard tools such as Microsoft Excel. Open-source codes are also quite popular, again fueled by
the massive production of such implementations in the learning community. As far as optimization
is concerned, the COIN-OR platform provides a good interface to all of these methods.

Chapter 2

Data fitting using standard
optimization problems

In this chapter, we tackle the problem of fitting a linear model to some given data through the
lens of two classical optimization formulations: linear least squares and linear programming. Those
classes of optimization problems have been widely studied and are considered to be solvable for a
large number of variables, yet modern data science problems challenge this conventional wisdom,
partly because of the importance of the data defining the problem.

Motivation: linear models We consider a dataset of n elements (samples, individuals, etc). Each
element possesses d features, represented by numerical values and gathered in a vector in Rd. Letting
x1, . . . ,xn be these vectors, we consider the data matrix:

X =

 xT
1
...
xT
n

 ∈ Rn×d. (2.0.1)

In a supervised learning setup, each vector xi is mapped to a label yi ∈ R, resulting in a vector
y ∈ Rn. Our goal is then to find a relationship between the characteristics in X and the labels y.
The most simple relationship that can be thought of is linear: we thus seek a mapping h : Rd → R
of the form h(x) = xTw such that

h(xi) = xT
i w = yi ∀i = 1, . . . , n ⇔ Xw = y.

This is a linear system of equations, but there is no a priori guarantee that this system always
possesses a solution, and the problem cannot be reduced to that of solving a linear system. In
this chapter, we consider the (often more realistic) objective of finding h/w that minimizes some
function ϕ(Xw − y), where ϕ will typically be a norm function. The subsequent sections focus on
two variants of this problem, and motivate the interest of linear least squares and linear programming,
respectively. We will be able to formulate and provide a solution for this problem using the tools
from linear algebra presented in the next section.

16

Opti. ML - ID App. 2023/2024 17

2.1 Regression via linear least squares

Linear least squares are a particular class of (quadratic) optimization programs that are particularly
useful for data fitting. They bear a close connection with linear systems and, as such, are able
to leverage the power of linear algebra. In addition, they are related to statistical tasks such as
maximum likelihood estimation, which is why linear least-squares problems are sometimes called (ℓ2)
linear regression problems.

2.1.1 Linear algebra tools

Square matrices are characterized by their eigenvalues: those are particularly useful to express solu-
tions of linear systems (by inversion, for instance).

Definition 2.1.1 (Eigenvalue) Let X ∈ Rd×d. A value λ ∈ C is called an eigenvalue of X if

∃v ∈ Rn,v ̸= 0n, Xv = λv.

Such a vector v is called an eigenvector associated with the eigenvalue λ.

Eigenvectors and eigenvalues provide key information on the behavior of a square matrix, and on
the way it acts on vectors in Rd. In a very important case recalled below, we can express X as a
diagonal operation on eigenvectors.

Theorem 2.1.1 (Spectral decomposition) Let X ∈ Rd×d be a symmetric matrix. Then, there
exists a matrix decomposition of X called spectral decomposition of the form

X = PΛP−1,

where P ∈ Rd×d is an orthogonal matrix with columns p1, . . . ,pn form an orthonormal basis of
eigenvectors, and Λ ∈ Rn×n is a diagonal matrix with the d eigenvalues of X denoted by λ1, . . . , λn

on the diagonal.

Consider now an arbitrary, rectangular matrix X ∈ Rn×d: the notion of eigenvector no longer
makes sense here, since the dimensions of Xv and v (for any v ∈ Rd) may not agree. However,
both matrices XTX and XXT are real symmetric matrices, and therefore the spectral theorem
applies. Combining those two decompositions (plus additional manipulations) leads to a more general
decomposition of X.

Theorem 2.1.2 (Singular value decomposition) Any matrix X ∈ Rn×d has a singular value
decomposition (or SVD) of the form

X = UΣV T,

where U ∈ Rn×n is orthogonal (UTU = UTU = In), V ∈ Rd×d is orthogonal (V TV = V V T =
Id), and Σ ∈ Rn×d satisfies Σij = 0 if i ̸= j and Σii ≥ 0.

The set of values {[Σ]ii}i=1,...,min{n,d} is called the set of singular values of X. The maximum
index r ≤ min{n, d} such that [Σ]ii > 0 is called the rank of X.

The SVD is instrumental to image and signal compression, and has also proven quite useful in
matrix optimization problems. In the context of least squares (and linear systems of equations), it
allows to define an operator that “inverts” the matrix X.

18 Opti. ML - ID App. 2023/2024

Theorem 2.1.3 (Pseudo-inverse) Let X ∈ Rn×d and UΣV T be a singular value decomposition
of the matrix X, with Σ ∈ Rm×n being of the form

σ1 0 · · · 0 0

0
. . . 0

...
0 · · · 0 σr 0

0 · · · · · · 0

with σ1 ≥ · · · ≥ σr > 0 (thus rank(X) = r).

The pseudo-inverse of X is given by

X† = V Σ†UT, (2.1.1)

where Σ† ∈ Rn×m is the pseudo-inverse Σ defined explicitly by

Σ† =

1
σ1

0 · · · 0 0

0
. . . 0

...
0 · · · 0 1

σr
0

0 · · · · · · 0

 .

This operator can be used to compute solutions of linear least-squares problems, as highlighted
in the next section.

2.1.2 Linear least-squares optimization

As explained in the introduction of this chapter, we are given data under the form (X,y) where
X ∈ Rn×d and y ∈ Rn, and our goal consists in finding a vector w ∈ Rd such that Xw − y ≈ 0.
We would like the vector Xw− y to be as close as possible to zero: an optimization formulation is
particularly well suited for such a problem, and this gives rise to the following definition.

Definition 2.1.2 (Linear least squares) A linear least-squares optimization problem is of the
form

min
w∈Rd

1

2
∥Xw − y∥2 = 1

2

n∑
i=1

(xT
i w − yi)

2, (2.1.2)

where X ∈ Rn×d and y ∈ Rn represent the problem data.

Note that the factor 1
2 is introduced for normalization purposes, and does not affect the solution

set of the problem1.
We now express a solution of the problem using the pseudo-inverse formula that we introduced

in the previous section.

Theorem 2.1.4 (Solution of linear least squares) Given problem (2.1.2), we define the vector
w∗ = X†y. The following properties hold:

(i) The vector w∗ is always a solution of the optimization problem (2.1.2).

1For any optimization problem minimizew∈Rd f(w) and any value a > 0, the set of solutions of
minimizew∈Rd a f(w) is identical to that of the original problem.

Opti. ML - ID App. 2023/2024 19

(ii) Among the solutions of the optimization problem, it is the solution of minimal norm, i.e.

∀ŵ ∈ argmin
w

1

2
∥Xw − y∥2 , ∥w∗∥ ≤ ∥ŵ∥.

(iii) If rank(X) = d ≤ n, the vector w∗ is the unique solution to the problem (2.1.2), and it is also
a solution of the linear system Xw = y.

Theorem 2.1.4 implies that solving a linear least-squares problem can be done by computing an
SVD of the data matrix X. As we will see later in these notes, this may be deemed too expensive
in large dimensions, thereby motivating the need for other optimization strategies.

2.1.3 Link with linear regression

Linear regression is a classical paradigm in data analysis, that aims at building a linear model from
a dataset {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ R. It is typically assumed that the data comes from
an underlying linear trend corrupted with noise: there exists w∗ ∈ Rd such that

y = Xw∗ + ϵ,

where ϵ ∈ N (0, I) is a vector with i.i.d. (independent, identically distributed) entries following
a Gaussian distribution (of mean zero and identity covariance matrix). Figure 2.1 illustrates the
behavior of such data samples.

Figure 2.1: Data generated from a linear model corrupted with Gaussian noise.

We seek the most likely value of w∗ given the samples, which is obtained by solving the following
optimization problem:

maximize
w∈Rd

L(y1, . . . , yn;w) :=

[
1√
2π

]m
exp

(
−1

2

m∑
i=1

(xT
i w − yi)

2

)
. (2.1.3)

20 Opti. ML - ID App. 2023/2024

It can be shown (by taking the logarithm and the opposite of the objective function) that prob-
lems (2.1.2) and (2.1.3) are equivalent in the sense of Definition 1.2.1, and thus the solution of the
latter (which involves a highly nonlinear objective) can be found by solving the former (with a much
nicer objective function).

In particular, if we assume that rank(X) = d≪ n, problem (2.1.3) possesses a unique solution,
called the maximum likelihood estimator and given by X†y = (XTX)−1XTy. This estimator
has desirable statistical properties (for instance, it is an unbiased estimator of w∗.

2.2 Linear programming

Linear programming is the most prevalent class of optimization problems, and has numerous appli-
cations such as economics and energy systems. It also offers a simple mathematical model of an
optimization problem, for which it is often easy to draw interpretation from. Finally, large scale
Linear Programs (LPs) are routinely solved by modern software with millions of decision variables.

2.2.1 Linear optimization problem

Definition 2.2.1 (Linear program) A linear optimization problem, or linear program, is an opti-
mization problem where the objective function is linear and the constraint set can be represented
using a set of linear equalities and inequalities.

A linear program is expressed in standard form when it is written as

minimize
w∈Rd

cTw subject to Aw = b, w ≥ 0, (2.2.1)

where A ∈ Rn×d, b ∈ Rn, c ∈ Rd.

By convention, an LP is in standard form regardless of whether the objective is maximized or maxi-
mized, and the nonnegative bounds on w can be applied to some of its components only.

Note that any linear optimization problem has an equivalent reformulation (in the sense of
Definition 1.2.1) in standard form. For instance, the problem

minimize
x∈Rd

cTx subject to Ax ≥ b

is equivalent to
minimize

x∈Rd

s∈Rn

cTx subject to Ax− s = b, s ≥ 0.

Indeed, for any solution x∗ of the former leads to a solution (x∗, s∗ = Ax∗ − b) of the latter.
Conversely, if (x∗, s∗) is a solution of the latter problem, then x∗ is also a solution of the former
problem (in particular, x∗ is feasible because s∗ ≥ 0).

Remark 2.2.1 Not all optimization problems can be reformulated as linear programs, but it can be
quite useful to do so when possible. Indeed, there exist very efficient numerical solvers for linear
programming that can solve problems with a very large number of both variables and constraints.

Remark 2.2.2 Linear programs are typically solved using a great deal of linear algebra. Tools such
as that described in Section 2.1.1 can be employed to solve linear systems arising in the context of
linear programming algorithms.

Opti. ML - ID App. 2023/2024 21

2.2.2 Robust linear regression and linear program

The formulation of Section 2.1.2 usually leads to solutions that are affected by outliers in the data.
An alternative consists in using robust linear regression formulations by replacing the ℓ2 norm with
other norms. We present below the results obtained using the ℓ1 norm.

Definition 2.2.2 Given X ∈ Rn×d and y ∈ Rn, the ℓ1 (linear) regression problem is defined as

minimize
w∈Rd

∥Xw − y∥1 =
n∑

i=1

|xT
i w − yi|. (2.2.2)

Problem (2.2.2) known to produce solutions (and thus, linear models) that are less sensitive to
outliers in the data compared to that obtained with ℓ2 regression. However, the objective function
involves an absolute value, which is not a linear (nor a quadratic) function. Although we will see
ways to tackle such functions in Chapter 5, we discuss here a reformulation of this problem as a
linear program. This reformulation is based on the fact that any real number t can be written as
t = t+− t− with t+ = max{t, 0} ≥ 0 and t− = max{−t, 0} ≥ 0. With that notation, |t| = t++ t−,
i.e. we can write the absolute value as a linear function of t+ and t−. This observation is at the
heart of the reformulation

minimizew∈Rd

t+∈Rn

t−∈Rn

∑n
i=1(t

+
i + t−i)

subject to xT
i w − yi = t+i − t−i ∀i = 1, . . . , n

t+ ≥ 0
t− ≥ 0,

(2.2.3)

which is a linear program. Solving this linear program readily gives the solution of the original
problem (2.2.2) through the vector w, while the optimal value is recovered (with no additional
access to the data!) by

∑n
i=1(t

+
i + t−i).

Chapter 3

Unconstrained optimization

In this chapter, we study more general nonlinear optimization problems of the form

min
w∈Rd

f(w). (3.0.1)

We make the following assumption on the objective function.

Assumption 3.0.1 The objective function f in (3.0.1) is C1,1L (Rd) for L > 0, and bounded below
by flow ∈ R (i.e. f(w) ≥ flow ∀w ∈ Rd).

We will design and analyze algorithms that exploit gradient information to move towards better
points. Our theoretical results will consist in complexity bounds and convergence rates.

3.1 Gradient descent

The gradient descent algorithm is arguably the most classical technique in unconstrained, smooth
optimization. It is based on the following principle, derived from the first-order optimality condi-
tion (1.2.7).

For any vector w ∈ Rd, two cases can occur:

1. Either ∇f(w) = 0 and w is possibly a local minimum (when f is convex, we know that w is
necessarily a global minimum);

2. Or ∇f(w) ̸= 0, and we can show that f must decrease locally in the direction of −∇f(w).

The second property is formalized below, and is at the core of the gradient descent framework.

3.1.1 Algorithm

The gradient descent algorithm is an iterative process wherein every iteration has the following form:

w ← w − α∇f(w), (3.1.1)

where α > 0 is a parameter called stepsize or steplength. When ∇f(w) = 0, note that the
formula (3.1.1) does not change the value of w: this is consistent with the fact that the gradient

22

Opti. ML - ID App. 2023/2024 23

cannot be used to determine a better point in that case. On the contrary, when ∇f(w) ̸= 0, there
will exist values for α leading to a lower function value for the point w − α∇f(w).

Repeated applications of the update (3.1.1) lead to Algorithm 1. This method is called gradient
descent, or (less frequently) steepest descent.1

Algorithm 1: Gradient descent for minimizing the function f .

1 Initialization: Choose w0 ∈ Rd.
2 For k = 0, 1, ...

1. Compute the gradient ∇f(wk).

2. Define a stepsize αk > 0.

3. Set wk+1 = wk − αk∇f(wk).

3 EndFor

Algorithm 1 actually describes a framework rather than a specific method. There exist numerous
variants upon the gradient descent paradigm: we review the main characteristics of these methods
below.

Stopping criterion In practice, an algorithm is often subject to budget requirements (in terms of
arithmetic opterations, running time, iteration number, etc). These limitations are typically enforced
using a stopping criterion. In the context of Algorithm 1, it is typical to terminate the method after
kmax iterations, in which case wkmax is returned as an approximate solution to the problem.

In addition, stopping criteria can be used to check whether the method converged to a solution
of the problem (or an approximation thereof). Such criteria are often based on optimality conditions.
For gradient descent, the most classical criterion is based on the gradient norm: one stops the
algorithm as soon as

∥∇f(wk)∥ < ϵ, (3.1.2)

where ϵ > 0 represents a given, desired accuracy level (the condition becomes more expensive to
satisfy as ϵ gets smaller).

Finally, it is always possible (and often recommended) to add “safety checks”, that stop the
method whenever no visible progress is measured. For instance, if the difference between two suc-
cessive iterates (∥wk+1 −wk∥) is of the order of machine precision, the algorithm is likely stalling
and no further improvement is expected: in that case, it is often better to stop the method.

Choosing the initial point The performance of a given algorithm can be significantly improved
using a suitable starting point. However, finding such a point can be a difficult task without domain
expertise, but if such expertise exists, it should be leveraged to obtain a good initial point that the
method tries to improve upon. Alternatively, one could use several starting points drawn at random
and run a few iterations of gradient descent so as to determine a good starting point.

1The direction of −∇f(wk), i.e. the unit vector −∇f(wk)
∥∇f(wk)∥

(or the zero vector if the gradient is zero) is called the
steepest descent direction.

24 Opti. ML - ID App. 2023/2024

3.1.2 Choosing the stepsize

In this section, we describe the main techniques for selecting the step size sequence in gradient
descent. We provide generic principles, and emphasize that any information about a particular
problem can be extremely valuable in designing a better step size.

Constant step size One of the most common approaches consists in fixing the step size to a single
value for all iterations, i.e. setting αk = α > 0 for all k. Depending on the computational budget,
one could run gradient descent with several values of α and select the best value for future use: this
practice of tuning the step size is commonly adopted in data science problems.

Provided f satisfies Assumption 3.0.1, there exists an interval of values that lead to convergence
of gradient descent. In particular, the choice

αk = α = 1
L , (3.1.3)

where L is the Lipschitz constant for the gradient, is well suited for that problem. Note however that
this choice requires the knowledge of the Lipschitz constant: this information is not always available
in practice.

Decreasing step size Another classical technique for selecting the stepsize consists in defining a
decreasing sequence {αk} such that αk → 0 prior to running the method. This choice can also lead
to converging method, but it risks producing steps that are unnecessarily small in norm. In fact, a
good decreasing strategy should drive αk to 0 quickly enough for convergence, but slowly enough
that the norm of the steps do not approach 0 too rapidly.

Adaptive choice using a line search Line-search techniques are widely used in continuous opti-
mization and scientific computing (though less popular in data science, for reasons that we will detail
in Chapter 4 of these notes). At a given iteration of index k, we seek a stepsize αk that leads to
a decrease in the objective function along a suitably chosen direction (in the case of Algorithm 1,
this would be the direction of −∇f(wk)). An exact line search results in the best possible decrease,
but may be costly to perform. In practice, inexact approaches are preferred: Algorithm 2 details the
most popular of such techniques, called backtracking.

Algorithm 2: Backtracking line search in direction d.

1 Inputs: w ∈ Rd, d ∈ Rd, α0 ∈ Rd.
2 Initialization: Choose α = α0.
3 While f(w + αd) > f(w)
4 α→ α

2 .
5 End
6 Output: α.

The line-search procedure of Algorithm 2 can be used at Step 2 of Algorithm 1 using w = wk,
d = −∇f(wk) and (for instance) α0 = 1 as inputs. Many variants of this simple idea have been
proposed in the literature: those are generally designed to guarantee that a better point (in terms
of the objective function) is found. Still, these techniques require at least one additional function
evaluation per stepsize value (possibly more), leading to an overall more expensive method.

Opti. ML - ID App. 2023/2024 25

3.1.3 Theoretical analysis for gradient descent

In this section, we present several convergence rates for gradient descent, in the case of a smooth
objective function. We will see that the nonconvex, convex and strongly convex cases exhibit different
behavior.

Proposition 3.1.1 Consider the k-th iteration of Algorithm 1 applied to f ∈ C1,1L (Rd), and suppose
that ∇f(wk) ̸= 0. Then, if 0 < αk < 2

L , we have

f(wk − αk∇f(wk)) < f(wk).

In particular, choosing αk = 1
L leads to

f(wk −
1

L
∇f(wk)) < f(wk)−

1

2L
∥∇f(wk)∥2. (3.1.4)

Proof. We use the inequality (1.2.2) with the vectors (wk,wk − αk∇f(wk)) :

f(wk − αl∇f(wk)) ≤ f(wk) +∇f(wk)
T [−αk∇f(wk)] +

L

2
∥ − αk∇f(wk)∥2

= f(wk)− αk∇f(wk)
T∇f(wk) +

L

2
α2
k∥∇f(wk)∥2

= f(wk) +

(
−αk +

L

2
α2
k

)
∥∇f(wk)∥2.

If −αk + L
2α

2
k < 0, the second term on the right-hand side will be negative, thus we will have

f(wk − αl∇f(wk)) < f(wk). Since −αk + L
2α

2
k < 0 ⇔ αk < 2

L and αk > 0 by definition, this
proves the first part of the result.

To obtain (3.1.4), one simply needs to use αk = 1
L in the series of equations above. □

The result of Proposition 3.1.1 will be instrumental to obtain complexity guarantees on Algo-
rithm 1 in three different settings: nonconvex, convex, and strongly convex.

Nonconvex case In the nonconvex case, we aim at bounding the number of iterations required to
drive the gradient norm below some threshold ϵ > 0: this means that we should be able to show
that the gradient norm actually goes below this threshold, which is a guarantee of convergence.

Theorem 3.1.1 (Complexity of gradient descent for nonconvex functions) Let f be a noncon-
vex function satisfying Assumption 3.0.1. Suppose that Algorithm 1 is applied with αk = 1

L . Then,
for any K ≥ 1, we have

min
0≤k≤K−1

∥∇f(wk)∥ ≤ O
(

1√
K

)
. (3.1.5)

Proof. LetK be an iteration index such that for every k = 0, . . . ,K−1, we have ∥∇f(wk)∥ > ϵ.
From Proposition 3.1.1, we have that

∀k = 0, . . . ,K − 1, f(wk+1) ≤ f(wk)−
1

2L
∥∇f(wk)∥2 ≤ f(wk)−

1

2L

(
min

0≤k≤K−1
∥∇f(wk)∥

)2

.

26 Opti. ML - ID App. 2023/2024

By summing across all such iterations, we obtain :

K−1∑
k=0

f(wk+1) ≤
K−1∑
k=0

f(wk)−
K

2L

(
min

0≤k≤K−1
∥∇f(wk)∥

)2

.

Removing identical terms on both sides yields

f(wK) ≤ f(w0)−
K

2L

(
min

0≤k≤K−1
∥∇f(wk)∥

)2

.

Using f(wK) ≥ flow (which holds by Assumption 3.0.1) and re-arranging the terms leads to

min
0≤k≤K−1

∥∇f(wk)∥ ≤
[
2L(f(w0)− flow)

K

]1/2
= O

(
1√
K

)
.

□
Equivalently, we say that the worst-case complexity of gradient descent isO

(
ϵ−2
)
, because for any

ϵ > 0, a reasoning similar to the proof of Theorem 3.1.1 guarantees that min0≤k≤K−1 ∥∇f(wk)∥ ≤ ϵ
after at most ⌈

2L(f(w0)− flow)ϵ
−2
⌉
= O(ϵ−2)

iterations.

Convex/Strongly convex case In addition to Assumption 3.0.1, if we further assume that the
objective is convex or strongly convex, we can show that stronger guarantees than that of the
nonconvex case can be obtained at a lower cost. This improvement illustrates the interest of convex
functions in optimization.

In this paragraph, we let f∗ = minw∈Rd f(w) denote the minimal value of f (note that f∗ ≥ flow)
and we assume that there existsw∗ ∈ Rd such that f(w∗) = f∗ (i.e. the set of minima is not empty).
Given an accuracy threshold ϵ > 0, we are interested in bounding the number of iterations necessary
to reach an iterate wk such that f(wk)− f∗ ≤ ϵ.

Theorem 3.1.2 Convergence of gradient descent for convex functions Let f be a convex function
satisfying Assumption 3.0.1. Suppose that Algorithm 1 is applied with αk = 1

L . Then, for any
K ≥ 1, the iterate wK satisfies

f(wk)− f∗ ≤ O
(

1

K

)
. (3.1.6)

Proof. Let K be an index such that for every k = 0, . . . ,K − 1, f(wk)− f∗ > ϵ.
For any k = 0, . . . ,K − 1, the characterization of convexity (1.2.11) at wk and w∗ gives

f(w∗) ≥ f(wk) +∇f(wk)
T(w∗ −wk).

Combining this property with (3.1.4), we obtain:

f(wk+1) ≤ f(wk)−
1

2L
∥∇f(wk)∥2

≤ f(w∗) +∇f(wk)
T(wk −w∗)− 1

2L
∥∇f(wk)∥2.

Opti. ML - ID App. 2023/2024 27

To proceed onto the next step, one notices that

∇f(wk)
T(wk −w∗)− 1

2L
∥∇f(wk)∥2 =

L

2

(
∥wk −w∗∥2 − ∥wk −w∗ − 1

L
∇f(wk)∥2

)
.

Thus, recalling that wk+1 = wk − 1
L∇f(wk), we arrive at

f(wk+1) ≤ f(w∗) +
L

2

(
∥wk −w∗∥2 − ∥wk −w∗ − 1

L
∇f(wk)∥2

)
= f(w∗) +

L

2

(
∥wk −w∗∥2 − ∥wk+1 −w∗∥2

)
.

Hence,

f(wk+1)− f(w∗) ≤ L

2

(
∥wk −w∗∥2 − ∥wk+1 −w∗∥2

)
. (3.1.7)

By summing (3.1.7) on all indices k between 0 and K − 1, we obtain

K−1∑
k=0

f(wk+1)− f(w∗) ≤ L

2

(
∥w0 −w∗∥2 − ∥wK −w∗∥2

)
≤ L

2
∥w0 −w∗∥2.

Finally, using f(w0) ≥ f(w1) ≥ ... ≥ f(wK) (a consequence of Proposition 3.1.1, we obtain that

K−1∑
k=0

f(wk+1)− f(w∗) ≥ K (f(wK)− f∗) .

Injecting this formula into the previous equation finally yields the desired outcome:

f(wk)− f(w∗) ≤ L∥w0 −w∗∥2

2

1

K
.

□
Equivalently, we say that the worst-case complexity of gradient descent is O

(
ϵ−1
)
, which means

here that there exist a positive constant C (that depends on ∥w0 −w∗∥ and L) such that

f(wK)− flow ≤ ϵ.

after at most Cϵ−1 = O(ϵ−1) iterations.

We now turn to the strongly convex case.

Theorem 3.1.3 Convergence of gradient descent for strongly convex functions Let f be a µ-strongly
convex function satisfying Assumption 3.0.1, with µ ∈ (0, L]. Suppose that Algorithm 1 is applied
with αk = 1

L . Then, for any K ∈ N, we have

f(wk)− f∗ ≤ O
(
(1− µ

L)
k
)
. (3.1.8)

We say that the convergence rate of gradient descent is O
(
(1− µ

L)
k
)
.

28 Opti. ML - ID App. 2023/2024

Proof. We exploit the strong convexity property (1.2.13). For any (x,y) ∈ (Rn)2, we have

f(y) ≥ f(x) +∇f(x)T(y − x) +
µ

2
∥y − x∥2.

Minimizing both sides with respect to y lead to y = w∗ on the left-hand side, and y = x− 1
µ∇f(x)

on the right-hand side2. As a result, we obtain

f∗ ≥ f(x) +∇f(x)T
[
− 1

µ
∇f(x)

]
+

µ

2
∥ − 1

µ
∇f(x)∥2

f∗ ≥ f(x)− 1

2µ
∥∇f(x)∥2.

By re-arranging the terms, we arrive at

∥∇f(x)∥2 ≥ 2µ [f(x)− f∗] , (3.1.9)

which is valid for any x ∈ Rn. Using (3.1.9) together with (3.1.4) thus gives

f(wk+1) ≤ f(wk)−
1

2L
∥∇f(wk)∥2 ≤ f(wk)−

µ

L
(f(wk)− f∗).

This leads to
f(wk+1)− f∗ ≤

(
1− µ

L

)
(f(wk)− f∗),

which we can iterate in order to obtain

f(wK)− f∗ ≤
(
1− µ

L

)K
(f(w0)− f∗).

It then suffices to note that the bound is also valid for K = 0. □
Equivalently, we can show a worst-case complexity result: the method computes wk such that

f(wk)− f∗ ≤ ϵ in at most O(Lµ ln(1ϵ)) iterations.
Similar results can be shown for the criterion ∥wk −w∗∥: in other words, the distance between

the current iterate and the (unique) global optimum decreases at a rate O
(
(1− µ

L)
k
)
.

Remark 3.1.1 Proofs of convergence rates are typically more technical for convex and strongly
convex problems: in order to obtain better bounds than in the nonconvex setting, one must make
careful use of the (strong) convexity inequalities. In this course, we do not focus on these aspects,
but rather draw insights from the final complexity bounds or convergence rates.

3.2 Acceleration

3.2.1 Introduction: the momentum principle

In Section 3.1.3, we derive complexity bounds for the gradient descent algorithm, and we saw in
particular that assuming that the function was convex (respectively, strongly convex) improved the
complexity. These results are called upper complexity bounds, in the sense that they reflect the worst

2This is because the gradient of the quadratic function on the right-hand side with respect to y is ∇f(x)+µ(y−x).
This vector is equal to 0 if and only if y = x− 1

µ
∇f(x)

Opti. ML - ID App. 2023/2024 29

possible convergence rate that this algorithm could exhibit on a given problem. The issue of lower
bounds, that show a rate that cannot be improved upon, has been the subject to a lot of attention,
particularly in the convex optimization community.

For nonconvex optimization, it is known that there exists a function for which gradient descent
converges exactly at the O(1√

K
) rate: in this case, the lower bound matches the upper bound. On the

contrary, for convex functions, the lower bound is actually O(1
K2), which is a sensible improvement

over the bound in O(1
K) of Theorem 3.1.2. There are methods that can achieve this bound, thanks

to an algorithmic technique called acceleration.

The underlying idea of acceleration is that, at a given iteration and given the available information
from previous iterations (in particular, the latest displacement), one can move along a better step
than that given by the current gradient.

3.2.2 Nesterov’s accelerated gradient method

Among the existing methods based on acceleration, the accelerated gradient algorithm proposed
by Yurii Nesterov in 1983 is the most famous, to the point that it has been termed “Nesterov’s
algorithm”.

Algorithm 3: Accelerated gradient method.

1 Initialization: w0 ∈ Rd, w−1 = w0.
2 for k = 0, 1, ... do

1. Compute a steplength αk > 0 and a parameter βk > 0.

2. Compute the new iterate as

wk+1 = wk − αk∇f (wk + βk(wk −wk−1)) + βk(wk −wk−1). (3.2.1)

3 end

Algorithm 3 provides a description of the method. Like the gradient descent method of Sec-
tion 3.1, it requires a single gradient calculation per iteration; however, unlike in gradient descent,
the gradient is not evaluated at the current iterate wk, but at a combination of this iterate with the
previous step wk −wk−1: this term is called the momentum term, and is key to the performance
of accelerated gradient techniques.

Another view of the accelerated gradient descent is that of a two-loop recursion: given w0 and
z0 = w0, the update (3.2.1) can be rewritten as{

wk+1 = zk − αk∇f(zk)
zk+1 = wk+1 + βk+1(wk+1 −wk).

(3.2.2)

This formulation decouples the two steps behind the accelerated gradient update: a gradient step
on zk, combined with a momentum step on wk+1.

30 Opti. ML - ID App. 2023/2024

Choosing the parameters We now comment on the choice of the stepsize αk and the momentum
parameter βk. The same techniques than those presented in Section 3.1.2 can be considered for the
choice of αk (stepsize parameter). As in the gradient descent case, the choice αk = 1

L is a standard
one.

The choice of βk is most crucial to obtaining the improved complexity bound. The standard
values proposed by Nesterov depend on the nature of the objective function:

• If f is a µ-strongly convex, we set

βk = β =
√
L−√

µ√
L+

√
µ

(3.2.3)

for every k. Note that this requires the knowledge of both the Lipschitz constant of the gradient
and the strong convexity constant.

• For a general convex function f , βk is computed in an adaptive way using two sequences, as
follows:

tk+1 =
1

2
(1 +

√
1 + 4t2k), t0 = 0, βk =

tk − 1

tk+1
. (3.2.4)

The following informal theorem summarizes the complexity results that can be proven for Algo-
rithm 3.

Theorem 3.2.1 Consider Algorithm 3 applied to a convex function f satisfying Assumption 3.0.1,
with αk = 1

L , and let ϵ > 0. Then, for any K ≥ 1, the iterate wK computed by Algorithm 3 satisfies

i) f(wK) − f∗ ≤ O(1
K2) for a generic convex function if βk is set according to the adaptive

rule (3.2.4);

ii) At most f(wK) − f∗ ≤
(
(1−

√
µ
L)

K
)
for a µ-strongly convex function, provided βk is set to

the constant value given by (3.2.3).

Note that we can also derive worst-case complexity bounds for the accelerated gradient method,
that show the same improvement. For instance, for strongly convex functions, we can establish

that f(wk) − f∗ ≤ ϵ after at most O
(√

L
µ ln(ϵ−1)

)
iterations, which represents an improvement

over the O
(
L
µ ln(ϵ−1)

)
complexity over gradient descent. Here the improvement is in terms of

problem-dependent constants.

3.2.3 Other accelerated methods

Heavy ball method The heavy ball method is a precursor of the accelerated gradient algorithm,
that was proposed by Boris T. Polyak in 1964. Its k-th iteration can be written as

wk+1 = wk − α∇f(wk) + β(wk −wk−1),

where the stepsize and momentum parameters are chosen to be constant values. The key difference
between this iteration and Nesterov’s lies in the gradient evaluation, which the heavy ball method
performs at the current point: in that sense, the heavy ball method performs first the gradient
update, then the momentum step, while Nesterov’s method adopts the inverse approach. This
method achieves the optimal rate of convergence on strongly convex quadratic functions, but can
fail on general strongly convex functions.

Opti. ML - ID App. 2023/2024 31

Conjugate gradient The (linear) conjugate gradient method, proposed by Hestenes and Stiefel in
1952, has remained to this day one of the preferred methods to solve linear systems of equations and
strongly convex quadratic minimization problems. Unlike Polyak’s method, the conjugate gradient
algorithm does not require knowledge of the Lipschitz constant L nor the parameter µ, because it
exploits knowledge from the past iterations. The k-th iteration of conjugate gradient can be written
as:

wk+1 = wk + αkpk, pk = −∇f(xk) + βkpk−1.

In a standard conjugate gradient algorithm, αk and βk are computed using formulas tailored to the
problem: this contributes to their convergence rate analysis, which leads to a rate similar to that
of accelerated gradient. However, unlike accelerated gradient, the conjugate gradient is guaranteed
to terminate after d iterations on a d-dimensional problem. When d is very large, the bound for
conjugate gradient matches that of the other methods, and in that sense does not depend on the
problem dimension.

Example 3.2.1 (Strongly convex quadratic minimization) A strongly convex quadratic minimiza-
tion problem is an optimization problem of the form

minimize
w∈Rd

q(w) := 1
2w

TAw − bTw

where A ∈ Rd×d is a symmetric positive definite matrix and b ∈ Rd. This problem is smooth
(because the objective is polynomial in all of the decision variables) and ∇2f(w) ≻ 0 for every w,
meaning that the problem is µ-strongly convex with µ denoting the minimum eigenvalue of A. As
a result, there exist a unique global minimum given by the solution of ∇q(w) = Aw − b = 0. This
equation is a linear system but the cost of inverting this system and computing a solution can be
prohibitive. For this reason, one can replace the exact solve by an iterative, gradient-based approach,
and apply Algorithm 1 or Algorithm 3. Note that q ∈ C1,1∥A∥(R

d), hence the choice of steplength 3.1.3
is a valid one.

If gradient descent is applied, then an ϵ-accuracy in the objective value can be reached in at most

O
(
L
µ ln(1ϵ)

)
iterations, while if one applies the accelerated gradient or the heavy ball method with

appropriately chosen parameters, this bound improves to O
(
L
µ ln(1ϵ

)
. Finally, if we aim at using

conjugate gradient, the result bound will be in O
(
min{d, Lµ ln(1ϵ)}

)
.

Chapter 4

Stochastic gradient techniques

4.1 Introduction

In this chapter, we will develop method that fully exploit the structure of data science problems. To
this end, we assume that we are given a dataset of n examples under the form {(xi,yi)}ni=1, where
xi ∈ Rdx and yi ∈ Rdy are obtained from a certain data distribution. As in the linear regression
example from the previous chapter, we seek a model function h : Rdx → Rdy such that h(xi) ≈ yi

for any i = 1, . . . , n. We will parameterize this model by a vector w ∈ Rd (h(xi) = h(xi;w)) so
that knowing the vector w suffices to be able to evaluate the model.

In order to quantify the model’s ability to represent the data, we define a cost function (or loss
function) of the form ℓ : (h, y) 7→ ℓ(h, y): this function aims at penalizing values (h, y) such that
h ̸= y. The mean-square or ℓ2 loss defined by (h, y) 7→ ∥h − y∥2 is a canonical example of a loss.
We then define the loss at a given example by ℓ(h(w;xi), yi).

We wish to compute the best model according to our entire dataset, leading to average the losses
over all examples. This finally leads to the following optimization problem.

Definition 4.1.1 (Finite sum problem) Consider a dataset {(xi, yi)}ni=1 with xi ∈ Rdx and yi ∈
Rdy , a model class {h(w; ·) : Rdx → Rdy}w∈Rd and a cost function ℓ. The finite-sum problem
associated with this setup is defined by:

minimize
w∈Rd

f(w) =
1

n

n∑
i=1

ℓ(h(w;xi),yi) =
1

n

n∑
i=1

fi(w). (4.1.1)

Provided the fis are all C1 functions, the function f is also C1 and we can apply gradient descent
to problem (4.1.1). The k-th iteration of this method is:

wk+1 = wk − αk∇f(wk) = wk −
αk

n

n∑
i=1

∇fi(wk).

From the iteration, it is clear that every gradient descent iteration requires to accessthe entire
dataset for a single gradient calculation. In a big data setting, the number of examples n can be
extremely large, and gradient descent can be too expensive to be used in practice.

Remark 4.1.1 In a purely stochastic or “online”, examples may only be available in a streaming
fashion: in this context, it may be impossible to compute a finite average over all samples, and we

32

Opti. ML - ID App. 2023/2024 33

consider instead the stochastic optimization problem:

minimize
w∈Rd

E(x,y)

[
f(x,y)(w)

]
. (4.1.2)

Even though the gradient of the objective may exist, it can be quite difficult to compute This
formulation is often closer to the real goal of machine learning (i.e. have a good model for all
possible examples in the distribution), yet it is often replaced by (4.1.1) to account for the empirical
setting.

4.2 Stochastic gradient method

4.2.1 Algorithm

The idea behind stochastic gradient is remarkably simple. It considers the problem (4.1.1) under
the assumption that every component function fi possesses a gradient: every iteration then consists
in choosing a random index ik and taking a step in the direction of the negative gradient of the
function fik . Algorithm 4 details this process.

Algorithm 4: Stochastic gradient method

1 Initialization: w0 ∈ Rd.
2 for k = 0, 1, ... do

1. Define a stepsize αk > 0.

2. Draw an index ik ∈ {1, . . . , n}.

3. Compute the new iterate
wk+1 = wk − αk∇fik(wk). (4.2.1)

3 end

The vector∇fik(wk) is called a stochastic gradient forwk. The key property of iteration (4.2.1)
is that it only requires one example from the dataset: as a result, its cost in terms of accessing
the data is n times lower compared to an iteration of gradient descent. As a result, the
comparison between the two methods is often conducted in terms of epochs.

Definition 4.2.1 (Epoch) For problem (4.1.1), an epoch represents n calculations of a sample
gradient ∇fi.

As a result, the cost of one iteration of gradient descent is that of one epoch, an iteration of
Algorithm 4 only costs a fraction (1n) of an epoch.

To conclude this presentation of stochastic gradient, we make several key remarks on its behavior.

Remark 4.2.1 In general, it is not possible to guarantee convergence of gradient descent. Consider
the two-dimensional problem:

minimize
w∈R

1

2
(f1(w) + f2(w))

34 Opti. ML - ID App. 2023/2024

with f1(w) = 2w2 and f2 = −w2. If w0 > 0 and ik = 2 for any k, then the method will diverge.
It is easy to build problems and draws of indices for which stochastic gradient does not converge.

In practice, however, finite-sum problems from data science involve component functions that are
quite similar, corresponding to data samples that follow a similar distribution. As a result, improving
the loss specific to a given sample may very well improve other losses with respect to similar samples.
This observation partly explains the success of stochastic gradient methods in data-related settings.

Remark 4.2.2 Algorithm 4 is often called Stochastic Gradient Descent, or SGD. This denomina-
tion is inaccurate, in that one cannot guarantee that the stochastic gradient method will behave like
a descent method (i.e. that it will decrease the function value at every iteration). For this reason,
we will call this method stochastic gradient in these notes, thereby following other authors’ termi-
nology [1]. However, we point out that many librairies refer to their implementation of Algorithm 4
as SGD.

4.2.2 Convergence rate analysis

In this section, we describe the key steps to deriving convergence rates (and complexity bounds) for
stochastic gradient, under a slightly altered version of Assumption 3.0.1.

Assumption 4.2.1 The objective function f = 1
n

∑n
i=1 fi of problem (4.1.1) is C1,1L (Rd) for some

L > 0, and bounded below by flow ∈ R. Moreover, every function fi is of class C1.

The key argument for analyzing gradient descent is the result of Proposition 3.1.1: in particular,
the inequality

f(wk+1) ≤ f(wk)−
(
αk −

L

2
α2
k

)
∥∇f(wk)∥2

leads to decrease guarantees for a sufficiently small step size.
It is possible to obtain a similar inequality in the case of stochastic gradient (in a probabilistic

sense). To this end, assumptions on the random indices (and thus the stochastic gradients used
throughout the algorithm) are necessary.

Assumption 4.2.2 (Stochastic gradients’ properties) For every iteration k of Algorithm 4, the
random index ik is drawn so that

i) ik is independent of i0, . . . , ik−1;

ii) Eik [∇fik(wk)] = ∇f(wk);

iii) Eik

[
∥∇fik(wk)∥2

]
≤ ∥∇f(wk)∥2 + σ2 with σ2 ∈ (0,∞).

The second property of Assumption 4.2.2 implies that the stochastic gradient ∇fik(wk) is an
unbiased estimator of the true gradient ∇f(wk). The third property guarantees that the norm of this
stochastic estimator cannot deviate too much from the true norm, which is critical in guaranteeing
some form of convergence. The most classical strategy to satisfy these assumptions is given below.

Example 4.2.1 (Uniform sampling) Suppose that {ik}k is a sequence of independent, identically
distributed indices uniformly drawn in {1, . . . , n}. Then, Algorithm 4 satisfies Assumption 4.2.2.

Using Assumption 4.2.2, one can establish a useful inequality for analyzing Algorithm 4.

Opti. ML - ID App. 2023/2024 35

Proposition 4.2.1 Let Assumptions 3.0.1 and 4.2.2 hold, and consider the k-th iteration of Algo-
rithm 4. Then,

Eik [f(wk+1)]− f(wk) ≤ ∇f(wk)
T Eik [wk+1 −wk] +

L

2
Eik

[
∥wk+1 −wk∥2

]
. (4.2.2)

As shown by (4.2.2), one can guarantee decrease over an iteration of stochastic gradient in
expectation (provided the right-hand side of (4.2.2) is negative). This property is sufficient to
obtain convergence rates (or complexity bounds) for stochastic gradient applied to strongly convex,
convex and nonconvex problems. These results heavily depend on the choice for the stepsize sequence
{αk}k: in fact, tuning the stepsize is a major issue in machine learning (in which the stepsize is often
referred to as a learning rate).

In the rest of this section, we mainly focus on strongly convex problems, and make the following
assumption.

Assumption 4.2.3 The objective function f of problem (4.1.1) is continuous and µ-strongly convex.
It possesses a unique global minimum w∗, and we let f∗ = f(w∗).

We first consider the case of a constant stepsize, for which we can establish the following result.

Theorem 4.2.1 (Stochastic gradient with constant stepsize) Let Assumptions 3.0.1, 4.2.2 and
4.2.3 hold. Suppose that we apply Algorithm 4 with a constant stepsize

αk = α ∈ (0, 1
L] ∀k.

Then, for every K ∈ N,

E [f(wK)− f∗] ≤ αLσ2

2µ
+ (1− αµ)K

[
f(w0)− f∗ − αLσ2

2µ

]
, (4.2.3)

where the expected value is taken on all randomness up to iteration K.

The result of Theorem 4.2.1 shows a linear rate of convergence for stochastic gradient in expec-
tation, which is comparable to that of gradient descent. However, this rate only guarantees that

{f(wK)} converges to a value in
[
f∗, f∗ + αLσ2

2µ

]
: even on average, stochastic gradient can only

be guaranteed to converge towards a neighborhood of the optimal value. Indeed, the result (4.2.3)

involves a constant term on its right-hand side, showing a possible gap to the optimum in αLσ2

4µ . It
is therefore not possible to guarantee that E [f(wk)− f∗] ≤ ϵ for any ϵ > 0, but only for sufficiently
large values of ϵ. However, the use of a constant stepsize guarantees a linear rate of convergence.

In the original version of stochastic gradient (proposed by Robbins and Monro in 1951), the
sequence of stepsizes was required to satisfy

∞∑
k=0

αk =∞ and
∞∑
k=0

α2
k <∞,

which lead to asymptotic convergence of the method. In order to satisfy these requirements, the
sequence αk must go to 0 as k goes to infinity. Therefore, we now describe a convergence result
based on using a decreasing stepsize.

36 Opti. ML - ID App. 2023/2024

Theorem 4.2.2 (Stochastic gradient with decreasing stepsize) Under Assumptions 3.0.1, 4.2.2
and 4.2.3, consider Algorithm 4 applied with a decreasing stepsize sequence of the form

αk =
β

k + γ
,

with β > 1
µ and γ > 0 chosen so that α0 =

β
γ ≤

1
L . Then, for any K ∈ N, we have

E [f(wK)− f∗] ≤ ν

γ +K
, (4.2.4)

where

ν := max

{
β2Lσ2

2(βµ− 1)
, γ(f(w0)− f∗)

}
.

As for gradient descent, using a decreasing stepsize sequence poses the risk of producing tiny
steps early in the algorithmic run. However, note that it guarantees convergence of {f(wk)} to f∗

in expectation, which is a strongly result than that of Theorem 4.2.1. Still, the convergence rate in
O(1/K) is worse than the one we established for gradient descent, in O((1−µ/L)K). Note however
that this comparison is related to the number of iterations: if we include the per-iteration cost (in
terms of accesses to the data), the stochastic gradient method has a convergence rate of O(1/K)
(1 access per iteration) while the gradient descent method yields a rate in O(n(1 − µ/L)K). The
latter can be significantly worse than the former for large n.

Remark 4.2.3 (A hybrid approach) A common stepsize strategy used in deep learning consists in
adopting a learning rate schedule. In this hybrid approach, one runs first stochastic gradient with a
constant value α upon a certain point, then replaces α by α′ < α: the process is repeated until a
suitable point has been found, or the budget of epochs is exhausted.

In the strongly convex setting, the result of Theorem 4.2.1 provides a useful criterion to reduce
the stepsize. Indeed, starting with a stepsize α, one can guarantee that a neighborhood of size αLσ2

µ
can be reached in a bounded number of iterations (or epochs). Therefore, once that point is reached,
one can reduce α. This approach guarantees to converge to the true optimal value, at a sublinear
rate: for any ϵ > 0,

E [f(wk)− f∗] ≤ ϵ after O(1/ϵ) iterations.

In practice, knowing how the neighborhood is reached may not be possible: other criteria, such as
detecting stalling in the algorithm (lack of progress in the iterates, in the function values, etc), can
help in designing strategies: several learning rate schedules are implemented in modern libraries.

Stepsize choice and nonconvex optimization Stochastic gradient and its variants are the most
common methods for training deep neural networks: the associated optimization problem is highly
nonconvex, and the above analysis cannot be applied. Still, it is possible to derive convergence rates
for the nonconvex case by studying the following quantities:

• E
[

1
K

∑K
i=1 ∥∇f(wk)∥2

]
for the variants of Algorithm 4 based on constant stepsizes.

• E
[

1∑K
i=1 αk

∑K
i=1 αk∥∇f(wk)∥2

]
for the variants using a decreasing stepsize sequence.

Opti. ML - ID App. 2023/2024 37

As in the strongly convex case, the iteration results for stochastic gradient will be worse than
that of gradient descent. For instance, applying 4 with a constant stepsize guarantees that

E

[
1
K

K∑
i=1

∥∇f(wk)∥2
]
≤ ϵ

in at most O(ϵ−4) iterations. This bound is worse than the O(ϵ−2) bound for gradient descent.
In addition, this result is only valid for sufficiently large ϵ because of the stochastic nature of the
method.

Remark 4.2.4 (Advanced stochastic gradient techniques) The most common stochastic gradi-
ent variants for deep learning (SGD with momentum, ADAM, Adagrad, RMSPRop) build
on the stochastic gradient principle by adding a momentum term to the stochastic gradient and/or
a scaling to every component of the step so as to reduce the need for intensive stepsize tuning.
Analyzing these methods is significantly more complicated than in the deterministic setting, and
theoretical results have yet to be reconciled with practical behavior.

4.3 Variance reduction

The theory of Section 4.2.2 relies heavily on Assumption 4.2.2, and more precisely on a control
over the norm of the stochastic gradient through the quantity σ2. A higher value of σ leads to
looser neighborhoods of the solution and, as a result, worse theoretical guarantees. Numerically, this
translates into high variability of the method’s output.

Variance reduction techniques have been designed to reduce the “variance” of gradient estimates
used in stochastic gradient. The goal of this section is to summarize key approaches to reducing
variance.

4.3.1 Batch methods

As explained in the previous section, the iteration of stochastic gradient is

wk+1 = wk − αk∇fik(wk),

where ik is a random index drawn within {1, . . . , n}. This method relies on a single example to build
a stochastic gradient estimate, and this estimate comes with a certain variance (illustrated by the
parameter σ2 in Assumption 4.2.2). On the contrary, gradient descent relies on an exact gradient
computed using all the samples, which leads to a deterministic execution and no variance in the
(exact) gradient estimate.

To improve the variance of this method, it appears natural to consider stochastic gradient es-
timates based on several samples: this is the underlying principle of batch stochastic gradient
methods.

At every iteration of a batch method, a (random) set of indices Sk with indices between 1 and
n is drawn, and the following update is performed:

wk+1 = wk − αk
1

|Sk|
∑
i∈Sk

∇fi(wk) (4.3.1)

38 Opti. ML - ID App. 2023/2024

When |Sk| = 1, we recover the classical stochastic gradient formula. When |Sk| = n and the indices
are drawn without replacement, we obtain Sk = {1, . . . , n}, and iteration (4.3.1) corresponds to that
of gradient descent.

More broadly, we can identify two regimes of batch sizes:

• |Sk| ≈ n: the per-iteration cost of such a variant is close to that of gradient descent, hence
these batch methods often exhibit a behavior comparable to that of gradient descent.

• 1 < |Sk| = nb << n: this regime, called mini-batching, is often thought as a good way to
reduce variance while keeping the per-iteration cost to an affordable level.

Assuming that the batch size is constant over all iterations, i.e. that |Sk| = nb ∀k, it is possible
to show that a mini-batch variant reaches a closer neighborhood than stochastic gradient. Every
iteration of the mini-batch method is of course more expensive than an iteration of stochastic gradient
(in fact, an epoch corresponds to n/nb iterations of a batch stochastic gradient method with a
fixed batch size of nb). Note that the cost of batch methods can be mitigated by exploiting parallel
computing resources. Indeed, in a distributed data setup, stochastic gradients can often be evaluated
in parallel, which reduces the effective cost of batch techniques.

Proposition 4.3.1 Under Assumptions 3.0.1 and 4.2.2, we have

ESk

 1
|Sk|

∑
i∈Sk

∇fi(wk)

 = ∇f(wk)

and

ESk

∥∥∥∥∥∥ 1
|Sk|

∑
i∈Sk

∇fi(wk)

∥∥∥∥∥∥
2

2

 ≤ σ2

nb
.

Finally, we mention that (mini)-batch approaches remain more expensive than “vanilla” stochastic
gradient, while being more sensitive to redundancies in the data, and introducing an new hyperpa-
rameter to be tuned (the batch size). For this reason, the classical stochastic gradient approach can
still be observed to be more efficient on some example, and it remains a popular algorithmic choice
in practice.

4.3.2 Other variance reduction techniques

Gradient aggregation techniques are variance reduction approaches with well-established convergence
rates, that are provably better than that of stochastic gradient. They have attracted significant
interest from the academic machine learning and optimization community, though their use in modern
data science settings like deep learning has not been successful (these techniques are still efficient on
simple models, and are part of librairies like scikit-learn). They essentially consist in maintaing a
full gradient estimate throughout the iterations, which requires at least one full gradient calculation:
the gradient estimate used to make a step then combines the full gradient estimator with a new
stochastic gradient, leading to a corrected step, and a method with provably smaller variance.

Iterate averaging is another way to reduce the variance in stochastic gradient at no additional
cost in terms of accesses to data points. The idea consists in analyzing the properties of a running

Opti. ML - ID App. 2023/2024 39

average 1
K

∑K−1
k=0 wk. In certain cases (in particular, when α = 1

µ(k+1) and f is µ-strongly convex),
this sequence possesses favorable properties and its behavior is less variable. However, computing
this average either requires to store all iterates (which becomes expensive in terms of storage) or
necessitates to maintain a running average (subject to numerical errors).

4.4 Stochastic gradient methods for deep learning

In this section, we review the main stochastic gradient techniques that are used to train deep learning
models. Our focus remains on finite-sum problems of the form (4.1.1) under Assumption 4.2.1. Our
goal is to study several variants on the iterative scheme

wk+1 = wk − αgk, (4.4.1)

where α > 0 is a fixed stepsize (or learning rate), and gk is a stochastic gradient estimator, that
may correspond to taking a single term from the finite sum (as in stochastic gradient) or to a batch
of indices.

To encompass all the variants of interest, we consider a more general iteration of the form

wk+1 = wk − αmk ⊘ vk, (4.4.2)

where α > 0, mk,vk ∈ Rd and ⊘ denotes the componentwise division operator:

mk ⊘ vk :=

[
[mk]i
[vk]i

]
i=1,...,d

.

To see that (4.4.2) generalizes (4.4.1), set mk = gk and vk = 1Rd . The iteration (4.4.2) is
particularly convenient to express the popular methods in deep learning using a single format.

4.4.1 Stochastic gradient with momentum

Most practical implementations of stochastic gradient combine the basic step (4.4.1) together with
a momentum term, similarly to the accelerated methods described in Chapter 3. An iteration of
gradient descent with momentum reads

wk+1 = wk − α(1− β)gk + αβ (wk −wk−1) , (4.4.3)

where β ∈ (0, 1) is a momentum parameter (when β = 0 we again obtain the standard stochastic
gradient iteration). Iteration (4.4.3) can be seen as a version of Polyak’s method where the gradient-
type step is combined with the previous direction. As for the heavy-ball method, the idea is to
incorporate information from the previous step through momentum. In practice, the iteration (4.4.3)
often leads to accumulation of good steps (in terms of optimization), whereas bad directions and
bad steps tend to cancel out.

The basic method (4.4.3) can be recovered from (4.4.2), by setting vk = 1Rd and defining mk

in a recursive manner through m−1 = 0Rd and

mk = (1− β)gk − βmk−1 ∀k ∈ N.

where β ∈ (0, 1).
Stochastic gradient with momentum is implemented in most deep learning librairies such as

PyTorch. It has shown great success in training deep neural networks on computer vision problems,
and is partly responsible for the rise of deep learning in the early 2010s.

40 Opti. ML - ID App. 2023/2024

Remark 4.4.1 Theoretical guarantees for the iteration (4.4.3) are much more difficult to obtain
than for accelerated gradient (in particular, it is not well understood whether such a method can be
provably faster than SGD). Nevertheless, stochastic gradient techniques with momentum are widely
used in practice, even on nonconvex problems such as neural network training.

4.4.2 AdaGrad

The adaptive gradient method, or AdaGrad, was proposed in 2011 to address the issue of setting
the learning rate α in stochastic gradient. Rather than using costly procedures such as line search,
AdaGrad scales every coordinate of the stochastic gradient using information from the values of
that coordinate in the previous iterations. Mathematically, the method maintains a sequence {rk}k
defined by

∀i = 1, . . . , d,

{
[r−1]i = 0
[rk]i = [rk−1]i + [gk]

2
i ∀k ≥ 0,

(4.4.4)

The AdaGrad iteration can then be written as

wk+1 = wk − αgk ⊘
√
rk, (4.4.5)

where the square root is applied componentwise to rk. This iteration is a special cas of (4.4.2),
where mk = gk and vk =

√
rk. The novelty in AdaGrad does not lie in the use of momentum,

but in the use of one stepsize per coordinate. The stepsize sequence thus has the form{[
α√
[rk]i

]d
i=1

}
k

.

The resulting diagonal scaling on the coordinates of gk leads to stepsizes that adapt to coordinates
that can vary by orders of magnitude (which would require a careful choice of α in basic stochastic
gradient). On the other hand, the accumulation process at work in the definition of rk results in
stepsizes that are monotonically decreasing, and that often converge quickly towards 0.

Remark 4.4.2 In practice, rk is replaced by rk + η1Rd where η > 0 is a small value that helps with
numerical stability.

The AdaGrad method is particularly interesting for problems with sparse gradients, in which
stochastic gradients tend to have many zero coordinates. In this situation, using rk will only modify
the stepsizes corresponding to nonzero gradient coordinates. Many problems in recommendation
systems have a sparse structure, and AdaGrad is considered to be an efficient method for this
class of problems.

4.4.3 RMSProp

The RMSProp (Root Mean Square Propagation) algorithm is similar in spirit to AdaGrad, in
that it scales the gradient components at every step. This method relies on a sequence {rk}k defined
by

∀i = 1, . . . , d,

{
[r−1]i = 0
[rk]i = (1− λ)[rk−1]i + λ[gk]

2
i ∀k ≥ 0,

(4.4.6)

Opti. ML - ID App. 2023/2024 41

where λ ∈ (0, 1). The value of λ is used to put more weight on the current gradient coordinates
than on the coordinates from past iterations (this information being contained in rk−1). This simple
idea slows down the decrease of the stepsizes to 0, compared to the stepsizes of AdaGrad.

With the definition (4.4.6), the RMSProp iteration corresponds has the same form as that of
AdaGrad, that is, a special case of (4.4.2) with mk = gk and vk =

√
rk.

Remark 4.4.3 As for AdaGrad, standard practice replaces rk by rk + η1Rd , where η > 0 is a
small quantity.

The RMSProp method has been found quite successful for training very deep neural networks.

4.4.4 Adam

The Adam optimization method was proposed in 2013. This method can be thought as combining
the idea of momentum (used in the stochastic gradient method of Section 4.4.1) with the diagonal
scaling procedure on which both AdaGrad and RMSProp are based. An iteration of Adam falls
into the generic scheme (4.4.2) by setting

mk =
(1− β1)

∑k
j=0 β

k−j
1 gj

1− βk+1
1

(4.4.7)

and

vk =

√√√√(1− β2)
∑k

j=0 β
k−j
2 gj ⊙ gj

1− βk+1
2

. (4.4.8)

Here β1, β2 ∈ (0, 1), and ⊙ denotes the Hadamard or componentwise product

gk ⊙ gk =
[
[gk]

2
i

]d
i=1

.

Remark 4.4.4 In practice, vk + η1Rd (with small η > 0) is used in lieu of vk.

The above formulas describe the two components of Adam. On one hand, a weighted combina-
tion of the previous steps that puts the emphasis on the most recent steps (and the current stochastic
gradient) defines the direction of the next step. On the other hand, a diagonal scaling is applied to
the coordinates of this direction, again according to a weighted average of the coordinates from the
previous iterations. This important feature, that has a statistical motivation, appears to be respon-
sible for the success of Adam in practice. The impressive performance of Adam on training neural
networks has contributed to its popularity, and it remains the preferred method today in numerous
applications. In particular, Adam and its variant AdamW (based on regularization principle) are
quite efficient on natural language processing models.

4.5 Conclusion

Stochastic gradient methods rely on partial gradient information selected in a random fashion: as
such, they are not guaranteed to succeed deterministically, and their convergence guarantees are
typically weaker than that of gradient descent. Nevertheless, they have proven very successful in
data-driven problems, wherein computing the gradient involves accessing a massive amount of data

42 Opti. ML - ID App. 2023/2024

points. In this setting, stochastic gradient approaches have an attractive, low per-iteration cost, and
typically make fast, significant progress early on in the algorithmic run. The nature of the data is key
to the performance of stochastic gradient: on standard datasets from machine and deep learning, it
appears beneficial to resort to such techniques.

Multiple variants of stochastic gradient have been developed in academic and industrial contexts.
Batch stochastic gradient techniques are among the most popular, as they allow to incorporate more
than one sample into the gradient approximation: this leads to variance reduction, a concept that is
driving some of the latest advances in stochastic gradient.

Chapter 5

Nonsmooth optimization and
regularization

The purpose of this chapter is to address two common characteristics of data science problems: the
possible lack of differentiability of the optimization problem on one hand, and the desire to produce
models with a specific structure on the other hand. We illustrate these issues using a classical learning
paradigm, then describe the underlying optimization concepts.

5.1 Introductory example: The perceptron method

Let x1, . . . ,xn be n vectors of Rd, and suppose each vector xi is given a label yi ∈ {−1, 1}. We
wish to design a linear model x 7→ xTw that correctly classifies the data. Since this classification is
binary and corresponds to finding a sign (positive or negative. Therefore, we will consider that the
model correctly classifies an input if xT

i w ≫ 1 and yi = 1, or xT
i w ≪ 1 and yi = −1, and such

models should have a small loss with respect to the ith data point. Conversely, models such that
xT
i w ≫ 1 and yi = −1 or xT

i w ≪ 1 and yi = 1 should have a very large loss with respect to the
ith data point. Finally, models for which |xT

i w| ≤ 1 should also be penalized, as they are likely to
correctly (or incorrectly) classify data points by a small margin: we would rather correctly classify by
a large margin.

To this end, we will use the following loss function, called the hinge loss:

ℓ(h, y) := max{1− yh, 0}. (5.1.1)

Then, one can translate the binary classification problem into the following optimization problem:

min
w∈Rd

1

n

n∑
i=1

max{1− yix
T
i w, 0}+ λ

2
∥w∥22 (5.1.2)

where {(xi, yi)}ni=1 represents the dataset, and λ > 0. The solution to this problem belongs to the
family of support vector machine models, or SVMs.

One of the earliest methods that was proposed to solve this algorithm is the perceptron algo-
rithm, given in Algorithm 5.

In its basic form, the preceptron algorithm is quite similar to stochastic gradient with a constant
step size, in that it selects a single sample at every iteration and performs an update based on this

43

44 Opti. ML - ID App. 2023/2024

Algorithm 5: Perceptron algorithm for problem 5.1.3.

1 Initialization: w0 ∈ Rd, α > 0.
2 for k = 0, 1, ... do

1. Draw an index ik ∈ {1, . . . , n} at random.

2. Compute the new iterate as

wk+1 =

(
1− αλ

n

)
wk +

{
αyikxik if 1− yikx

T
ik
wk > 0

0 otherwise,
(5.1.3)

3 end

value. However, the hinge loss is a nonsmooth function, i.e. the gradient does not exist at every
point. Therefore, we cannot consider that the perceptron algorithm is the stochastic gradient method
stricto sensu. Still, for structured functions such as the hinge loss, it is possible to define quantities
that act as a proxy for the gradient, and can thus drive the optimization process: we detail these
aspects in Section 5.2.

Another interesting property of the problem (5.1.2) is that the objective function involves two
terms: the hinge loss term, which depends on the data and possesses the finite-sum structure we
already saw in Chapter 4, and a regularizing term, which does not depend on the data and
serves to enforce structural properties on the solution. We will address this topic and the associated
algorithms in Section 5.3.

5.2 Nonsmooth optimization

5.2.1 From nonsmooth functions to nonsmooth problems

Problems such as (5.1.2), that involve a function possibly not differentiable, are termed nonsmooth
problems. They involve functions that we will call nonsmooth (by opposition with smooth) : for the
purpose of these notes, we will define nonsmooth functions as follows.

Definition 5.2.1 (Nonsmooth functions) A function f : Rd → R is called nonsmooth if it is not
differentiable everywhere.

Remark 5.2.1 A nonsmooth function can be continuous (this is the case for the hinge loss above).

Example 5.2.1 Examples of nonsmooth functions

• w 7→ |w| from R to R;

• w 7→ ∥w∥1 from Rd to R;

• ReLU: w 7→ max{w, 0} from Rd to R.

Opti. ML - ID App. 2023/2024 45

Since nonsmooth functions are not differentiable everywhere, optimization problems that involve
nonsmooth functions may be impossible to solve via gradient-based methods. Still, several approaches
can be used to tackle these problems.

One useful technique consists in reformulating a nonsmooth problem as a smooth one when
possible. For instance, the problem minw∈R |w| is equivalent to

min
w,t+,t−∈R

t+ + t− s. t. w = t+ − t−, t+ ≥ 0, t− ≥ 0.

This reformulation is a smooth problem involving only linear objective and constraints, which is easily
solvable by smooth solvers.

Another technique, frequently employed in practice, consists in working with functions that are
nonsmooth but Lipschitz continuous (denoted by C0,0L , by analogy with C1,1L) and using a gradient-
based scheme. This approach is motivated by the following property.

Theorem 5.2.1 Let f : Rd → R be a Lipschitz continuous function. Then it is differentiable at
almost every point in Rd.

For instance, the ReLU function is Lipschitz continuous (not differentiable at 0) thus most
constructions involving ReLU (such as neural networks) would not be differentiable everywhere.
However, most algorithms will operate under the assumption that the function is indeed differentiable.
This is the case for most points (in fact, almost every point), but nonsmooth functions are likely to
be non-differentiable at their minima, should they possess one.

5.2.2 Subgradient methods

In the case of convex functions, one can define a proxy for the gradient called the subgradient.

Definition 5.2.2 (Subgradient and subdifferential) Let f : Rd → R be a convex function. A
vector g ∈ Rd is called a subgradient of f at w ∈ Rd if

∀z ∈ Rn, f(z) ≥ f(w) + gT(z −w).

The set of all subgradients of f at w is called the subdifferential of f at w, and denoted by ∂f(w).

Note that when the function f is differentiable at w, we have ∂f(w) = {∇f(w)}, thus the notion
of subdifferential matches that of the gradient for differentiable functions.

The interest of subgradients is further illustrated by the following result.

Theorem 5.2.2 Let f : Rd → R be a convex function, and w ∈ Rd.

0 ∈ ∂f(w) ⇔ w minimum of f.

Example 5.2.2 Let f : R→ R, f(w) = |w|.

∂f(w) =

−1 if w < 0
1 if w > 0
[−1, 1] if w = 0.

The set [−1, 1] contains 0, which confirms that w∗ = 0 is the minimum of f .

46 Opti. ML - ID App. 2023/2024

Algorithm 6: Subgradient descent method.

1 Initialization: w0 ∈ Rd.
2 for k = 0, 1, ... do

1. Compute a subgradient gk ∈ ∂f(wk).

2. Compute a steplength αk > 0.

3. Set wk+1 = wk − αkgk.

3 end

Remark 5.2.2 Subgradients can also be defined for nonconvex functions, however in that case the
subdifferential may be empty (typically at local maxima of the function).

By analogy with gradient descent, we can design a subgradient method, as shown by Algorithm 6.
Such a method offers a flexibility in choosing the subgradient, which can be an issue. Moreover,

choosing the stepsize is more difficult than for gradient descent, due to the nonsmooth nature of the
problem. In fact, a subgradient can lead to increase in the function value for any stepsize, hence the
choice of subgradient is critical to the success of this method.

Variants of subgradient method Based on the existing variants on the gradient descent paradigm,
one can build algorithms that incorporate momentum and/or stochastic aspects; however, their
analysis is also more intricate.

5.3 Regularization

5.3.1 Regularized problems

As we mentioned in introduction, a common practice in machine learning problems consists in en-
forcing a specific structure of the machine learning model through the objective function. Such
regularized problems have the following form :

min
w∈Rd

f(w)︸ ︷︷ ︸
loss function

+ λΩ(w)︸ ︷︷ ︸
regularization term

.

where λ > 0 is called a regularization parameter.

Example 5.3.1 (Ridge regularization) A problem with ridge regularization has the following form:

min
w∈Rd

f(w) +
λ

2
∥w∥2.

The ridge regularizer w 7→ 1
2∥w∥

2 has several interpretations. It effectively penalizes ws with
large components, and can be shown to be equivalent to a constraint on the squared norm ∥w∥2.
In addition, a ridge regularizer has the effect to reduce the variance of the problem solution with
respect to the data. Finally, when the regularizer λ > 0 is big enough, this often turns the objective
function into a strongly convex one, with the positive implications in terms of convergence speed
and uniqueness of the (global) minimum.

Opti. ML - ID App. 2023/2024 47

5.3.2 Sparsity-inducing regularizers

While computing a model to explain some data, we might want to compute a model that explains
the data using as few features as possible1. Mathematically speaking, if our model is parameterized
by a vector w ∈ Rd, our goal is to compute a vector that explains the data with as few nonzero
coordinates as possible.

There exists a regularizer that penalized vectors with nonzero components (not just large as
opposed to the ridge regularizer), called the ℓ0 norm 2. An ℓ0-regularized problem has the form

min
w

f(w) + λ∥w∥0, ∥v∥0 = |{i|[v]i ̸= 0}|.

However, this function is nonsmooth and discontinuous; its combinatorial nature also introduces
more complexity to the original problem. As a result, researchers have turned to an intermediate
regularization term, the ℓ1 norm defined by

∥w∥1 =
d∑

i=1

|wi|. (5.3.1)

This function is continuous and convex; moreover, it is a norm function, which endows it with many
desirable properties.

An illustration of this method is given below.

Example 5.3.2 LASSO (Least Absolute Shrinkage and Selection Operator) Consider the setting of
linear regression with data X ∈ Rn×d and y ∈ Rn. With an ℓ1 regularizer, the problem becomes:

min
w∈Rd

1

2
∥Xw − y∥2 + λ∥w∥1.

The solution of this problem is known to possess fewer nonzero elements than the un-regularized,
least-squares solution.

5.3.3 Proximal methods

Following our introduction of regularized problems in the previous section, we now describe optimiza-
tion algorithms tailored to such formulations.

We begin by describing our problem class of interest.

Definition 5.3.1 (Composite optimization) A composite optimization problem is of the form:

min
w∈Rd

f(w) + λΩ(w),

where f : Rd → R is a smooth, C1,1 function, λ > 0 and Ω : Rd → R is a convex, nonsmooth
regularizer.

The proximal approach follows a classical optimization paradigm, in which a given problem is
replaced by a sequence of easier problems called subproblems (note that all methods that we covered
in these notes implicitly rely on these techniques). In the case of proximal methods, one aims at

48 Opti. ML - ID App. 2023/2024

Algorithm 7: Proximal gradient method.

1 Initialization: w0 ∈ Rd.
2 for k = 0, 1, ... do

1. Compute the gradient of the smooth part ∇f(wk).

2. Compute a steplength αk > 0.

3. Compute wk+1 such that

wk+1 ∈ argmin
w∈Rd

{
f(wk) +∇f(wk)

T(w −wk) +
1

2αk
∥w −wk∥22 + λΩ(w)

}
. (5.3.2)

3 end

exploiting the smoothness of f to obtain easier problems, while using the structure of Ω directly into
the subproblems.

Algorithm 7 gives a sketch of a proximal gradient method. The cost of an iteration of this
algorithm is clearly more than that of other methods we have seen so far, given that it includes a
gradient calculation as well as solving an auxiliary optimization problem (5.3.2), called the proximal
subproblem.

Remark 5.3.1 If Ω ≡ 0 (i. e. Ω is the zero function and the problem is un-regularized), one can
show that the solution of (5.3.2) is given by

wk+1 = wk − αk∇f(wk).

We thus recognize the gradient iteration of Algorithm 1.

Proximal gradient methods can be designed using most of the tools that can be applied to
gradient descent : this includes stepsize choices, acceleration as well as stochastic aspects. Moreover,
complexity results exist for nonconvex and convex f , though the latter has attracted more attention
in the literature.

Example of proximal method: ISTA We end this section on proximal methods by a instance of
Algorithm 7 that has proven successful in signal and image processing. This method is dedicated to
solving problems with an ℓ1 regularization term, of the form:

min
w∈Rd

f(w) + λ∥w∥1.

Unlike for general regularizers, one can obtain a closed-form solution of the subproblem (5.3.2).
Indeed, the proximal subproblem, given by

min
w∈Rd

{
f(wk) +∇f(wk)

T(w −wk) +
1

2αk
∥w −wk∥22 + λ∥w∥1

}
,

1The goal of this process is feature selection.
2Though technically this function defines a semi-norm.

Opti. ML - ID App. 2023/2024 49

has a unique solution. To obtain it, one computes the usual gradient step wk − αk∇f(wk), then
one applies the soft-thresholding function sαkλ(•) to each component, where this function is given
by

∀µ > 0, ∀t ∈ R, sµ(t) =

t+ µ if t < −µ
t− µ if t > µ
0 otherwise.

As a result, the solution of the proximal subproblem is defined component-wise according to the
components of the gradient step. The resulting update is at the heart of the corresponding proximal
algorithm, called ISTA (Iterative Soft-Thresholding Algorithm): a description of ISTA is given in
Algorithm 8.

Algorithm 8: ISTA: Iterative Soft-Thresholding Algorithm.

1 Initialization: w0 ∈ Rd.
2 for k = 0, 1, ... do

1. Compute the gradient of the smooth par ∇f(wk).

2. Compute a steplength αk > 0.

3. Compute wk+1 component-wise through the following rule

[wk+1]i =

[wk − αk∇f(wk)]i + αkλ if [wk − αk∇f(wk)]i < −αkλ
[wk − αk∇f(wk)]i − αkλ if [wk − αk∇f(wk)]i > αkλ
0 if [wk − αk∇f(wk)]i ∈ [−αkλ, αkλ].

(5.3.3)

3 end

It can be shown that the use of the soft-thresholding function does promote zero components in
the new iterates, which results in sparser solutions at the end of the algorithmic run.

Remark 5.3.2 A notable improvement on ISTA was the inclusion of momentum, which resulted in
a new algorithm called FISTA (Fast ISTA): this method is now the most widely used instance of
ISTA.

5.4 Conclusion

Nonsmoothness is a very common property in optimization, that can lead to mild or major challenges
in implementing algorithms to minimize nonsmooth functions. In certain cases, the structure and
the impact of nonsmoothness are well understood; in other cases, generalized notions of derivative
such as subgradients may have to be used in order to design optimization algorithms.

Nonsmoothness frequently arises in regularized problem, where the goal is to enforce structural
properties for a model, that do not depend on the data. The optimization schemes of choice for
these problems are proximal gradient methods, that proceed by solving subproblems involving the
regularizer. For instance, for ℓ1 regularization, that promotes sparsity of the solution, the proximal

50 Opti. ML - ID App. 2023/2024

gradient algorithm can be written in an explicit form (ISTA). Note that a regularizer need not be
nonsmooth: for smooth problems, proximal gradient is equivalent to gradient descent. This is for
instance the case with the ℓ2 regularizer, that aims at reducing variance with respect to the data.

Bibliography

[1] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale Machine Learning.
SIAM Rev., 60:223–311, 2018.

[2] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, Cambridge,
United Kingdom, 2004.

[3] S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra - Vectors, Matrices and
Least Squares. Cambridge University Press, Cambridge, United Kingdom, 2018.

[4] M. C. Ferris, O. L. Mangasarian, and S. J. Wright. Linear programming with MATLAB. MPS-
SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia,
2007.

[5] S. J. Wright. Optimization algorithms for data analysis. In A. C. Gilbert M. W. Mahoney, J.
C. Duchi, editor, The mathematics of data, number 25 in IAS/Park City Mathematics Series.
AMS, IAS/Park City Mathematics Institute, and Society for Industrial and Applied Mathematics,
Princeton, 2018.

51

Appendix A

Notations and mathematical tools

A.1 Notations

A.1.1 Generic notations

• Scalars (i.e. reals) are denoted by lowercase letters: a, b, c, α, β, γ.

• Vectors are denoted by bold lowercase letters: a, b, c,α,β,γ.

• Matrices are denoted by bold uppercase letters: A,B,C.

• Sets are denoted by bold uppercase cursive letters : A,B, C.

• A new operator or quantity is defined using :=.

• The following quantifiers are used throughout the notes: ∀ (for every), ∃ (it exists), ∃! (it
exists a unique), ∈ (belongs to), ⊆ (subset of), ⊂ (proper subset).

• The Σ operator is used for sums. To lighten the notation, and in the absence of ambiguity,
we may omit the first and last indices, or use one sum over multiple indices. As a result, the
notations

∑m
i=1

∑n
j=1,

∑
i

∑
j and

∑
i,j may be used interchangeably.

• The Π operator is used for products. To lighten the notation, and in the absence of ambiguity,
we may omit the first and last indices, or use one sum over multiple indices. As a result, the
notations

∏m
i=1

∏n
j=1,

∏
i

∏
j and

∏
i,j may be used interchangeably.

• The notation i = 1, . . . ,m indicates that the variable i takes all integer values between 1 and
m.

A.1.2 Scalar and vector notations

• The set of natural numbers (nonnegative integers) is denoted by N; the set of integers is
denoted by Z.

• The set of real numbers is denoted by R. Our notations for the subset of nonnegative real
numbers and the set of positive real numbers are R+ and R++, respectively. We also define
the extended real line R := R ∪ {−∞,∞}.

52

Opti. ML - ID App. 2023/2024 53

• The notation Rd is used for the set of vectors with d ∈ N real components; although we do
not explicitly indicate it in the rest of these notes, we always assume that d ≥ 1.

• A vector w ∈ Rd is thought as a column vector, with wi ∈ R denoting its i-th coordinate in

the canonical basis of Rd. We thus write w =

 w1
...
wd

, or, in a compact form, w = [wi]1≤ı≤d.

• Given a column vector w ∈ Rd, the corresponding row vector is denoted by wT, so that
wT = [w1 · · · wd] and [wT]T = w.

• For any integer d ≥ 1, the vectors 0d and 1d correspond to the vectors of Rd for which all
elements are 0 or 1, respectively. For simplicity, we may write w ≥ 0 to indicate that all
components of w are nonnegative.

A.1.3 Matrix notations

• We use Rm×n to denote the set of real rectangular matrices with m rows and n columns,
where m et n will always be assumed to be at least 1. If m = n, Rn×n refers to the set of
square matrices of size n.

• We identify a matrix in Rm×1 with its corresponding column vector in Rm.

• Given a matrix A ∈ Rm×n, Aij or [A]ij refers to the coefficient from the i-th row and the j-th
column of A. Provided this notation is not ambiguous, we use the notations A, [Aij]1≤i≤m

1≤j≤n

and [Aij] interchangeably.

• Depending on the context, we may use aT
i to denote the i-th row of A or aj to denote the

j-th column of A, leading to A =

 aT
1
...

aT
m

 or A = [a1 · · · an] , respectively.

• The diagonal of a square matrix A ∈ Rd×d is given by the coefficients Aii. The trace of such
a matrix is trace(A) :=

∑d
i=1Aii.

• Given A = [Aij] ∈ Rm×n, the transpose of matrix A, denoted by AT (read “A transpose”),
is defined as the matrix in Rn×m (or “n-by-m matrix”) such that

∀i = 1 . . .m, ∀j = 1 . . . n, [AT]ji = Aij .

Note that this generalizes the notation used for row vectors.

• For every n ≥ 1, In refers to the identity matrix in Rn×n (with 1s on the diagonal and 0s
elsewhere).

54 Opti. ML - ID App. 2023/2024

A.2 Mathematical tools

Optimization has mathematical roots in real analysis, mostly through differential calculus. Linear
algebra structures also play a major role in optimization (and data science). In this section, we list
the basic results that will be used in the course.

For a deeper dive into these notions, the following links are recommended.

• For linear algebra:

– https://www.ceremade.dauphine.fr/∼carlier/polyalgebre.pdf (in Frnech);

– http://vmls-book.stanford.edu/vmls.pdf (Chapters 1 to 3, in English).

• For differential calculus:

– https://www.ceremade.dauphine.fr/∼bouin/ens1819/Cours Bolley.pdf (in French);

– https://sebastianraschka.com/pdf/books/dlb/appendix d calculus.pdf (in English).

A.2.1 Vector linear algebra

We always consider vectors in the normed vector space Rd, of dimension d. The following operations
are defined in this space:

• For any x,y ∈ Rd, the sum of x and y is denoted by x+ y = [xi + yi]1≤i≤d;

• For any λ ∈ R, we define λx
n
= λ · x = [λxi]1≤i≤d. In this context, the real value λ is called

a scalar.

Using these operations, we can build linear combinations of vectors in Rd that produce a vector
in Rd of the form

∑p
i=1 λixi, where xi ∈ Rd and λi ∈ R for any i = 1, . . . , p.

The matrix space Rn×d can also be endowed with a vector space structure of dimension nd:

• For any A,B ∈ Rn×d, the sum of A and B is denoted by A+B = [Aij +Bij]1≤i≤d
1≤j≤d

;

• For any scalar λ ∈ R, we define λA
n
= λ ·A = [λAij]1≤i≤n

1≤j≤d
.

Definition A.2.1 A set S ⊆ Rd satisfying the conditions

1. 0d ∈ S;

2. ∀(x,y) ∈ S, x+ y ∈ S;

3. ∀x ∈ S, ∀λ ∈ R, λx ∈ S.

is called a (linear) subspace of Rd.

Definition A.2.2 Let x1, . . . ,xp be p vectors in Rd. The span (or linear span) of x1, . . . ,xp,
denoted by Span(x1, . . . ,xp), is the subspace of Rd defined by

Span(x1, . . . ,xp) :=

{
x =

p∑
i=1

αixi

∣∣∣∣∣αi ∈ R ∀i

}
.

https://www.ceremade.dauphine.fr/~carlier/polyalgebre.pdf
http://vmls-book.stanford.edu/vmls.pdf
https://www.ceremade.dauphine.fr/~bouin/ens1819/Cours_Bolley.pdf
https://sebastianraschka.com/pdf/books/dlb/appendix_d_calculus.pdf

Opti. ML - ID App. 2023/2024 55

We now recall various properties of vector sets.

Definition A.2.3 • The vectors in a set {xi}ki=1 ⊂ Rn are called linearly independent if for any

scalars λ1, . . . , λk satisfying
∑k

i=1 λixi = 0, we have λ1 = · · · = λk = 0. In that case, k ≤ n.

• If the above property does not hold, the vectors are called linearly dependent.

• A spanning set is a set of vectors {xi} ⊂ Rn such that their span is Rn.

• A set of vectors {xi}ni=1 ⊂ Rn is a basis if it is both linearly independent and a spanning set.
In that case, any vector in Rn can be written as a uniquely defined linear combination of the
xis. Any basis in Rn has exactly n vectors.

Since the size of a basis in Rn is n, we say that the dimension of the space is n. Consequently,
any subspace of Rn has dimension at most n.

Example A.2.1 Any vector x in Rn can be written as x =
∑n

i=1 xiei, where ei = [0 · · · 0 1 0 · · · 0]T
is the ith vector of the canonical basis (with a 1 in the ith coordinate).

Norm and scalar product Using a Euclidean norm and its associated scalar product allows to
compare vectors by measuring the distance between them. This ability is particularly useful to
establish that a sequence of vector generated by an optimization method converges toward the
solution of a given problem.

Definition A.2.4 The Euclidean norm ∥ · ∥ on Rn is defined by

∀x ∈ Rn, ∥x∥ :=

√√√√ n∑
i=1

x2i .

Remark A.2.1 This is indeed a norm, since it fulfills the four axioms that define what a norm is:

1. ∀x,y ∈ Rn, ∥x+ y∥ ≤ ∥x∥+ ∥y∥;

2. ∥x∥ = 0 ⇔ x = 0Rn ;

3. ∀x, ∥x∥ ≥ 0;

4. ∀x ∈ Rn, ∀λ ∈ R, ∥λx∥ = |λ|∥x∥.

A vector x ∈ Rn is called a unit vector if ∥x∥ = 1.

Definition A.2.5 For any vectors x,y ∈ Rn, the scalar product derived from the Euclidean norm
is a function of x and y, denoted by xTy, defined as follows:

xTy :=

n∑
i=1

xiyi.

Two vectors x and y are called orthogonal if xTy = 0.

56 Opti. ML - ID App. 2023/2024

Note that yTx = xTy, hence the scalar product defines a “product” between a row vector and
a column vector.

Proposition A.2.1 Let x and y be two vectors in Rn. Then, the following properties hold

i) |x+ y∥2 = ∥x∥2 + 2xTy + ∥y∥2;

ii) ∥x− y∥2 = ∥x∥2 − 2xTy + ∥y∥2;

iii) ∥x∥2 + ∥y∥2 = 1
4

(
∥x+ y∥2 + ∥x− y∥2

)
;

iv) Cauchy-Schwarz inequality :

∀x,y ∈ Rn, xTy ≤ ∥x∥∥y∥.

Remark A.2.2 The last inequality is a key result in both linear algebra and analysis. In this course,
it will play a major role in deriving Taylor-type inequalities.

A.2.2 Matrix linear algebra

We can define the product of two matrices that have compatible dimensions. More precisely, for any
A ∈ Rm×n and B ∈ Rn×p, the product matrix AB is defined as the matrix C ∈ Rm×p such that

∀i = 1, . . . ,m, ∀j = 1, . . . , p, Cij =
n∑

k=1

AikBkj .

Using this definition, the product of a matrix A ∈ Rm×n with a (column) vector x ∈ Rn is the
vector y ∈ Rm given by

∀i = 1, . . . ,m, yi =
n∑

j=1

Aijxj .

Remark A.2.3 Note that the scalar product on Rn corresponds to the matrix product for matrices
of sizes 1× n and n× 1: the result of this operation is a 1× 1 matrix, that is, a scalar.

When one work with matrices, the following subspaces are of interest.

Definition A.2.6 (Matrix subspaces) Let A ∈ Rm×n.

• The null space of A is the subspace

Null(A) := {x ∈ Rn | Ax = 0m}

• The range space of A is the subspace

Range(A) := {y ∈ Rm | ∃x ∈ Rn,y = Ax}

The dimension of this subspace is called the rank of A. We denote it by rank(A). One always
has rank(A) ≤ min{m,n}.

Opti. ML - ID App. 2023/2024 57

Theorem A.2.1 (Rank-nullity theorem) Let A ∈ Rm×n. Then,

dim(ker(A)) + rang(A) = n.

Definition A.2.7 (Matrix norms) Consider the space Rm×n. The operator norm ∥ · ∥ and the
Frobenius norm ∥ · ∥F are defined by

∀A ∈ Rm×n,

∥A∥ := maxx∈Rn

x̸=0n

∥Ax∥
∥x∥ = maxx∈Rn

∥x∥=1
∥Ax∥

∥A∥F :=
√∑

1≤i≤m
1≤j≤n

A2
ij .

Definition A.2.8 (Symmetric matrix) A square matrix A ∈ Rn×n is called symmetric if AT = A.
The set of symmetric matrices in Rn×n is denoted by Sn.

Definition A.2.9 (Invertible matrix) A square matrix A ∈ Rn×n is called invertible if there exists
B ∈ Rn×n such that BA = AB = In (where we recall that In denotes the identity matrix in
Rn×n).

When it exists, such a matrix B is unique. It is then called the inverse of A and denoted by
A−1.

Definition A.2.10 (Positive (semi)definite matrix) A square, symmetric matrix A ∈ Rn×n is
called positive semidefinite if

∀x ∈ Rn, xTAx ≥ 0,

which we write A ⪰ 0.
Such a matrix is called positive definite when xTAx > 0 for any nonzero vector x. We write

this as A ≻ 0.

Definition A.2.11 (Orthogonal matrix) A square matrix P ∈ Rn×n is called orthogonal if PT =
P−1.

More generally, a matrix Q ∈ Rm×n, where m ≤ n, is called orthogonal if QQT = Im (the
columns of Q are orthonormal in Rm).

When Q ∈ Rn×n is orthogonal, then so is its transpose QT (this result only applies to square
matrices). Orthogonal matrices have the following desirable property.

Lemma A.2.1 Let A ∈ Rm×n and U ∈ Rm×m, V ∈ Rn×n be two orthogonal matrices. Then,

∥A∥ = ∥UA∥ = ∥AV ∥ and ∥A∥F = ∥UA∥F = ∥AV ∥F ,

i.e. multiplying by an orthogonal matrix preserves the norm.

As a corollary of the previous lemma, we observe that an orthogonal matrix Q ∈ Rm×n with
m ≤ n must satisfy ∥Q∥ = 1 and ∥Q∥F =

√
m.

Definition A.2.12 (Eigenvalue) Let A ∈ Rn×n. A scalar λ ∈ R is called an eigenvalue of A if

∃v ∈ Rn,v ̸= 0n, Av = λv.

The vector v is called an eigenvector associated with the eigenvalue λ. The set of eigenvalues
of A is the spectrum of A.

58 Opti. ML - ID App. 2023/2024

The span of eigenvectors associated to the same eigenvalue is called the eigenspace. Its dimension
corresponds to the multiplicity of the eigenvalue relatively to the matrix.

Proposition A.2.2 For any matrix A ∈ Rn×n, the following holds:

• A has n complex eigenvalues.

• IfA is symmetric positive semidefinite (resp. definite), then its eigenvalues are real nonnegative
(resp. real positive).

• The null space of A is spanned by the eigenvectors associated with the 0 eigenvalue.

Theorem A.2.2 (Eigenvalue decomposition theorem) Any symmetric matrix A ∈ Rn×n has an
eigenvalue decomposition of the form

A = PΛP T ,

where P ∈ Rn×n is an orthogonal matrix,and Λ ∈ Rn×n is a diagonal matrix that contains the n
eigenvalues of A λ1, . . . , λn on its diagonal.

The eigenvalue decomposition is not unique, but the set of eigenvalues that appears in the
decomposition is uniquely defined.

Remark A.2.4 There are matrices that possess an eigenvalue decomposition of the form PΛP−1,
where P is invertible (but not necessarily orthogonal). Those matrices are called diagonalizable.

Link with singular value decomposition Let A ∈ Rm×n. In general, m ̸= n and the notion of
eigenvalue that we introduced above does not apply. However, we can always consider the eigenvalues
of

ATA ∈ Rn×n and AAT ∈ Rm×m.

These matrices are real and symmetric, hence they can be diagonalized. This property is what gives
rise to the singular value decomposition (or SVD).

A.2.3 Calculus

Note: This section gives additional background to the concepts and properties introduced in Chap-
ter 1.

Definition A.2.13 (Continuity) A function f : Rn → Rm is called continuous in x ∈ Rn if

∀ϵ > 0, ∃δ > 0, ∀y ∈ Rn, ∥y − x∥ < δ ⇒ ∥f(y)− f(x)∥ < ϵ.

The function f is continuous on a set A ⊆ Rn if it is continuous at every point of A. When A = Rn,
we simply say that f is continuous.

Remark A.2.5 In certain textbooks, the notion above is termed uniform continuity. For simplicity
of exposure, we will use it as our definition of continuity.

Opti. ML - ID App. 2023/2024 59

An alternate characterization of continuity based on sequences is given below. Sequences typically
appear when considering iterative algorithms, hence the relevance of this notion here.

Definition A.2.14 (Continuity (sequential definition)) A function f : Rn → Rm is continuous
at x ∈ Rn if

∀{xn} ∈ (Rn)N, {xn} → x, lim
n→∞

f(xn) = f(x).

Example A.2.2 A linear map f : Rn → Rm, where f(x) = Ax+b for any x ∈ Rn with A ∈ Rm×n

and b ∈ Rm, is a continuous function on Rn.

Definition A.2.15 (Differentiability Jacobian matrix) A function f : Rn → Rm is called differ-
entiable at a point x ∈ Rn if there exists a matrix Jf (x) ∈ Rm×n such that

lim
z→x
z ̸=x

∥f(z)− f(x)− Jf (x)(z − x)∥
∥z − x∥

= 0.

• Jf (x) is called the Jacobian of f at x, and is uniquely defined.

• If f(·) = [f1(·), . . . , fm(·)]T, then

∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n, [Jf (x)]ij =
∂fi
∂xj

(x).

The following special cases are instrumental to optimization and basic analysis.

Corollary A.2.1 • When m = 1, we define the (column) vector ∇f(x) ≡ Jf (x)
T, called the

gradient of f at x. In this case, the gradient is the vector of partial derivatives of f :

∀i = 1, . . . , n, ∇f(x) =
[
∂f

∂xi
(x)

]
1≤i≤n

.

• When n = m = 1, both the Jacobian and the gradient are equivalent to a scalar la matrice
Jacobienne et le vecteur f ′(x) ≡ ∇f(x) ≡ Jf (x)

T, called the derivative of f at x.

In these notes, we assume familiarity with the common derivative formulas for functions from R
to R. More complex formulas are typically obtained thanks to the rule below.

Theorem A.2.3 (Chain rule) If f : Rn 7→ Rm and g : Rm 7→ Rp are both differentiable, respec-
tively on Rn and Rm, then h : Rn 7→ Rp is differentiable on Rn and

∀x ∈ Rn, Jh(x) = Jg(f(x))Jf (x).

Remark A.2.6 Special cases of the chain rule:

• m = p = 1 : ∇h(x) = g′(f(x))∇f(x);

• n = m = p = 1 : h′(x) = g′(f(x))f ′(x).

60 Opti. ML - ID App. 2023/2024

Theorem A.2.4 (Mean-value theorem in dimension 1) Let f : [a, b]→ R. If f is continuous on
[a, b] and differentiable on (a, b), there exists c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

Definition A.2.16 (Taylor expansion) Let f : [a, b] 7→ R be C1 on [a, b], then

f(b) = f(a) + f ′(c)(b− a) where c ∈ [a, b]

f(b) = f(a) +

∫ 1

0
f ′(a+ t(b− a))(b− a) dt.

Theorem A.2.5 (Mean-value theorem in dimension d) Let f : Rd → R f ∈ C1(Rd). For any
x,y ∈ Rd, x ̸= y, there exists t ∈ (0, 1) such that

f(y) = f(x) +∇f(x+ t(y − x))T(y − x).

Definition A.2.17 (Lipschitz continuity) A function f : Rn → Rm is L-Lipschitz continuous on
A ⊂ Rn if

∀x,y ∈ A2, ∥f(x)− f(y)∥ ≤ L∥x− y∥.

Proposition A.2.3 Any Lipschitz continuous function on a set is continuous on this set.

Definition A.2.18 (Function classes) Let f : Rd → R.

• We say that f is Cp(Rd) (or simply Cp) if it is differentiable p times with a continuous pth-
order derivative (in which case all derivatives up to order p are continuous). The class of C∞
functions is the intersection of all Cp with p ∈ N.

• We say that f is Cp,pL (Rd) (or simply Cp,pL) if it is differentiable p times and its pth-order
derivative is L-Lipschitz continuous.

Theorem A.2.6 (Taylor expansion of order 1) Let f ∈ C1(Rd). For any vectors x and y of Rd,
we have

f(y) = f(x) +

∫ 1

0
∇f(x+ t (y − x))T(y − x) dt.

Moreover, if f ∈ C1,1L (Rd), then

f(y) ≤ f(x) +∇f(x)T(y − x) +
L

2
∥y − x∥2. (A.2.1)

Theorem A.2.7 (Taylor expansion of order 2) Let f ∈ C2(Rd). For any vectors x and y of Rd,
one has

f(y) = f(x) +∇f(x)T(y − x) +
1

2

∫ 1

0
(y − x)T∇2f(x+ t (y − x))(y − x) dt.

Moreover, if f ∈ C2,2L (Rd), then

f(y) ≤ f(x) +∇f(x)T(y − x) +
1

2
(y − x)T∇2f(x)(y − x) +

L

2
∥y − x∥3. (A.2.2)

Opti. ML - ID App. 2023/2024 61

A.3 Probability theory

The concept of probability originates from measure theory. All results in probability and statistics
implicitly rely on probability spaces, i.e. triplets (Ω,A,P), where

• Ω is a set of possible values, or outcomes;

• A is a family of subsets of Ω called set of events, that satisfy certain properties that make it
a σ-algebra;

• P : A → [0, 1] is a probability measure, that satisfies in particular P (∅) = 0 and P (Ω) = 1.

Given this definition, a random variable is a mapping from a probability space to another space that
induces a new probability measure on the latter. The term random variable is often used for scalar
quantities, thus we will make a distinction between random variables and random vectors defined as
follows:

• random variables z defined on a probability space (R,B(R),P) by

∀B ∈ B(R), P (z ∈ B) = P (B) ;

• random vectors z =

 z1
· · ·
zd

 of size d, defined on the probability space (Rd,B(Rd),P).

In both case, the set of events will be the Borel σ-algebra B(Rd).

A.3.1 Random variables

A random variable is a function from a probability space onto another space that induces a probability
measure in the latter. This notion is often restricted to the scalar case (in which case the arrival
space is R). Random vectors, that correspond to multidimensional outputs, will be addressed in a
subsequent section.

Although a generic study of random variables can be performed by considering them as taking a
continuum of values, we begin by providing the elementary definition of discrete random variables.

Definition A.3.1 (Discrete random variable) A discrete random variable z is defined by

• A discrete set of possible values Z = {zi} ⊂ R;

• An associated set of probabilities p = {pi} such that pi ≥ 0,
∑

i pi = 1 and

∀S ⊂ Z, P (z ∈ S) =
∑
zi∈S

pi.

Definition A.3.2 (Continuous random variable) A continuous random variable z is defined by

• A continuous set of possible values Z ⊂ R;

62 Opti. ML - ID App. 2023/2024

• An associated probability density p : Z → R+ such that
∫
R p(z) dz = 1 and

∀S ⊂ Z, P (z ∈ S) =

∫
z∈S

p(z) dz.

For both continuous and discrete random variables, we will say that z follows a distribution char-
acterized by (p,Z), or simply p when the set of possible values is implicit from the definition of
p.

To understand the behavior of random variables, one can look at the moments of their distribution
(provided they are well defined). The canonical example of such a quantity is the mean (also called
the expected value) of a random variable.

Definition A.3.3 (Expected value/Mean) Let z be a random variable with a distribution (p,Z),
which we indicate as z ∼ p. The expected value of z is defined by

E [z] = Ez [z] =

∑

zi∈Z zi p(z = zi) (discrete case)∫
Z z p(z) dz (continuous case).

The expected value has several desirable properties that facilitate its use, especially the following.

Proposition A.3.1 The expected value is a linear operator: that is, for every random variable z and
every α, β ∈ R, one has:

E [α z + β] = αE [z] + β;

The expected

Definition A.3.4 (Variance and standard deviation) Let z be a random variable.

• The variance of z is defined by

Var [z] = E
[
z2
]
− E [z]2 .

• The standard deviation of z is the square root of the variance.

Lemma A.3.1

• If z is a discrete random variable, then Var [z] =
∑

i piz
2
i − [

∑
i pizi]

2;

• If z has zero mean, i.e. E [z] = 0, then Var [z] = E
[
z2
]
.

A.3.2 Pair of random variables

When two random variables possess the same distribution on the same probability space, we say that
those variables are identically distributed. In a general setting, one can study the distribution of
the pair formed by two random variables.

Definition A.3.5 (Joint distribution (discrete case)) Let z and w be two discrete random vari-
ables taking values in Z = {zi} and W = {wj}, respectively. The distribution of the pair of random
variables (z, w) is defined by

Opti. ML - ID App. 2023/2024 63

• The set of possible values Z ×W = {(zi, wj)};

• The discrete probability density p = {pi,j}, where

pi,j = P (z = zi, w = wj) .

Definition A.3.6 (Joint distribution (continuous case)) Let z and w be two continuous random
variables taking values in Z andW. The distribution of the pair of random variables (z, w) is defined
by

• The set of possible values Z ×W;

• The continuous probability density p : Z ×W → R+ such that∫
z

∫
w
p(z, w) dz dw = 1.

In the above definitions, we started from two random variables to obtain the joint distribution
of the pair formed by these variables. It is also possible to go the other way around, by defining
marginal laws.

Definition A.3.7 (Marginal laws (discrete case)) Let z and w be two discrete random variables
taking values in Z = {zi} andW = {wj}, respectively. Let {pi,j} be the joint distribution of (z, w).

• The marginal law of z is given by {pi•}i, where

pi• := P (z = zi) =
∑

j|wj∈W

P (z = zi, w = wj) =
∑
j

pi,j .

• Similarly, the marginal law of w is given by {p•j}j , where

p•j := P (w = wj) =
∑

i|zi∈Z

P (z = zi, w = wj) =
∑
i

pi,j .

Definition A.3.8 (Marginal laws (continuous case)) Let z and w be two continuous random
variables taking values in Z and W, respectively. Let p : (z, w) 7→ p(z, w) be the joint density
of (z, w).

• The marginal law of z, denoted by pz or p(z, •), is the function pz : Z → R+ given by

∀z ∈ Z, pz(z) =

∫
W

p(z, w) dw.

• The marginal law of w, denoted by pw or p(•, w), is the function pw :W → R+ given by

∀w ∈ W, pw(w) =

∫
Z
p(z, w) dz.

Definition A.3.9 (Covariance and correlation) Let z and w be two random variables. The co-
variance of z and w is defined by

Cov [z, w] = Ez,w [(z − E [z]) (w − E [w])] .

The correlation of z and w is

Corr [z, w] =
Cov [z, w]√

Varz [z]
√
Varw [w]

.

64 Opti. ML - ID App. 2023/2024

Independent random variables Independence is widely used in statistics, where it is often com-
bined with the notion of identically distributed variables: we then say that the random variables are
i.i.d., which stands for “independent, identically distributed”.

Definition A.3.10 (Independent variables) Let z and w be two random variables with distribu-
tions (pz,Z) and (pw,W), respectively. The variables z and w are called independent if the pair
(z, w) satisfies

∀S × T ⊂ Z ×W, P (z ∈ S, w ∈ T) = P (z ∈ S)P (w ∈ T) .

Independence allows for an easy characterization of the joint distribution, as illustrated by the fol-
lowing result.

Proposition A.3.2 Let z and w be two independent random variables. Then, their joint distribution
is obtained as the product of the marginal distributions. We thus have{

pij = pi• × p•j (discrete case)
p(z, w) = pz(z)× pw(w) (continuous case).

Proposition A.3.3 Let z and w be two independent random variables. Then, these values are
decorrelated, i. e. Cov [z, w] = Corr [z, w] = 0.

A.3.3 Random vectors

Most of the previous results on random variables can be extended to the case of random vectors,
i.e. multidimensional random quantities. We provide below the basic concepts.

Definition A.3.11 (Law of a random vector) Let z = [zi]i be a random vector in Rn : the law
(or the distribution) of z is given by the joint distribution of its components. In particular, we define
the following moments of this distribution:

• the expected value of z is the vector of the expected values of each component:

E [z] = {E [zi]}i ∈ Rn;

where the expected value is taken with respect to z;

• the covariance matrix of z, denoted by Var [z] or Σz is the matrix of the covariances between
each component

∀1 ≤ i, j ≤ n, [Σz]i,j := E [(zi − E [zi])(zj − E [zj])] .

Note that the covariance matrix can be written as

Σz = E
[
(z − E [z])(z − E [z])T

]
∈ Rn×n.

Lemma A.3.2 If the components of a random vector are independent, then its covariance matrix is
diagonal.

	Introduction to optimization
	About optimization
	The optimization process
	Modern optimization

	The optimization problem
	Mathematical background
	First definitions
	Convexity

	Optimization algorithms
	The algorithmic process
	Convergence and convergence rates
	Popular optimization packages

	Data fitting using standard optimization problems
	Regression via linear least squares
	Linear algebra tools
	Linear least-squares optimization
	Link with linear regression

	Linear programming
	Linear optimization problem
	Robust linear regression and linear program

	Unconstrained optimization
	Gradient descent
	Algorithm
	Choosing the stepsize
	Theoretical analysis for gradient descent

	Acceleration
	Introduction: the momentum principle
	Nesterov's accelerated gradient method
	Other accelerated methods

	Stochastic gradient techniques
	Introduction
	Stochastic gradient method
	Algorithm
	Convergence rate analysis

	Variance reduction
	Batch methods
	Other variance reduction techniques

	Stochastic gradient methods for deep learning
	Stochastic gradient with momentum
	AdaGrad
	RMSProp
	Adam

	Conclusion

	Nonsmooth optimization and regularization
	Introductory example: The perceptron method
	Nonsmooth optimization
	From nonsmooth functions to nonsmooth problems
	Subgradient methods

	Regularization
	Regularized problems
	Sparsity-inducing regularizers
	Proximal methods

	Conclusion

	Appendix Notations and mathematical tools
	Notations
	Generic notations
	Scalar and vector notations
	Matrix notations

	Mathematical tools
	Vector linear algebra
	Matrix linear algebra
	Calculus

	Probability theory
	Random variables
	Pair of random variables
	Random vectors

